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1 Introduction

Consider the following situation: There is a football club that drew profit over the pre-
vious season and plans to spend it on a number of projects. These projects are public,
meaning that everyone in the football team has access to them, like new balls, jerseys or
locker rooms. Since it is important to the football club that there are no discrepancies,
they want to let everyone in the team take part in the decision on how to allocate the
budget. Each team member might reveal his most preferred allocation of the total bud-
get and these votes will be aggregated to result in a social outcome. Emerging questions
are for example: How should the votes be aggregated? Given the voting rule, are there
incentives not to vote for the true preferred allocation? A feasible rule to aggregate
budget allocations is the median rule. Under the assumption of single-peaked prefer-
ences1, Cason et al. (2006) state that “Many [. . .] strategy-proