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Chapter 4.   Other forms of Kantian optimization 

 

4.1    A continuum of Kantian equilibria 

 Multiplicative and additive Kantian optimization each employ a method of 

‘universalizing one’s action.’   We can generalize this as follows.   Consider the function 

   ϕ× (E,r) = rE  .      (4.1) 

defined on the domain ℜ+
2  .   Let a game be defined by payoff functions {V i}  on 

strategy profiles (E1,...,En )  .   We can define a multiplicative Kantian equilibrium as a 

profile (E1,...,En )  such that: 

 (∀i) V i (ϕ× (E1,r),...,ϕ× (En ,r)) is maximized at r = 1 . (4.2) 

Similarly, define: 

 ϕ+ (E,r) = E + r −1  . (4.3) 

Then an additive Kantian equilibrium is a profile (E1,...,En )  such that: 

 (∀i) V i (ϕ+ (E1,r),...,ϕ+ (En ,r)) is maximized at r = 1 . (4.4) 

(In this case, r can take on negative values.) 

 More generally: 

 

Definition 4.1   A function ϕ(E,r) :ℜ+ ×ℜ→ℜ+   such that ϕ(E,1) ≡ 1  is a Kantian 

variation. 

 Consider the convex economic environments with production e = (u1,...,un ,G)  

that we have been working with: denote the domain of such environments by E.  The 

environment e becomes an economy if we append to it an allocation rule, which is a set of 

functions {Xi :ℜ+
n →ℜ+ ,i = 1,...,n}   such that: 

   ∀(E1,...,En ) Xi (E1,...,En ) = G(ES )
i=1

n

∑  . 

Alternatively we may define an allocation rule as a set of output share functions θi , 

where Xi (E1,...,En ) = θi (E1,...,En ,G)G(ES )  .    We have studied two allocation rules, 

X Pr  and XED  .   Given a pair (e,X)  we have an economy with respect to which we can 
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define a game whose strategies are the effort levels of its members.  What we have shown 

is that the (positive) Kantian equilibria of economies (e,X Pr )   with respect to the Kantian 

variation ϕ×   are Pareto efficient for all e∈ E , and the Kantian equilibria of economies 

(e,XED )   with respect to the Kantian variation ϕ+   are Pareto efficient for all e∈ E.    

This motivates the definition: 

 

Definition 4.2  A pair (X,ϕ)  consisting of an allocation rule and a Kantian variation will 

be called an efficient Kantian pair if the Kantian equilibria with respect to the variation 

ϕ   of economies (e,X)   for all e∈ E are Pareto efficient. 

 

 The question naturally arises: are there any efficient Kantian pairs other than these 

two, where e belongs to the class of convex economic environments E ?  The answer is 

there is a whole continuum of such pairs, which span a set of which the two polar 

members are (X Pr ,ϕ× ) and (XED ,ϕ+ )  .   There are, in addition, some others that I discuss 

in the next section. 

 Define the allocation rule, for any β ∈[0,∞)  : 

 Xβ
i (E1,...,En ) = Ei +β

ES + nβ
G(ES )   (4.5) 

and the Kantian variation: 

  

 ϕβ(E,r) = rE + (r −1)β .  (4.6) 

Notice that as β→∞, Xβ(E
1,...,En )→ G(ES )

n
 .    Let us therefore define 

ϕ∞(E,r) = ϕ+ (E,r)  .   Notice that  for β = 0  , we have the proportional allocation rule, 

and the multiplicative Kantian variation.   We have: 

Proposition 4.1  For all 0 < β ≤ ∞,  (Xβ ,ϕβ )   is an efficient Kantian pair on  E.  

Proof: 

1. An effort vector E = (E1,...,En )   is a Kantian equilibrium in the economy 

(u1,...,un ,G,Xβ )   with respect to the Kantian variation ϕβ   if and only if: 
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 (∀i = 1,...,n)( d
dr r=1

ui ( E
i +β

ES + nβ
G(rES + n(r −1)β),rEi + (r −1)β) = 0) .  (4.7) 

(To verify (4.7), compute that the fraction E
i +β

ES + nβ
 is invariant with respect to 

application of the function ϕβ   to all the effort levels.)  Now (4.7) expands to: 

 u1
i ⋅ E

i +β
ES + nβ

′G (ES )(ES + nβ)+ u2
i ⋅(Ei +β) = 0  , (4.8) 

which reduces to: 

    

 u1
i ′G (ES )+ u2

i = 0  , (4.9) 

which uses that fact that Ei +β > 0   because β > 0  .   This proves the claim for 

β ∈(0,∞)  . 

 

2.   The case β = ∞   -- which is K +   equilibrium – has been shown in Proposition 3.3.    

 
 We see from the last part of step 1 of the proof why we do not require the 

restriction to positive Kantian equilibria, for β > 0  , that is required in Proposition 3.2.    

 

 Prop. 4.1 demonstrates the existence of a continuum of efficient Kantian pairs 

spanning economies from the fishing (β = 0)   to the hunting (β = ∞)   economies. 

What do these allocation rules Xβ   look like?   Let’s write: 

 Ei +β
ES + nβ

= λ E
i

ES +
(1− λ)
n

 , (4.10) 

and compute that its solution in λ   is: 

 λ* = ES

ES + nβ
, (1− λ*) = nβ

ES + nβ
 . (4.11) 

λ*   is independent of i, so  (4.11) implies that: 

 (∀i = 1,...,n) xi = λ* E
i

ES G(E
S )+ (1− λ*)G(E

S )
n

.   (4.12) 
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We can describe these allocations as follows.   They are Pareto efficient, and a fraction 

λ*   of the product is divided in proportion to effort, while the rest is equally divided 

among the participants.  The value of λ*   is endogenous – it depends upon what the 

Kantian equilibrium is.    We do know, of course, that as β  travels from 0 to infinity, λ*  

travels from one to zero.  But we cannot specify a priori a particular convex combination 

λ   we wish to implement and immediately choose the right β  .  That is to say, the 

mapping from λ  to β   is complicated, depending on ES .  (β = E
S (1− λ)
λ

 .)_     Indeed, 

these rules have appeared quite often in axiomatic resource-allocation analysis:   see 

Moulin (1987), Ju et al (2007), Chambers et al (2015), and Thomson (2015). 

 It is interesting that the allocation rules that can be implemented efficiently on the 

domain E are essentially only the ‘convex combinations’ of the two classical cooperative 

rules – equal-division of the product and division of product in proportion to labor 

expended1.   Classically, Karl Marx associated these rules with ‘communism’ and 

‘socialism’.   Communism, for Marx, was allocation of the product in  

proportion to need, which in the case of equal needs is equal division,  while socialism 

was allocation in proportion to labor expended.  Marx lived before Pareto described his 

concept of efficiency, and so could not have been expected to demand efficiency as well 

as a desideratum of cooperative society.   Kantian optimization has a natural pedigree in 

history of thought of cooperative societies – enriched by Pareto. 

 There is a geometric representation of the family of Kantian variations ϕβ  : see 

Figure 4.1, which illustrates the case n = 2  .  At an allocation of effort (E1,E2 )  , both 

players contemplate expanding the allocation along the ray through the origin labeled K ×  

if they are applying the multiplicative rule; if they are applying the additive rule, they 

contemplate changing the allocation along the 450  line labeled K +  .    As β   travels 

from 0 to infinity, they contemplate changing the allocation along a dotted line, as 

illustrated, lying in the cone generated by K +  and K ×  .   On the other hand, if the players 

are Nash optimizers, then the first one contemplates changing the effort allocation along 

                                                
1 Section 4.2 qualifies this statement. 



 

 

5 

the horizontal line labeled N1   and the second contemplates changing it along the vertical 

line labeled N 2  .    One might ask: Are there more complex variations then these linear 

ones that would enable the efficient implementation of other allocation rules than the 

ones described?  The answer is no.  (Theorem 3, Roemer (2015).)   

 I do not think there is any practical application of Kantian optimization for the 

rules given by 0 < β < ∞  .   The ways of thinking required by the variations ϕβ for this 

open interval are too complicated.  This chapter is of purely theoretical interest: its main 

conclusion is that Kantian thinking is naturally associated only with cooperative 

conceptions of resource allocation, in the classical sense that I have discussed.   

 

4.2   Other allocation rules that can be efficiently Kantian implemented 

 In fact, there are some other allocation rules that can be efficiently implemented 

as K +  equilibria.   Before discussing this, let’s note that I defined the share functions θi  

as being functions of G as well as of the effort profile E.   One might question this 

generality, because none of the allocation rules Xβ  do, in fact, have share rules that are a 

function of G.   However, it is good not to exclude such rules: for instance, the Walrasian 

share rule is a function of G.  To wit, let the firm that operates G be owned by agents in 

shares {σ i}  .  The Walrasian share rule is defined by: 

  θi,Wal (E1,...,En ,G) = ′G (ES )
G(ES )

Ei + σ i (1− ES ′G (ES )
G(ES )

)  . 

(Just compute that θi,WalG(ES )  equals i’s wage income plus her share of profits.)  Not to 

allow the shares to depend on G would thus eliminate by fiat this important rule. 

 Fix a concave production function G.  Let θ = (θ1,...,θn )  define a share rule, 

where the components depend upon E and G.   Then the effort vector E is a K +  

equilibrium for the share rule θ  at the profile of concave utility functions u = (u1,...,un )  

only if the following first-order condition holds: 

 (∀i)(u1
i ⋅ (∇θi ⋅1)G(ES )+ nθi (E) ′G (ES )( ) + u2i ) = 0 ,  (4.13) 

where 1  is the n-vector of one’s.   This effort allocation is Pareto efficient if and only if 

the coefficient of u1
i  equals the marginal rate of transformation: 
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 (∇θi ⋅1)G(ES )+ nθi (E) ′G (ES )( ) = ′G (ES ) ,  

or  (∀i) (∇θi ⋅1)G(ES ) = (1− nθi ) ′G (ES ) .  (4.14) 

Now I claim that for (θ,K + )   to be an efficient Kantian pair, equation (4.14) must hold 

for all vectors E∈ℜ+
n  .   The reason is that, given any such vector E,  we can find a 

profile of utility functions u = (u1,...,un )   such that the marginal rate of substitution of ui   

at the point E   is exactly (∇θi ⋅1)G(ES )+ nθi (E) ′G (ES )( ) , and by equation (4.13), it 

follows that E  is a Pareto efficient K +   equilibrium for the allocation rule θ   for the 

economy (u,G) .    Therefore equations (4.14) comprise a system of n partial differential 

equations defined on vectors E∈ℜ+
n   that characterize the pair (θ,K + )  being an efficient 

Kantian pair. 

 The next step is to reduce this system to one of ordinary differential equations.  

Let E be an arbitrary positive n-vector .   Consider the system of equations in the single 

real variable x: 

 (∀i) (∇θi (E+ x) ⋅1)G(ES + nx) = (1− nθi (E+ x)) ′G (ES + nx)           (4.15) 

where x = (x, x,..., x)∈ℜn  .   These differential equations must hold for all x ≥ −min
i
Ei  .  

Now define µi (x) = θi (E1 + x,...,En + x)  and ρ(x) = G(ES + nx)  .   Note that 

(µi )′(x) = ∇θi (E+ x) ⋅1  and ′ρ (x) = n ′G (ES + nx)  .   Therefore the system (4.15) can be 

written: 

 (∀i) (µi ′) (x)ρ(x) = (1− nµi (x)) ′ρ (x)
n

  , (4.16) 

which can further be written   ′ρ (x)
ρ(x)

= n(µi ′) (x)
1− nµi (x)

 . (4.17) 

Now if 1− nµi (x) > 0  then the ordinary differential equation (4.17) integrates to: 

 logρ(x)+ log(1− nµi (x)) = k̂ ,   (4.18) 

where k is a constant that may depend upon the vector E.   In turn, equation (4.18) may 

be written ρ(x)(1− nµi (x)) = k  , where k is now a positive constant.   But this says that: 



 

 

7 

 θi (E+ x) = 1
n
− k(E)
nG(ES + nx)

 .  (4.19) 

On the other hand, if 1− nµi (x) < 0  , then equation (4.17) integrates to: 

  logρ(x)+ log(nµ
i (x)−1) = k   (4.20) 

which in turn can be written  ρ(x)(nµi (x)−1) = k*  , where k*   is a positive constant.  But 

this says that: 

  

 θi (E+ x) = 1
n
+ k*(E)
nG(ES + nx)

 .   (4.21) 

 To complete the characterization, it must be the case that 0 ≤ θi ≤1   and θi = 1
i
∑  .   

 To see what these allocation rules look like, let’s suppose that n = 2  .  Equations 

(4.19) and (4.21) say that, if we take any vector E= (E1,E2 )   then the shares of output 

along any 450   line through E   are given by these two equations and the constants 

k*(E) = k(E)  .  Furthermore it must be the case that k(E) ≤G(ES + 2x)  for any 

x ≥ −min
i
Ei  .   Suppose that E1 < E2  .   Then the choice of k = G(E2 − E1)  will do.   

(Here, x = −E1  , so ES + 2x = E2 − E1  .)    We summarize this analysis with: 

 

Proposition 4.2   The efficient Kantian pairs associated with the additive Kantian 

variation have allocation rules Xi = θiG   of the following form: 

  Xi (E+ x) = 1
n
G(ES + nx)+ ki (E)   

where E may be chosen to be any vector in ℜ+
n   and x = (x,..., x)   where x ≥ −min

i
Ei  .   

The constants ki  must have the properties that ki (E) = 0
i
∑   and for all i, 

G(ES − nmin
j
E j )

n
+ ki ≥ 0  . 

 In this sense, the admissible share rules are those in a neighborhood of the equal-

division rule. 
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 A similar analysis shows that the only share rule which forms an efficient Kantian 

pair with the multiplicative Kantian variation is the proportional rule.    I will leave the 

derivation to the reader, providing the clue that to reduce the system of partial differential 

equations analogous to (4.14) to a system of ordinary ones, one must define the functions 

ρ(x) = G(xES )   and µi (x) = θi (xE)  .    

 Two final remarks: (1) the Kantian variations ϕβ  defined in section 4.1 are each 

associated with a set of allocation rules comprising a neighborhood of the rule Xβ  , for 

0 < β < ∞  .   It is only the multiplicative variation that is associated with a unique 

allocation rule.  (2)  If we restrict the share functions θi   to depend only on E (and not on 

G) then the allocation rules defined in section 4.1 are the unique ones associated with the 

variations ϕβ  , in efficient pairs,  for β ∈[0,∞]  .    
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Figure 4.1 Illustration of Kantian counterfactual rays for n = 2. 
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Chapter 5   Altruism 

 In this chapter, we study the nature of Kantian equilibria when individuals are 

altruistic.   We will restrict ourselves to examining multiplicative Kantian equilibria in 

economies (e,X Pr )  where e is an environment in the convex domain E.  The results, 

however, generalize to the kinds of Kantian equilibria we have discussed in chapter 4: 

that is, Kβ  equilibria economies (e,Xβ )  where the Kantian variation is ϕβ  , β ∈[0,∞]  . 

 

5.1  Altruistic preferences and Pareto efficiency 

 We will assume that individuals have preferences of the form: 

 Ui (x,E) = ui (xi ,Ei )+α iS(u1(x1,E1),...,un (xn ,En ))   (5.1) 

where (x,E)  is the entire allocation of consumptions and efforts, S is a Bergson-

Samuelson social welfare function  (which is concave, differentiable and increasing in its 

arguments), and α i ≥ 0  .   If α i = 0  , the individual is self-interested, and if α i = ∞  , he 

is a pure altruist, caring only about social welfare.   

 We begin by characterizing what the Pareto efficient allocations will be in 

economies with the ‘all-encompassing preferences Ui ’  and a concave production 

function G. 

Proposition 5.1  Suppose α i = α   for all i.  An interior allocation (x,E)   is Pareto 

efficient in the economy ({Ui},G)   if and only if: 

 (∀i) − u2
i (xi ,Ei )
u1
i (xi ,Ei )

= ′G (ES )  , and (5.2) 

 α ≤ maxi (u1
i ⋅Si (u1

k )−1 − Sk
k
∑

k
∑⎛

⎝⎜
⎞
⎠⎟

−1

 , (5.3) 

where Sk   is the kth   partial derivative of S.  All functions are evaluated at the allocation 

(x,E) . 1 

 The first condition (5.2) simply says that the allocation is Pareto efficient in the 

economy with self-interested preferences, when α = 0  .  Clearly this is a necessary 

                                                
1 See Dufwenberg et al (2011) for a thorough study of efficiency when preferences are 
other-regarding. 
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condition for efficiency in the economy with α > 0  .   Suppose the allocation were not 

efficient in the self-interested economy.  Then find a Pareto-dominating allocation.  

Notice that S must increase, because it is an increasing function of the utilities of all 

members of the society.   Therefore Ui   will increase for everyone – strictly, if S is 

strictly increasing in its arguments. 

 Because of altruism, if an allocation gives individuals very unequal utilities, then 

even if it is efficient in the self-interested economy (i.e., if (5.2) holds), it will fail to be 

efficient in the α −  economy, if α   is sufficiently large, because everyone would prefer a 

redistribution that increases social welfare, even at the cost of a reduction in one’s 

personal utility.   This is the consideration that condition (5.3) formalizes.  

Define PE(α;u,G,S)  as the set of Pareto efficient allocations when the economic 

environment is (u,G,S)  and α   is the common altruistic parameter, which we will write 

as PE(α)  when there is no possibility of confusion. Notice that as α   increases, 

condition (5.3) becomes increasingly restrictive.  It follows that the sets PE(α)   are 

nested: that is  

 α > ′α ⇒ PE( ′α )⊆ PE(α) .  (5.4)   

It therefore follows that  PE(∞) = α≥0PE(α)  .  Typically, in the purely altruistic 

economy, where α = ∞  , there will be a unique allocation maximizing social welfare – 

indeed, this must be the case if S is strictly concave.  Therefore, the set of Pareto efficient 

points shrinks to a single point as α   increases when S is strictly concave.  The intuition 

is clear.  If everyone cares only about social welfare, then any allocation that does not 

maximize social welfare can be improved upon, from the viewpoint of each individual, 

by moving to the allocation that does maximize social welfare. 

 To get more intuition about condition (5.3), consider the case of a quasi-linear 

economy, where ui (x,E) = x − hi (E)  .   Then u1
i ≡ 1  .   Let α→∞  .   Then condition 

(5.3) becomes: 

 (∀i) nSi ≤ Sk
k
∑  or Si ≤

1
n

Sk
k
∑  . (5.5) 
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Summing the last set of inequalities over i gives Si ≤ Sk
k
∑

i
∑  .  But this last expression 

must be an equality.  It therefore follows that Si =
1
n

Sk
k
∑   for all i, which is to say that 

for all (i, j), Si = Sj  .   If S is an anonymous social welfare function2, this implies that  

 (∀i, j) ui (xi ,Ei ) = u j (x j ,E j )  . (5.6) 

We have proved: 

Proposition 5.2  If S is an anonymous social welfare function and the individual utility 

functions are quasi-linear, then the only Pareto efficient point in the purely altruistic 

economy equalizes all individual utilities. 

  

Proof of Proposition 5.1: 

To characterize Pareto efficiency in the economy (u,G,n,α)   we solve the program: 

 

maxu1(x1,E1)+αS(u1(x1,E1),...,un (xn ,En ))
subject to

x j ≤G(ES ) (ρ)∑
j ≥ 2 :u j (x j ,E j )+αS(u1(x1,E1),...,un (xn ,En )) ≥ k j (λ j )

 . 

 

The KT conditions are, letting λ1 = 1:  

 
(∀j)(λ ju1

j +αSju1
jΛ = ρ)                        

(∀j)(λ ju2
j +αSju2

jΛ = − ′G (ES )ρ)
  (5.7) 

where Λ = λ j∑  .   

Substituting the first of these equations into the second gives: 

  
for all j ( ′G u1

j + u2
j )(λ j +αSjΛ) = 0      

and so  

 ′G u1
j + u2

j = 0 for all j   (5.8)      

                                                
2 An anonymous social welfare function takes the same value for any permutation of its 
arguments.  Informally, it ignores the names of individuals. 
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since the second term is positive. (Recall that Sj > 0  .)    Equation (5.8) says MRSγ = 

MRT. 

 Now (5.7) implies that  λ j +αSjΛ = ρ
u1
j  . Adding up these equations over j and 

solving for Λ   gives: 

 Λ = ρA where A ≡

1
u1
j

j
∑

1+α Sj
j
∑

 . 

It follows that  u1
1(1+αS1Λ) = Λ / A  , and so we solve: 

   Λ = u1
1

1 / A −αu1
1S1

 . 

By substituting this value into the other equations, we compute that: 

   λ j

Λ
= 1
Au1

j −αSj  .     

Consequently our KT  non-negativity condition is that: 

   for all j  1
Au1

jS j
≥ α  . 

Now substitute the expression for A and solve for α  , giving: 

   for all j:  1≥ α u1
jS j

1
u1
k − Sk

k
∑

k
∑⎛

⎝⎜
⎞
⎠⎟

 . 

If at least one of the terms in parentheses is positive, then this condition is equivalent to: 

 α ≤ 1

max u1
jS j

1
u1
k − Sk

k
∑

k
∑⎛

⎝⎜
⎞
⎠⎟

j

    .                  (5.9) 

     

Suppose to the contrary that the parenthetical terms are all non-positive.  This means 

that : 

   for all j  
Sj

Sk∑
≤ 1/u1

j

1/u1
k∑

 . 
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This inequality is of the form 
aj

ak∑
≤

bj

bk∑
  where all a’ s and b’s are positive.  It 

follows that all the inequalities are equalities; for if one is strict, both sums cannot add to 

one.   Therefore in this case we have u1
jS j

1
u1
k − Sk

k
∑

k
∑⎛

⎝⎜
⎞
⎠⎟
= 0  for all j, and hence (5.9) is 

true since the right-hand side is infinite.   

 Therefore, an interior allocation is Pareto efficient if and only if conditions (5.8) 

and (5.9) hold.   ■ 

 

5.2 Kantian equilibrium with altruism  

 We fix the allocation rule X Pr .  The first remark is there may be no Pareto 

efficient allocations in (u,G,α,X Pr )  that can be implemented with the rule X Pr . Suppose 

α   is very large – say, infinity.  Then the unique Pareto efficient allocation in economic 

environment (u,G,∞)  is the one that maximizes social welfare.  But this allocation may 

not (in general , it will not) be a proportional allocation.   Consider the quasi-linear 

example of  Proposition 5.2.  Assuming S is anonymous, the unique maximizer of the 

social welfare function (and therefore the unique Pareto efficient point in this economy) 

is the one which maximizes the surplus (this determines the effort vector) and distributes 

output to equalize utilities.  This allocation will only, by coincidence, be a proportional 

allocation.  It therefore follows that we cannot expect the Kantian equilibrium of 

economies (u,G,α,X Pr )  to be Pareto efficient  (always, with respect to the all-

encompassing preferences Ui  ).     

 Denote the set of K ×  equilibria for the economy (u,G,α,X Pr )  by K × (α,X Pr )  .  

We have: 

 

Proposition 5.33  For all α ≥ 0 , K × (α,X Pr ) = K × (0,X Pr )  . 

Proof:  

                                                
3 The same method extends the proposition to any of the efficient Kantian pairs (Xβ ,ϕβ )  . 
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1. An allocation (x,E)  is a K ×   equilibrium for the economy (u,G,α,X Pr )   if and only if: 

 (∀i) d
dr r=1

ui ( E
i

ES G(rE
S ),rEi )+αS(u1(E

1

ES G(rE
S ),rE1),...,un (E

n

ES G(rE
S ),rEn )

⎛
⎝⎜

⎞
⎠⎟
= 0  (5.10) 

 .     

Denote d
dr r=1

ui ( E
i

ES G(rE
S ),rEi ) ≡ Dru

i  .   Then (5.10) can be written: 

 (∀i) Dru
i +α Sk ⋅Dru

k = 0
k
∑ ,  (5.11) 

    

from which it follows that  for all i  , Dru
i = c  , a constant.  Substituting this constant into  

(5.11), we have: 

    c +αc Sk = 0
k
∑  . 

Since Sj > 0
k
∑  , it immediately follows that c = 0  .   But this says that Dru

i = 0   for all i, 

which is exactly the condition that the allocation is a K ×   equilibrium in the economy  

(u,G,0,X Pr ) , proving the claim.   

 

 Proposition 5.3 says that the Kantian equilibria for an economy with a positive 

degree of altruism, with respect to an allocation rule,  are identical to the Kantian 

equilibria for the associated economy with purely self- regarding preferences.   Indeed, 

the proposition is more general than stated: it is easy to check that different agents can 

have different values of the altruistic parameter α i  and the proof goes through.  

 The important consequence of Proposition 5.3 is that Kantian equilibria of 

economies with and without altruism are observationally equivalent!  If a community has 

learned to cooperate in the sense of employing Kantian optimization, we cannot tell by 

observing the equilibrium whether they hold altruistic preferences or not – at least, with 

altruism modeled in this way.  Their altruism has no impact on what happens in the 

economy.    Although Kantian reasoning can deal quite effectively with many kinds of 

externality (such as the tragedy of the commons, etc.), it has no bite in addressing 
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altruism.  This result does not depend upon the number of individuals’ being large: 

indeed it holds for economies with two people. 

 Because, as was noted above, there in general will not exist Pareto efficient 

allocations that can be implemented by a given rule X, in the economy with α > 0  , we 

should look at second-best allocations. 

 

Definition 5.1   Let PEXPr (α;u,G,S)   be the allocations that satisfy the rule X Pr   in the 

economy (u,G,S,α)   and are not Pareto dominated by any X Pr -implementable allocation.  

Without confusion, we abbreviate the notation to PEXPr (α)  .  This is the set of second-

best allocations with respect to the allocation rule X Pr  . 

 

 There are reasons that fishing economies use the proportional allocation rule -- 

because it implements the simple principle ‘each fisher keeps his catch.’  Likewise, the 

equal-division allocation rule may be a good rule in hunting societies.   So one should 

ask: What are the best allocations that can be found, given that a society is using a 

particular rule X?   The second-best allocations PEX (α)  comprise good candidates, from 

the efficiency viewpoint. 

 We now state: 

Proposition 5.4  PEXPr (α)⊂ K × (α,X Pr ) = K × (0,X Pr )   

 In words, the second-best allocations in an altruistic economy, with respect to the 

proportional allocation rule, are all multiplicative Kantian equilibria in that economy. The 

last equation in the statement is simply a restatement of Proposition 5.3. 

 The converse, however, is not true: that is there may be Kantian equilibria which 

are not in PEXPr (α;u,G) .  Why does the converse not hold?  Suppose there are several 

allocations in K × (0,X Pr ) = K × (α,X Pr ) .    Generically, they will be strictly ranked by the 

social welfare function S.  So if α = ∞  , only one of them will be a member of PEXPr (∞)  .   

The same argument applies for large finite α   because the set PEXPr (α)   shrinks to a 
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singleton as α   becomes large.  Of course, if K × (0,X Pr )   is a singleton, then the converse 

to Proposition 5.4 does hold. 

 While Proposition 5.3 is, in a sense, disappointing, because it says that Kantian 

optimization is incapable of taking into account the altruism that people may feel, 

Proposition 5.4 is optimistic, because it says that if an allocation is second-best Pareto 

efficient in an economy with altruism, then it can be supported as a Kantian equilibrium.  

Because there is often good reason to view the allocation rule as fixed (as in hunting and 

fishing economies),  second-best Pareto efficiency becomes the appropriate welfare 

criterion.   

Proof of Proposition 5.4: 

1.  We first observe that if an allocation is in PEXPr (α)  , it must be Pareto efficient in the 

(self-interested) 0-economy.  To show this, we need only show that MRSi = MRT  for all 

agents i , where the marginal rate of substitution is computed with the personal utilities 

functions ui  .    Suppose, to the contrary, that for some i  , MRSi < ′G (ES )  at the 

allocation X Pr (E1,...,En )  .  Now consider a small positive increase ε  in Ei  , holding all 

other efforts fixed, and look at the new allocation determined by the proportional rule 

X Pr  .  The personal utility of i will increase if : 

 d
dEi u

i ( E
i

ES G(E
S ),Ei ) > 0  . (5.12) 

     

This derivative evaluates to: 

  u1
i Ei

ES ′G (ES )+ E
S − Ei

(ES )2
G(ES )

⎛
⎝⎜

⎞
⎠⎟
+ u2

i >? 0  . 

Now use the fact that u1
i ′G + u2

i > 0    (that is, MRSi < ′G  ) and the desired inequality will 

follow if: 

  −u2
i Ei

ES + u1
i ES − Ei

(ES )2
G(ES ) >? −u2

i  

which can be rewritten as: 

       − u2
i

u1
i

⎛
⎝⎜

⎞
⎠⎟
(E

i − ES

ES )+ E
S − Ei

(ES )2
G(ES ) >? 0  .  



 

 

9 

Dividing by the positive number (ES − Ei ) / ES ,  this inequality reduces to: 

   G(ES )
ES >? MRSi ,  

which is true, because the concavity of G implies that G(E
S )

ES > ′G (ES )  .   This proves 

(5.12). 

2.  Now this small increase in i ’s effort also increases the utilities of all other agents to 

the first-order, because they care about person i via S ; it also decreases their utility, but 

only to the second order, because there is a second order decrease in ′G  and hence in the 

consumptions of the others.   Net, the all-encompassing utilities of all the other agents 

increase.   However, because the consumption of the other agents decrease, i’s all-

encompassing utility decreases, because she cares about the others, but this decrease is 

only to the second order.   Therefore, to the first order, all all-encompassing utilities 

increase, and this contradicts the assumption that the original allocation was in PEXPr (α)  . 

3. It follows that it must be that MRSi = MRT   for all agents i  and hence the allocation is 

0-Pareto efficient.  We can state this fact as :   PEXPr (α)⊆ PEXPr (0) .   

4.  Denote by X Pr[G]   the set of all proportional allocations that are feasible given the 

production function G.  We know that K × (0,X Pr ) = X Pr[G]∩PEXPr (0)  .   That is, 

multiplicative Kantian equilibria for the proportional allocation rule are precisely the  

positive, proportional allocations that are Pareto efficient (in the self-interested economy). 

By virtue of Proposition 5.3, we have K × (α,X Pr ) = X Pr[u,G]∩PE(0) .  By virtue of step 

3 of this proof, we therefore have 

PEXPr (α) = X Pr[G]∩PEXPr (α)⊂ X Pr[G]∩PEXPr (0) = K × (α,X Pr )  , proving the 

proposition.  

 

5.3 Review 

 If members of a community are altruistic towards each other, and if each is 

applying the Kantian protocol, the observed outcome is observationally equivalent to 

what it would be if each had self-regarding preferences.    In this sense, altruism is a 



 

 

10 

gratuitous assumption, which does not appear to have much impact if cooperation is 

already present.  Of course, we cannot expect this result to generalize to other ways of 

modeling altruism: here, we have taken the traditional approach of appending a social 

welfare function to each individual’s self-interested utility function. 

 Because of this result, it follows that Kantian equilibria in the presence of altruism 

will not in general be Pareto efficient (with respect to the altruistic preferences) – Kantian 

optimization will not take account of the consumption externalities in agents’ preferences.    

 Nevertheless, all second-best Pareto efficient allocations will be Kantian 

equilibria in the presence of altruism.   This is as much as we can ask for. 
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Chapter 6   Can one rationalize Kantian optimization as Nash optimization where players 

have extended preferences? 

 

 An important research program of behavioral economics is to attempt to explain 

phenomena that appear to be equilibria in game situations, but are not Nash equilibria of 

the game with traditional self-interested preferences1.  I have characterized the program 

of behavioral economics as including non-traditional arguments in the preferences of 

players, so that the Nash equilibrium of the game played by players with these modified 

preferences is indeed the observed outcome.  In this chapter, I pursue the reverse question 

as it applies to Kantian equilibrium.    Is it the case that the Kantian equilibrium of a 

game where players have traditional self-interested preferences is indeed the Nash 

equilibrium of game whose players have modified preferences?  If this were the case, 

then someone skeptical of my approach could say, “Well, you see, what we are observing 

is just a Nash equilibrium, but where players have modified preferences. Kantian 

optimization is just a gratuitous diversion. ”    The implication is there is no need for 

invoking a new optimization protocol, as I have been urging, to explain cooperation. 

 For most of this chapter, I will work with the economic environments with 

production E studied in chapter 3.  Indeed, I will assume that the allocation rule X Pr  is in 

place, and the Kantian protocol that players use is K ×  .   Thus, any positive Kantian 

equilibrium of such an economy is Pareto efficient. 

    I begin by examining two cases in which the answer to the question posed is 

easily seen to be affirmative.  The first case is when players have quasi-linear 

preferences; thus ui (xi ,Ei ) = xi − hi (Ei )   where {hi}   are convex functions.   Let us 

suppose n = 2  to keep things notationally simple.   We modify the players’ utility 

functions as follows.   Both players will have the same extended utility function V given 

by: 

 V (u1,u2 ) = u1 + u2  . (6.1) 

                                                
1

 Of course, the original path-breaking contribution in behavioral economics, of Kahneman and Tversky (1978), was concerned not 

with games, but with optimization  in decision problems.  
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It is important to realize that in (6.1), each player has preferences over the whole 

allocation (x1,E1, x2,E2 )  .  Thus, we should write out (6.1) in full: 

 V (u1(x1,E1),u2 (x2,E2 )) = u1(x1,E1)+ u2 (x2,E2 ) .  (6.2) 

Formally, V :ℜ+
4 →ℜ  . 

 Let us write the payoff functions of the game where both players have the utility 

function V, where the strategies are effort levels: 

 V̂ (E1,E2 ) = E1

ES G(E
S )− h1(E1)+ E

2

ES G(E
S )− h2 (E2 )  ; (6.3) 

here, we have just used the proportional allocation rule and substituted into (6.1).  

Although the players have the same preferences, the game is not symmetric with respect 

to the strategies of the two players.   As always, player one controls E1   and player two 

controls E2 .    Now we look at the Nash equilibrium of this new game.  The first-order 

conditions for Nash equilibrium are: 

 ∂V̂
∂E1 = 0 and ∂V̂

∂E2 = 0  . (6.4) 

Compute that these conditions are exactly: 

 ′G (ES ) = (h1 ′) (E1) and ′G (ES ) = (h2 ′) (E2 )  . (6.5) 

But these are precisely the conditions for Pareto efficiency!  Therefore the Nash 

equilibrium of the game is a proportional allocation that is Pareto efficient: this is 

precisely the K ×  equilibrium of the game with players whose preferences are given by 

(u1,u2 )  . 

 In other words, the Kantian equilibrium of the game with self-interested (quasi-

linear) preferences is exactly the Nash equilibrium of the game with players each of 

whom is concerned with maximizing the sum of utilities of the players.  The two games 

are, in a word, observationally equivalent.   There is, however, one drawback to this 

example: it requires a cardinal representation of the utility functions.  For instance, if we 

used the utility function 2u1   for the first player, and continue to use u2   for the second 

player, and define the extended preferences as V = 2u1 + u2  , it is no longer the case that 

the Nash equilibrium of the new game is Pareto efficient.   Indeed, with this V, the first-

order condition for Nash equilibrium for the first player is: 
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 G(ES )
ES

E2

ES

⎛
⎝⎜

⎞
⎠⎟
+ ′G (ES ) 1+ E1

ES

⎛
⎝⎜

⎞
⎠⎟
= (h1 ′) (E1)  . (6.6) 

 The second case I propose is when all players have the same utility function u.   

Again, we define the extended preferences as the ‘altruistic’ ones: 

 V (u,u) = u[1]+ u[2]  , (6.7) 

where the notation u[i]  means the utility of player i at the allocation. 

The players now have the symmetric payoff function: 

 V̂ (E1,E2 ) = u(E
1

ES G(E
S ),E1)+ u(E

2

ES G(E
S ),E2 )  . (6.8) 

The condition for Nash equilibrium is again (6.4).  These conditions compute to: 

 

 
u1[1]

E1

ES ( ′G (ES )− G(E
S )

ES )+ G(E
S )

ES

⎛
⎝⎜

⎞
⎠⎟
+ u2[1]+ u1[2]

E2

ES ( ′G (ES )− G(E
S )

ES )
⎛
⎝⎜

⎞
⎠⎟
= 0

u1[2]
E2

ES ( ′G (ES )− G(E
S )

ES )+ G(E
S )

ES

⎛
⎝⎜

⎞
⎠⎟
+ u2[2]+ u1[1]

E1

ES ( ′G (ES )− G(E
S )

ES )
⎛
⎝⎜

⎞
⎠⎟
= 0

. (6.9) 

 

Let us look for a symmetric solution to equations (6.9).  At such a allocation, we have 

u1[1]= u1[2] and u2[1]= u2[2]  .    Then the first equation becomes: 

  

 u1[1] ES

ES ( ′G (ES )− G(ES )
ES

⎛
⎝⎜

⎞
⎠⎟
+ u1[1]G(ES )

ES + u2[1]= 0 or u1[1] ′G (ES )+ u2[1]= 0  ,(6.10) 

and the second equation similarly reduces to u1[2] ′G (ES )+ u2[2]= 0 .   But these two 

equations simply say that the marginal rate of transformation is equal to the marginal rate 

of substitution for both players.  In other words, the multiplicative Kantian equilibrium  

(which is a symmetric, proportional allocation that is Pareto efficient) solves (6.7), and is 

therefore a Nash equilibrium of the game played by players with extended preferences. 

 Again, the same drawback applies: we must use cardinal utility functions that are 

identical for the two players, for this conclusion to hold.   We have shown: 
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Proposition 6.1   

A. Suppose players have quasi-linear utility functions of the form ui (xi ,Li ) = xi − hi (Ei ) , 

 or suppose all players have the same concave utility function u.  Consider the new game 

where each player maximizes the sum of all the (cardinal) utility functions of players in 

the original game.  Then there is a Nash equilibrium of the game with extended 

preferences which is the K ×   of the original game (with self-interested preferences). 

B.   If we substitute K +  for K ×   in statement A, the statement is still true. 

 Proof of part B replicates the proof given for part A. 

 It turns out that the result with identical utility functions extends to many other 

games.  In the next proposition, we consider games in which player i’s payoff function is 

P(Ei ,ES )  for some function P.  This covers symmetric public-good games  (so-called 

trust games in lab experiments) and all two-person symmetric games. 

Proposition 6.2  Define the extended preferences V (E1,E2,...,En ) = P(Ei ,ES )
i
∑  .   If 

E = (E,...,E)  is an interior, symmetric K ×   equilibrium of the game where players’ 

payoff functions are P(Ei ,ES )  , then it is a Nash equilibrium of the game where all 

players have the ‘extended’ payoff function V. 

Proof: 

If E   is a symmetric  interior K ×  equilibrium of the first game then the first-order 

conditions 

 (∀i) d
dr r=1

P(rE,rES ) = 0   (6.11) 

or 

 (∀i) P1[i]E + P2[i]nE = 0   (6.12) 

where [i]  means the function is evaluated  at (Ei ,ES )  .   But the symmetry assumption 

means that (6.12) reduces to  

 (∀i) P1[i]+ nP2[i]= 0  . (6.13) 

The f.o.c.s for Nash equilibrium of the game with extended preferences are: 

 (∀i) P1[i]+ P2[ j]= 0.
j=1

n

∑   (6.14) 
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Since the Kantian allocation is symmetric, we have for all j, P2[ j]= P2[1]  , and hence 

(6.14) reduces to (6.13), proving the claim.   

    Many laboratory experiments have set-ups in which participants are equipped 

with symmetric preferences of the form P(Ei ,ES )  .    Proposition 6.2 asserts that we 

cannot tell, if people achieve the cooperative solution, whether they are using the Kantian 

protocol with their self-interested preferences, or the Nash protocol with a utilitarian form 

of altruism – each maximizing the total payoff. 

  

 We now ask whether these examples – of quasi-linear utility functions, or 

identical utility functions – can be extended.    Fix a pair of concave utility functions 

(u1,u2 ) for the production economies.  Consider the domain of economies 

Ω(u1,u2 ) = {(u1,u2,G,X Pr ) |G  is non-linear, concave} .  Any K ×  equilibrium for an 

economy in this domain generates a pair of utilities for the players, say (a,b)  .  Let 

D(u1,u2 ) ⊂ℜ2  be the set of such utility pairs.   The next two propositions show that, 

indeed, we can ‘rationalize’ K ×   equilibria on Ω(u1,u2 )  as Nash equilibria on economies 

where both players have extended utility functions over the domain of allocations in ℜ+
4  . 

 

Proposition 6.3 Suppose there are extended utility functions V 1(u1,u2 ) and V 2 (u1,u2 )   

such that a Nash equilibrium of the game (V 1,V 2,G,X Pr )   is a K ×   equilibrium of the 

game e = (u1,u2,G,X Pr )  for any e∈  E where G is non-linear.   Then V 1  and V 2  

represent the same ordinal preferences  [ i.e., have the same indifference map] on the set 

D(u1,u2 )  . 

 Let’s explain what this says.  V 1  and V 2   are defined on allocations in ℜ+
4  .  

However, they can also be viewed as having indifference curves in ℜ+
2  , since any 

allocation produces a pair of utility numbers.  The proposition claims that if a Kantian 

equilibrium can be rationalized as a Nash equilibrium with extended preferences on the 

domain Ω(u1,u2 )  ,  those preferences must be the same for both players.   So the 
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constructions of Proposition 6.1  -- where both players had the same extended preference 

order over utility pairs – was not a coincidence.  

Proof: 

1. We are given a pair of extended utility functions V 1(u1,u2 ) and V 2 (u1,u2 )  .  As 

before, we define the associated payoff functions of game with the proportional 

allocation rule by: 

 for i = 1,2 : V̂ i (E1,E2 ) =V i (u1(E
1

ES G(ES ),E1),u2 (E
2

ES G(ES ),E2 ))  . (6.15) 

 The f.o.c.s for a Nash equilibrium of the extended games are: 

 ∂V̂ 1(E1,E2 )
∂E1

= ∂V̂ 2 (E1,E2 )
∂E2 = 0  . (6.16) 

Writing out the derivative2 for V̂ 1  , using (6.15),  we have: 

 V1
1u1
1 E1

ES +V2
1u1
2 E2

ES

⎛
⎝⎜

⎞
⎠⎟

′G (ES )+ G(E
S )

ES
E2

ES (V1
1u1
1 −V2

1u1
2 )+V1

1u2
1 = 0 .  (6.17) 

Dividing by u1
1  (which is positive) and using the fact that − ′G (ES ) = u2

1

u1
1  , since by 

hypothesis the Nash equilibrium is the multiplicative Kantian equilibrium, and is hence 

Pareto efficient,  we have: 

 

V1
1 E1

ES +V2
1 u1

2

u1
1
E2

ES

⎛
⎝⎜

⎞
⎠⎟

′G (ES )+ G(ES )
ES

E2

ES (V1
1 −V2

1 u1
2

u1
1 )−V1

1 ′G (ES ) = 0

′G (ES ) V1
1(E

1

ES −1)+V2
1 u1

2

u1
1
E2

ES

⎛
⎝⎜

⎞
⎠⎟
+ G(ES )E2

(ES )2 V1
1 − V̂2

1 u1
2

u1
1

⎛
⎝⎜

⎞
⎠⎟
= 0

′G (ES )E
2

ES (−V1
1 +V2

1 u1
2

u1
1 )+ G(ES )E2

(ES )2 V1
1 −V2

1 u1
2

u1
1

⎛
⎝⎜

⎞
⎠⎟
= 0                          

  (6.18) 

   

from which it follows that either V1
1 =V2

1 u1
2

u1
1  or ′G = G(ES )

ES  .   But the second possibility 

is false because G is concave but non-linear.   Therefore we must have: 

                                                
2

 Vj
1

  is the derivative of V 1
  with respect to the utility of the jth player. 
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 V1
1 =V2

1 u1
2

u1
1   (6.19) 

            

 at the proportional solution on the whole domain of economic environments.   In like 

manner, we can expand the second condition in (6.16) to give: 

 V2
2 =V1

2 u1
1

u1
2   (6.20) 

on the whole domain.  Therefore, V2
2

V1
2 =

V2
1

V1
1    at all proportional solutions on the domain 

D(u1,u2 )  .    

2.  Therefore V2
2

V1
2 =

V2
1

V1
1

 
is an identity on D(u1,u2 )   .    But this means that the marginal rates 

of substitution of V 1   and V 2 , viewed now as functions on ℜ2  ,  are identical on domain

D(u1,u2 )  , and hence V 1   and V 2   have identical indifference maps in ℜ+
2  .     Hence they 

represent the same preferences over pairs of utilities, proving the claim.    

 

   Because Kantian and Nash equilibrium are both concepts defined on preferences, 

this means that we can assume that if Kantian equilibrium can be everywhere rationalized 

as a Nash equilibrium with extended preferences, those extended preferences (over pairs 

of self-interested utilities) are the same for the two players.  In other words, if such a 

representation exists, we may take  V 1 =V =V 2  , for some function V (u1,u2 )  . 

 I will now seek to construct the extended utility function V  for a general Cobb-

Douglas economy. Let u1(x,E) = x(1− E)m , u2 (x,E) = x(1− E)n , 0 < m < n < ∞  .   

These are two different Cobb-Douglas utility functions.  On the domain Ω(u1,u2 )  we know 

that multiplicative Kantian equilibrium is Pareto efficient.    We know that Nash 

equilibrium is defined and is always Pareto inefficient.    We study whether it is possible 

to construct extended preferences V  for each player such that the Nash equilibrium on 

the extended economy is the Kantian equilibrium for (u1,u2,G,X Pr ) .  
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 Note that if G were linear, then the Nash equilibria on Ω(u1,u2 )  are efficient and 

they therefore coincide with the multiplicative Kantian equilibria.   I have eliminated this 

case from the domain. 

 Eqn. (6.19) tells us how the slopes of the indifference curves of V i   are related to 

the Kantian equilibrium.  Now (6.19) says that it must be the case that: 

 V2 (a,b)
V1 (a,b)

= (1− E
1)m

(1− E2 )n
  (6.21) 

   

where a = u1(x1,E1), b = u2 (x2,E2 )   at the Nash allocation  (which is also the Kantian 

allocation of the original economy).    To prove the affirmative claim, we must show that 

there exists a function Φ :ℜ+
2 →ℜ   such that at any Kantian equilibrium on the domain 

Ω(u1,u2 )  ,  it is true that Φ(a,b) = − (1− E
1)m

(1− E2 )n
 where (E1,E2 )   is the Kantian effort vector 

which yields utilities a,b.     For if this is true, then we have characterized −V2
V1

  on its 

domain (namely:  −V2
1(a,b)

V1
1(a,b)

= Φ(a,b)  ) and so (we will later argue) have characterized 

the indifference map of V  .    The proof will establish the existence of such a function 

Φ  and then of V, which will as well be differentiable.       

   We next observe that an interior Kantian allocation on the domain Ω(u1,u2 )  is 

characterized by the following two equations and inequality: 

     

 mx1

1− E1
= nx2

1− E2  , (6.22) 

                 x1

E1
= x2

E2  , (6.23) 

and  

 m E1

1− E1
<1   (6.24) 
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Eqn. (6.22) says the MRSs of the two players are equal.  (6.23) says the allocation is 

proportional.  (6.24) is equivalent to m x1

1− E1
< x1

E1
= x1 + x2

E1 + E2  .    We can therefore find a 

strictly concave G whose slope at the point (E1 + E2, x1 + x2 )   equals the MRS, because 

the last inequality tells us the marginal product of this G is less than its average product at 

this point, which is the condition for finding  a nonlinear concave G passing through the 

point.     Indeed, note that (6.24) can be rewritten as: 

 E1 < 1
m +1

 . (6.25) 

    

      We now re-write the equations characterizing the interior Kantian equilibria on the 

domain Ω(u1,u2 )   as follows: 

 

 

mE1 − nE2 + (n −m)E1E2 = 0
x1E2 − x2E1 = 0
x1(1− E1)m = a

x2 (1− E2 )n = b

E1 < 1
m +1

  (6.26) 

 

where we have included the utility values as well.    We can view these equations as ones 

defining the entire class of interior Kantian allocations on Ω(u1,u2 )  , where E1   is restricted 

to the interval (0, 1
m +1

)  , as a function of the two parameters (a,b)  . 

   Our procedure will be to show, using the implicit function theorem, that the four 

variables E1,E2, x1, x2   can be defined as (differentiable) functions of (a,b)   on the 

solution space of (6.26).  It will then immediately follow that we have constructed the 

functionΦ(a,b) = − (1− E
1(a,b))m

(1− E2 (a,b))n
 , which will complete the proof.  (Note the 

denominator in the definition of Φ   is never zero, because E2 < 1
n +1

 .) 
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   To show this, we will demonstrate that the Jacobian of the system (6.26) never 

vanishes on the domain D(u1,u2 ) .   Order the variables (x1,E1, x2,E2 )   and compute that 

the Jacobian of (6.26)  is: 

 J =

0 m + (n −m)E2 0 −n + (n −m)E1

E2 −x2 −E1 x1

(1− E1)m −mx1(1− E1)m−1 0 0
0 0 (1− E2 )n −nx2 (1− E2 )n−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 . (6.27) 

 

  

Expanding the determinant of J and dividing by the positive number (1− E1)m−1(1− E2 )n−1   

demonstrates that J ≠ 0  if and only if: 

 

 

((n −m)E1 − n)
neg  

(1− E2 )x2 (1− E1)( mE
1

1− E1
−1)

neg  

+

(1− E1)(m + (n −m)E2 )
pos  

x1(1− E2 )( nE
2

1− E2 −1)

neg  

≠ 0

  (6.28) 

   

Suppose J = 0  .   By (6.22) , ( mE
1

1− E1
−1) = ( nE

2

1− E2 −1) , and so we can rewrite the 

negation of (6.28) as: 

   

 

 ((n −m)E
1 − n)

neg  
(1− E2 )E2 (1− E1)+ (1− E1)(m + (n −m)E2 )

pos  
E1(1− E2 ) = 0  

and further simplify to: 

   

  

 ((n −m)E
1 − n)

neg  
E2 + (m + (n −m)E2 )

pos  
E1 = 0  

which in turn simplifies to: 

 nE2 = mE1  . (6.29) 
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But this contradicts the fact that mE
1

1− E1
= nE2

1− E2 , since m ≠ n  , which proves that J ≠ 0  . 

 It therefore follows by the implicit function theorem that there is a differentiable 

function Φ  that can be defined locally around any point (a,b) .  What is the relevant 

global extension of this result?  We have to consider the domain D(u1,u2 ) ∈ℜ2   for which 

there exists a non-linear concave differentiable production function G at which the 

multiplicative Kantian equilibrium of the economy (u1,u2,G,X Pr )   is a point  

(a,b)∈D(u1,u2 )  .   Our existence results (proved in chapter 7 below) will show this is a 

large domain.  The global inverse theorem of Hadamard3 allows us to extend the locally 

defined function Φ   to any compact subset of D  .   (We will not check this here.)  

Except for checking the Hadamard extension, we have therefore proved that there exists a 

continuously differentiable function Φ(a,b)  which specifies the marginal rate of 

substitution of the social welfare function V (a,b)  , whose existence we wish to prove, at 

every point (a,b)  for which the system (6.26) can be solved.    

 We must finally ask:  Can we indeed ‘integrate’ the function Φ   to find the 

function V?  The answer is yes.  Consider the differential equation: 

  

 da
db

= Φ(a,b)  . (6.30) 

Because Φ   is continuously differentiable, by the Picard-Lindelöf theorem, there is a 

unique solution to the differential equation (6.30) for any initial condition on the function 

                                                
3 Theorem (Hadamard)  Let F :M1→ M 2   be a continuous function between two smooth, 

connected manifolds of ℜn  . Suppose that: 

1.  F is proper  

2.  The Jacobian is everywhere invertible 

3. M 2   is simply connected 

Then F is a homeomorphism  (and hence globally bijective). 
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a.    Denote the solution by Q(a,b,k) = 0 , where k is a constant associated with the initial 

condition.    Now differentiating this equation with respect to b gives: 

   Q1
da
db

+Q2 = 0 or da
db

= Φ(a,b) = −Q2

Q1

 . 

But this means that the Q(a,b,k) = 0   is the locus of the kth indifference curve of the 

function V.    By varying k, we sweep out the entire indifference map of V.  The 

uniqueness guaranteed by the Picard-Lindelöf theorem tells us that the function V is 

unique, up to ordinal transformation, which will preserve the indifference map4.  

 

Proposition 6.4    Let u1(x,E) = x(1− E)m , u2 (x,E) = x(1− E)n , 0 < m < n < ∞ .  Then 

there exists a differentiable function V :ℜ4 →ℜ  , such that in a game induced by the 

economy (V ,V ,G,X Pr )   where G is any non-linear concave differentiable production 

function,  and where the preferences of each player are given by V (u1(⋅,⋅),u2 (⋅,⋅))  , the 

Nash equilibrium  is the multiplicative Kantian equilibrium of the game induced by 

(u1,u2,G,X Pr )  .  Furthermore, if (V 1,V 2,G,X Pr )  is any game with extended preferences 

whose Nash equilibrium is the multiplicative Kantian equilibrium of (u1,u2,G,X Pr ) , then  

V i   is ordinally equivalent to V for i = 1,2  . 

 

   It is interesting to note where strict concavity of G enters.   If a Kantian 

equilibrium is associated with a linear G, then (6.24) becomes an equality.   This in turn 

means that the expression in (6.28) becomes zero, because  ( mE
1

1− E1
−1) = ( nE

2

1− E2 −1) = 0   .  

Therefore J = 0  . Note also in Proposition 6.3,  I used that fact that ′G (ES ) ≠ G(E
S )

ES   to 

deduce eqn. (6.19), with which the proof of that proposition begins. 

  

 Let us note why it is easy to construct the extended preferences in the quasi-linear 

case and in the case when the players have the same utility function.    In these two cases, 

                                                
4

 I am grateful to Burak Ünveren for the last paragraph in this proof.   
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the fundamental equation (6.19) becomes −V2
V1

= −1  .   This means V (a,b) = a + b  , 

which gives another proof of proposition 6.1. 

  It is indeed possible to extend Proposition 6.3 to any pair of fixed concave, 

differentiable utility functions (u1,u2 )  .    We begin by replacing the system (6.22)-(6.24) 

with the general system: 

 

u2
1 (x1,E1)
u1

1(x1,E1)
= u2

2 (x2,E2 )
u1

2 (x2,E2 )
                  

x1E2 − x2E1 = 0                              
u1(x1,E1) = a                                  
u2 (x2,E2 ) = b                                 

− u2
1 (x1,E1)
u1

1(x2,E2 )
< x1

E1                             

  (6.31) 

 

and then compute its Jacobian, and so on.   In general, the extended function V will not be 

computable in closed form.   

 The next question I ask is what happens to the function V if we replace {ui }  with 

ordinal transformations of them.   Let  û
1 = f u1  and û2 = g u1  where f and g are strictly 

monotone increasing functions.  Consider the analogous system to (6.31): 

 

 

′f (a)u2
1 (x1,E1)

′f (a)u1
1(x1,E1)

= ′g (b)u2
2 (x2,E2 )

′g (b)u1
2 (x2,E2 )

                  

x1E2 − x2E1 = 0                              
f (u1(x1,E1)) = f (a)                                  
g(u2 (x2,E2 )) = f (b)                                 

− ′f (a)u2
1 (x1,E1)

′f (a)u1
1(x2,E2 )

< x1

E1                             

  (6.32) 

A quick comparison shows this is identical to the original system (6.31) – just apply f −1   

and g−1   to the third and fourth equations.  Let the extended utility function for the new 

system be denoted by V̂   and the extended preferences for the system (6.31) be denoted 

by V.  Then we have: 
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 V̂ ( f (a),g(b)) =V (a,b) , (6.33) 

or, writing this slightly differently: 

 V̂ ( f (u1),g(u2 )) =V (u1,u2 )   (6.34) 

This means that V̂  and V define the same preferences on arguments (x1,E1, x2,E2 )∈ℜ+
4  .   

         

 Let us now move from the language of utility functions to the language of 

preference orders.   Denote the set of self-interested preference orders over consumption 

and labor by R.   Denote the set of preference orders over the whole allocation for two 

players  (an element in ℜ+
4  ) by Q.    The correct way of stating the central question of 

this chapter is:  given concavifiable preference orders R1,R2 ∈R  , is there a mapping 

F :R2 →Q   such that the K ×   equilibrium of the economy (R1,R2,G,X Pr )   is always a 

Nash equilibrium of the economy (F(R1,R2 ),F(R2,R1),G,X Pr )  ?   F, in this case, is a 

social choice rule: given any two preference orders, it aggregates them into a preference 

order for society.   Because the utility function is a derived concept, we must state the 

query using the fundamental notion of preference orders.  We have: 

 

Proposition 6.5  There exists a social choice rule F :R2 →Q  such that for any pair of 

self-interested preferences R1,R2 ∈R , the K ×  equilibria of the economy (R1,R2,G,X Pr )   

is a Nash equilibrium of the economy with extended preferences 

(F(R1,R2 ),F(R2,R1),G,X Pr )  , for all increasing, concave production functions G. 

 The proof is, in fact, the equation (6.34).  For this equation says that the induced 

preferences on ℜ+
4  (for which the Nash equilibrium is the Kantian equilibrium of the 

problem with preference orders on ℜ+
2  ) are independent of the utility functions that are 

chosen to represent the self-regarding preferences.  In other words, the induced 

preferences on the whole allocation that both players have in the ‘extended’ game depend 

only on their preferences in the original game. 

 At this point, our skeptic can say: “Well, you see, Kantian optimization really 

isn’t any different from Nash optimization.  One just has to realize that people have 
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preferences over the whole allocation.”   Proposition 6.5 could be taken to vindicate the 

program of behavioral economics. 

 But I strongly demur.  The reason is that the function V that must be constructed,  

that represents the preferences of the players on the whole allocation, is in general 

extremely complex.      Let’s take a simple example to illustrate. Suppose that the two 

players in a production game have utility functions: 

 û1(x1,E1) = (x1 − h1(E1))1/3, û2 (x2,E2 ) = (x2 − h2 (E2 ))1/2  . (6.35) 

This is how they think of their payoffs from ‘fishing’ in cardinally meaningful units.   Of 

course, the K ×   equilibrium of this game, in the economy (û1, û2,G,X Pr )  is identical to 

the Kantian equilibrium with the utility representation ui (xi ,Ei ) = xi − hi (Ei )  .   Now the 

monotonic transformations which relate the second (obviously quasi-linear) 

representation to the representation of (6.35) are f (u) = u3  and g(u) = u2  .   By 

Proposition 6.5 (or equation (6.34)),  the extended preferences that each must maximize 

in the game whose Nash equilibrium will be the Kantian equilibrium of the original game 

are V̂ (û1, û2 ) = (û1)1/3 + (û2 )1/2  .     But this is not a natural construction.    The ‘nice’ 

formula  V (u1,u2 ) = u1 + u2   only applies if the representation of the quasi-linear 

preferences is given by ui = xi − h(Ei )  .   So it is false to say that in a quasi-linear 

economy, it suffices to rationalize the Kantian equilibrium as a Nash equilibrium that 

each player maximize total welfare.  This formulation only works for a particular  

representation of players’ preference orders by utility functions.   

 Even in the case of quasi-linear preferences (i.e., preferences that admit a quasi-

linear utility representation), the extended preferences that players would have to be 

using are complex.    Let us state this in terms of laboratory experiments.  Suppose the 

experimenter poses a prisoners’ dilemma game to the players, whose payoffs are given by 

the matrix: 

  

 Cooperate Defect 

Cooperate (2,2) (0,3) 

Defect (3,0) (1,1) 

  (6.36) 
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According to Proposition 6.2,  the simple Kantian equilibrium of this game is the same as 

the Nash equilibrium of the game where each player maximizes the sum of the payoffs 

P1 + P2  .    But now suppose the experimenter proposes the payoff matrix: 

 

 

   (6.37) 

 Cooperate Defect 

Cooperate (2,4) (0,4.5) 

Defect (3,3) (1,3.5) 

  

Table (6.37) is, in fact, the same prisoners’ dilemma game as table (6.36):  I have simply 

transformed the von Neumann-Morgenstern utilities of the second player by the positive 

affine transformation 1
2
u + 3  .   The Kantian equilibria of the two games are identical.  

But in order to produce the Kantian equilibrium of the second game as a Nash 

equilibrium of a game with extended payoff functions, the players must both maximize 

P1 + 2(P2 − 3)  .    While maximizing the sum of payoffs might be natural, maximizing 

the latter function is not.  

 

 To reiterate, I take the results of this chapter to support the case that Kantian 

optimization is a fundamentally different protocol from Nash optimization5.  Formally, 

we can explain cooperation as the result of Nash reasoning with preferences defined on 

the entire allocation.    In some cases, the utility function that players must adopt on the 

entire allocation to rationalize Kantian equilibria in this way seems natural.   But in 

general, the extended utility function is not natural.   For example, the extended 

preferences that must be used for the Cobb-Douglas production economy of Proposition 

6.4 cannot be represented by any function of the self-regarding utilities in the original 

game that can be written in closed form.    Even for the simple case of quasi-linear 

                                                
5

 It is true that I have investigated here only certain kinds of extended utility functions – ones whose arguments are the utilities of the 

players in the game.  One might extend this study to more general extended preferences, which depend one the whole allocation of 

efforts and consumptions, but not necessarily through the utility functions of the players.  
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preferences, producing a simple extended utility function (which ‘maximizes total 

utility’) is only achieved with a particular choice of the utility representation of the 

original self-regarding preferences.  The same is true with regard to rationalizing the 

prisoners’ dilemma. 

 While Nash rationalization of cooperation is mathematically possible, to make the 

story credible, one would have to explain how players move from their self-regarding 

preferences to the extended preferences that are required.  Behavioral economists have 

limited themselves to situations and experiments, almost ubiquitously, in which the 

notion of the fair allocation is obvious, or in which players have identical cardinal utility 

functions.   In the latter case, the Nash equilibrium in which each ‘maximizes total payoff’ 

will coincide with the Kantian equilibrium of the game with self-regarding preferences.   

But this simple ‘altruistic’ preference order on the entire allocation only works for 

players with symmetric preferences represented by particular cardinal utility functions 

(or payoff functions), and does not work at all when players have different self-regarding 

preferences. 

   In contrast, the Kantian explanation seems much simpler. It enables cooperation 

where it is not obvious what the fair solution is (e.g., the production economies), or what 

the Pareto efficient solution is.  Of course, to complete the story, one has to explain how 

people learn to optimize in the Kantian manner.  When players are identical, simple 

Kantian optimization will work – and in this case, there is not much explaining to do.     

How people might learn to optimize in the multiplicative or additive way, for games with 

heterogeneous players, is harder to explain. 

 



Words: 1955 

 

Chapter 7.    Existence and dynamics of Kantian equilibrium 

 

 All the results in chapters 4-6 are of the form:  If a Kantian equilibrium exists, it 

has such-and-such properties.   In this chapter, I prove that Kantian equilibria exist for a 

large domain of production economies, of the kind studied in chapters 4-6.     Recall that 

a proportional solution for an economy e = (u1,...,un ,G)  is a Pareto efficient allocation in 

which consumption is proportional to efficiency units of effort expended.    In 

Proposition 3.2, we showed that an economy’s proportional solutions are precisely its 

strictly positive K ×  equilibria. 

 The proportional solution was first defined and studied in Roemer and Silvestre 

(1993).   There, a proof of the existence of proportional solutions was given for 

economies that include ones like e,  but also much more complicated economies  (with 

many goods and many kinds of labor).    Here, I provide a simpler existence proof for a 

domain of economies like e.   The proof, unlike that in the 1993 paper, exploits the fact 

that proportional solutions are precisely the positive K ×  equilibria of the economy that  

allocates output in proportion to efficiency units of effort expended .    

 

7.1   Existence of strictly positive K ×   equilibria for production economies 

 

 Consider the following condition on utility functions u(x,E)  : 

 

 Condition A.   A utility function u satisfies Condition A if and only if 

lim
ε→0
lim
x→0

− u2 (x,ε)
u1(x,ε)

→ 0 . 

Examples.   Let u(x,E) = xa (1− E)1−a  .   Then − u2 (x,ε)
u1(x,ε)

= 1− a
a

x
1− ε

 , and Condition A 

holds.     Let u(x,e) = x − h(E)   where ′h (0) = 0.   Then − u2 (x,ε)
u1(x,ε)

= ′h (ε)   and Condition 

A holds.   Let u(x,E) = (axr + (1− a))(1− E)r )1/r  .   Now, − u2 (x,ε)
u1(x,ε)

= 1− a
a
(1− ε
x
)r−1  and 

Condition A holds for −∞ < r ≤1  , which is to say, for all concave CES utility functions. 



 

 

2 

 

 Define the domain of utility functions as: 

U = {u :ℜ+ × [0,M ]→ℜ,  some M > 0, u  differentiable & concave, Condition A holds}  .  

 Define the domain of production functions as: 

  G = {G :ℜ+ →ℜ+;G  increasing, differentiable, concave; ′G > 0}  . 

Define the domain of economies as D = {(u1,...,un ,G) | ui ∈U,G ∈G} .   

 

Proposition 7.1  For all economies e∈D  , a strictly positive K X   equilibrium exists. 

 

 Recall that a K ×   equilibrium is a feasible allocation (xi ,Ei )i=1,...,n   such that: 

   (∀i) xi = Ei

ES G(E
S )  ,  

and for all i,   1∈argmax
0≤ρ≤M

Ei

ui ( E
i

ES G(ρE
S ),ρEi )  .  (If Ei = 0  , the domain of the argmax 

function is 0 ≤ ρ < ∞  .)  

 For any ε > 0  , define the rectangle Rε = [ε,M ]n ⊂ℜ++
n  . First, we prove a 

lemma: 

 

Lemma 7.2   For any G ∈G  , lim
ε→0
max
E∈Rε

Ei

ES G(ε
ES

Ei ) = 0.   

Proof: 

1.  For any ε > 0 , we must evaluate the solution of 

 

max
Q

1
Q
G(εQ)

s.t.
(n −1)ε +M

M
≤Q ≤ (n −1)M + ε

ε

  (7.1) 

where Q = E
S

Ei   
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 There are three possibilities for the solution (a) Q = 1+ (n −1)ε
M

 ; (b) 

Q = 1+ (n −1)M
ε

 ,  or (c)Q∈(1+ (n −1)ε
M

,1+ (n −1)M
ε

)  . 

2.   Case (a).  At Q = 1+ (n −1)ε
M

 , the maximand is 

M
M + (n −1)ε

G(ε + (n −1)
M

ε2 )→G(0) = 0 . 

3.  Case (b).   In this case, the maximand is ε
ε + (n −1)M

G(ε + (n −1)M )→ 0  .  

4.   Case (c).   In this case,  we compute the first-order condition w.r.t. Q,  for the 

maximization problem (7.1).   This condition is: 

 G(εQ*)
Q* = ε ′G (εQ*)   (7.2) 

at the solution Q*  .  If εQ*  does not approach zero with ε  , then the r.h.s. of (7.2) does 

approach zero, as we wish to show.   If Q*   does approach zero, it cannot approach faster 

than 1+ (n −1)ε
M

 , and so ε ′G (εQ) ≤ ε ′G (ε + (n −1)ε
2

M
)→ ε ′G (ε) ≤G(ε)→ 0    .    This 

proves the lemma.    

 

Proof of Proposition 7.1: 

 

1.    Given (u,G)∈D  .   Consider the n-rectangle Rε = [ε,M ]n ,  for some 0 < ε < M  .   

Define the individual best-reply correspondences on a domain Rε  as follows: 

 Bi (E1,...,En ) = {rEi | r ∈argmax
0≤ρ≤M

Ei

ui ( E
i

ES G(ρE
S ),ρEi )}  .1 (7.3) 

                                                
1 Notice the difference between these best-reply correspondences, which are defined on 
the entire effort vector, and the Nash-best-reply correspondences, which are defined on 
the on the vectors E− i  .   The difference is illustrated graphically in figure 4.1. 
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Define B = (B1,...,Bn ) , a mapping whose domain is Rε   and whose range is ℜ+
n  .     The 

mapping B is convex-valued because  ui ( E
i

ES G(ρE
S ),ρEi )  is a concave function of ρ  .   

It is upper hemi-continuous by the Berge maximum theorem.    We must show that B 

maps Rε   into itself, for some sufficiently small ε > 0  .   That  

is: 

  for some ε > 0  and any E = (E1,...,En )∈Rε  , Bi (E) ≥ ε   for all i.  

The condition that guarantees the required inequality is: 

 (∃ε > 0)(∀i)(∀E∈Rε )( d
dr r= ε

Ei

ui ( E
i

ES G(rE
S ),rEi ) ≥ 0) .  (7.4) 

For (7.4) guarantees that that scale factor r that maximizes i’s utility is at least ε
Ei   and 

hence Bi (Ei ,EN \i ) ≥ ε
Ei E

i = ε  .  Condition (7.4) expands to: 

 (∃ε > 0)(∀i)(∀E∈Rε ) ′G ( ε
Ei E

S ) ≥ − u2
i

u1
i (
Ei

ES G(
ε
Ei E

S ),ε) .  (7.5) 

    
The argument of ′G  is bounded above as ε  approaches zero, so the left-hand side of this 

inequality is bounded away from zero, because G ∈G  .    It therefore suffices to show 

that the right-hand side approaches zero as ε becomes small. 

 Now Lemma 7.2 tells us that the argument E
i

ES G(
ε
Ei E

S )  of the marginal rate of 

substitution on the right-hand side of (7.5) approaches zero, and therefore, by Condition 

A, the marginal rate of substitution approaches zero. 

 This concludes the demonstration that for small enough ε,  B maps Rε  into itself. 

2.    Therefore, all the assumptions of Kakutani’s fixed point theorem hold, and so a fixed 

point of B exists on some domain Rε  .  But a fixed point on this domain is a strictly 

positive K X   equilibrium, which concludes the proof.    

 

7.2   Existence of K β   equilibria for 0 < β ≤ ∞   
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 Recall  (chapter 4)  the infinite family of efficient Kantian pairs (Xβ ,ϕβ )  , for 

0 ≤ β ≤ ∞  .   Proposition 7.1 proves the existence of positive Kantian equilibria for β = 0 , 

which is to say, Pareto efficient Kantian equilibria.    The proof for β > 0   is simpler, 

because of Proposition 4.1:   that is,  any K β   Kantian equilibrium for β > 0   is Pareto 

efficient.     (A K β   equilibrium is one for the efficient Kantian pair (Xβ ,ϕβ )  .)  We do 

not need an analogue to Lemma 7.2.    

 Let  
U = {u :ℜ+ × [0,M ]→ℜ,  some M > 0, u  differentiable & concave} ; let 

 
G = {G :ℜ+ →ℜ+ ,G  concave & differentiable}  ; let

 
D = {e = (u1,...,un ,G),ui ∈ U,G ∈ G}  .  

Proposition 7.3   For any β > 0  , on the domain  D ,  a Kantian equilibria with respect to 

the allocation rule and Kantian variation (Xβ ,ϕβ )   exists.  

Proof: 

1.   Consider 0 < β < ∞  .   The domain of effort vectors is the convex, compact set 

R0 = [0,M ]n  .   For any vector in the domain, define the best-reply correspondences: 

Bi (E1,...,En ) = {rEi + (r −1)β | r ∈ argmax
ρ∈[ β

Ei+β
,M+β
Ei+β

]

ui ( E
i +β

ES + nβ
G(ρES + n(ρ−1)β),ρEi + (ρ−1)β)  .

 (7.6) 

The domain restriction on ρ   in the maximization guarantees that Bi (E1,...,En )⊆ R0  .  

Define the vector-valued best-reply correspondence by B = (B1,...,Bn )  .   B   is convex-

valued, because the argument in the maximization in (7.6) is a concave function of ρ  .  It 

is upper hemi-continuous by the maximum theorem.  Hence all the assumptions of the 

Kakutani fixed point theorem hold, and so a fixed point of B   exists.  But such a fixed 

point is a K β   equilibrium. 

2.  For β = ∞   (that is, K +   equilibrium), a separate argument is required.    It is obvious 

how to define the best-reply correspondence, and the same approach works.   
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7.3   Is there an allocation rule which Nash equilibrium implements efficiently on the 

domain  D  ? 

  What Propositions 7.1 and 7.3 show is that for every Kantian variation K β  , for 

0 ≤ β ≤ ∞   there is (at least) one allocation rule that optimization according to the K β   

protocol implements efficiently on a large domain of production economies.   We may 

ask:   Is there any allocation rule that the Nash protocol implements efficiently on the 

domain  D  ?    The answer is negative. 

 

Proposition 7.4  

A.  There is no allocation rule that is efficiently implementable in Nash equilibrium on 

the domain  D  .    

B. On continuum economies, Walrasian rules (with no taxation) are efficiently Nash 

implementable. 

 The Walrasian allocation rules are defined by the following way of sharing output.   

The share allocated to player i is equal to: 

 for all i,  θi,Wa (E1,...,En ) = ′G (ES )
G(ES )

Ei + σ i (1− ′G (ES )ES

G(ES )
) ,                                         

(7.7) 

where the profit shares (σ1,...,σn )   are fixed non-negative numbers summing to one.  

Equations (7.7) state that the output received by player i  ( that is, θi,WaG(ES )  ) is equal to 

the sum of her labor income ( her effort supply times the marginal productivity of effort), 

and her share of profits.  

Proof of Proposition 7.4:  

1.  In this proof, we specify an allocation rule by the shares of output that are allocated to 

each player, as a function of the effort vector E.   An interior allocation E is a Nash 

equilibrium on the domain of economies for the allocation rule θ  if and only if 

 
   
∀j u1

j ⋅(∂θ
j (E)

∂E j G(ES )+ θ j (E) ′G (ES ))+ u2
j = 0  . (7.8)   

Therefore θ  is efficiently Nash-implementable if and only if:  
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∀j 1= θ j (E)+ G(ES )

′G (ES )
∂θ j (E)
∂E j  . (7.9) 

 

2.  Indeed, (7.9) must hold for the entire positive orthant  ℜ++
n , for given any positive 

vector E,  we can construct n concave utility functions such that (7.8) holds at E. 

3.  For fixed E, define   ψ
j (x) = θ j (E1, E2 ,..., E j−1,x, E j+1,..., En )  and 

  µ
j (x) = G(x + ES − E j ) .  Then (7.9) gives us the differential equation: 

 
  
1= ψ j (x)+ µ j (x)

(µ j ′) (x)
(ψ j ′) (x)  , (7.10) 

  

which must hold on ℜ++ . 

4.  But (7.10) implies that  

 
  

(ψ j ′) (x)
1− ψ j (x)

= (µ j ′) (x)
µ j (x)

 , (7.11) 

   

which implies that   µ
j (x)(1− ψ j (x)) = k j  and therefore 

  
ψ j (x) = 1− k j (E− j )

µ j (x)
 where 

the constant  k j  may depend on the ray   (E1,.., E j−1,x, E j+1,.., En )  on which  ψ
j  is defined 

– that is, upon E− j  .  

  

5.  In turn, this last equation says that on the ray   (E1,..., E j−1,x, E j+1,..., En )  we have: 

 

   θ
j (E1,..., E j−1,x, E j+1,..., En )G(x + ES − E j ) = G(x + ES − E j )− k j (E− j )  , (7.12) 

   

which says that ‘every agent receives his entire marginal product’ on this space.  To be 

precise: 
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(∀x, y > 0)
(θ j (E1,..., E j−1,x, E j+1,..., En )G(x + ES − E j )−
θ j (E1,..., E j−1, y, E j+1,..., En )G( y + ES − E j ) =
G(x + ES − E j )−G( y + ES − E j )) .                                                       

   

(7.13) 

 

Now let   y = 0 and x = E j  and let   z
j = θ j (E1,..., E j−1,0, E j+1,..., En )G(ES − E j ) .    Then   

(7.14) says that: 

   (∀j)(θ j (E)G(ES )− z j = G(ES )−G(ES − E j ))  .  (7.15) 

 . 

6.  Adding up the equations in (7.15) over j, and using the fact that   z j ≥ 0 , we have: 

   G(ES ) ≥ nG(ES )− G(ES − E j )∑  

or : 
  
G(ES ) ≤ 1

n−1
G(ES − E j )∑  . (7.16) 

7.  Now note that 
  

1
n−1

(ES − E j ) = ES∑ .   Therefore (7.16) can be written: 

 
  
G( 1

n−1
(ES − E j )) ≤

1
n−1

G(ES − E j )∑∑  , (7.17) 

  

which is impossible for any strictly concave G.   This proves part A of the theorem. 

8.  The proof of part B is well-known: for part B just says that Nash behavior, taking 

prices as given, at the Walrasian allocation rule, induces Pareto efficiency. ■ 

 The key point, in part A of Proposition 7.4, is that in a finite economy, an agent 

cannot ignore the effect of his labor supply on the marginal productivity of labor.  It is 

only in an economy with an infinite number of agents that the wage is not affected by 

individual labor choices. 

 Proposition 7.4 is another way of stating the benefits of cooperation.   Of course, 

cooperation only works on a ‘small’ domain of allocation rules for production economies:  
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the rules that allocate part of the product according to equal division, and part according 

to proportional division.2   

 

7.4   Dynamics 

 There is a convenient dynamic process that, for well-behaved games, will 

converge to a Nash equilibrium of the game from an arbitrary initial strategy vector.  It is 

to iterate the best-reply correspondence.  If the payoff functions are well-behaved, 

‘iterated best replies’ converges to a Nash equilibrium of the game.   We can use the 

same procedure for Kantian equilibrium: ‘iterated best replies’ converges to a Kantian 

equilibrium, if the game is well-behaved.   The purpose of this section – to demonstrate 

this --  is again to emphasize the formal similarity between Nash and Kantian equilibrium. 

 We will study a special case: there are two players, they each have quasi-linear 

preferences ui (x,E) = x − ci (E)  , for i =1,2,  where ci   are strictly convex, increasing, 

differentiable functions.    We will work with the  K +  protocol and the equal-division 

rule.   We are given an economy (u1,u2,G)   with G concave.    Define the best-reply 

function for effort vectors in R0 = [0,M ]2   : 

 B = (B1,B2 ) , where Bi (E1,E2 ) = Ei + ri (E)  (7.18) 

and  ri (E) = argmax
−Ei≤r≤M−Ei

ui (G(E
S + 2r)
2

,Ei + r)  .   For the utility functions specified, the 

argmax in (7.18) is unique, and so B is a single-valued.   Note that a fixed point of B  is 

an additive Kantian equilibrium for the equal-division rule, since if B(E1,E2 ) = (E1,E2 )   

then "r = 0"  is the argmax for both players. 

 

Proposition 7.5  The mapping B :ℜ+
2 →ℜ+

2  is a contraction mapping, and hence 

possesses a unique fixed point.3 

                                                
2 As I indicated earlier, there are other rules that I do not describe here that can be 
efficiently Kantian-implemented, that are in ‘neighborhoods’ of these rules. 
3 It is a well-known mathematical fact that a contraction mapping possesses a unique 
fixed point, and that iterated application of the mapping from any initial point converges 
to the fixed point. 
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 It immediately follows that iterated application of B  starting from any initial 

vector of efforts will converge to its fixed point, which is an additive Kantian equilibrium 

(indeed, the unique such equilibrium for the economy specified). 

 The proof of Proposition 7.5 uses a well-known mathematical fact: 

 

Lemma  Let  be a norm on  ℜn  and let   A   be the associated sup norm on mappings 

  A :ℜn →ℜn , defined by 
   

A = sup
x =1

A(x) .   Let   J ( A)  be the Jacobian matrix of A. If 

   J ( A) <1 , then A is a contraction mapping. 

 

Proof of Proposition 7.5: 

1. The Jacobian of the mapping  B  is 

  

1+ r1
1 r2

1

r1
2 1+ r2

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, where 

  
ri

j (E1, E2 ) = ∂r j

∂Ei (E1, E2 ) , assuming that these derivatives exist.  Thus, the lemma 

requires that we show the norm of this matrix is less than unity.   We take  to be the 

Euclidean norm on   2 .   We must show that: 

 

  

E = 1⇒
1+ r1

1(E) r2
1(E)

r1
2(E) 1+ r2

2(E)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

E1

E2

⎛

⎝
⎜

⎞

⎠
⎟ <1  . (7.19) 

 

2.  By differentiability of  c j , the function  r j  is defined by the following first-order 

condition: 

    ′G (ES + 2r j (E)) = (c j ′) (E j + r j (E))  , (7.20) 

        

which has a unique solution.  By the implicit function theorem, the derivatives of   r
j (⋅)  

are given by: 

 

    ′′G ( y j )(1+ 2ri
j (E)) = (c j ′′) (x j )(δ i

j + ri
j (E)) , 
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where    y
j = G(ES + 2r j (E)), x j = E j + r j (E)  and 

  
δ i

j =
1,  if i = j
0,  if i ≠ j

⎧
⎨
⎪

⎩⎪
; or 

 
  
ri

j (E) =
δ i

j (c j ′′) (x j )− ′′G ( y j )
2 ′′G ( y j )− (c j ′′) (x j )

 . (7.21) 

3.   It follows from (7.19) that the Jacobian of  B  is given by: 

  

  

′′G ( y1)
2 ′′G ( y1)− (c1 ′′) (x1)

− ′′G ( y1)
2 ′′G ( y1)− (c1 ′′) (x1)

− ′′G ( y2 )
2 ′′G ( y2 )− (c2 ′′) (x2 )

′′G ( y2 )
2 ′′G ( y2 )− (c2 ′′) (x2 )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 

and so, from step 1, we need only show that: 

   (Q
1(E1 − E2 ))2 + (Q2(E1 − E2 ))2 <1  , (7.22) 

where 
  
(E1, E2 ) = 1 and 

  
Q j = ′′G ( y j )

2 ′′G ( y j )− (c j ′′) (x j )
.     Note that 

  
Q j < 1

2
.  Inequality 

(7.22) reduces to showing that 
  
1
2

(1− 2E1E2 ) <1, which is obviously true, proving the 

proposition.   ■ 
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Chapter 8.    Evolutionary considerations 

 In this chapter, we examine several simple environments in which Kantian and 

Nash players meet each other repeatedly and play a game.   The question is whether 

Kantian players can resist invasion by Nash players.  

 We assume there is a population, fraction v of whom are Kantian optimizers, and 

fraction 1− v   of whom are Nash optimizers (henceforth, Nashers).   At each date, 

individuals from this population are randomly paired and play a game.  The fitness of 

each group is a strictly monotone increasing function of the average payoff of the 

members of that group.   The population is stable when the fitness of both Kantian and 

Nash players is the same.  If the fitness of Nashers is greater than the fitness of Kantians 

for all v, then Nashers drive Kantians to extinction, and conversely.    We consider two 

games:  the random dictator game, and the general 2 × 2  symmetric game with mixed 

strategies. 

 It is assumed that when two agents are matched to play a game, they cannot 

recognize each other’s type.    If Kantians could recognize their opponent’s type, they 

could simply play Kantian when matched with Kantians and play Nash when matched 

with Nash players, and their average payoff would be greater than the average payoff of 

Nash players  in the games we study.   Therefore Kantians would drive Nashers to 

extinction.  The problem of invasion is therefore only interesting when Kantians cannot 

recognize the type of their opponent. 

 

8.1   Random dictator game 

 We assume that all Kantians possess a von Neumann-Morgenstern utility function 

u over money payoffs which is risk averse, and we normalize u by: 

 u(0) = 0, u(1
2

) = ρ, u(1) = 1 where ρ > 1
2

 . (8.1) 

In the random dictator game, one of the two players is chosen to be the dictator randomly 

by Nature;  the dictator divides one unit of resource between himself and the other player.  

We have shown in chapter 1 that the simple Kantian equilibrium for two risk averse 

Kantian players is to split the resource equally between them.    I propose that, in a 

situation where one does not know the type of one’s opponent, Kantian players adopt this 


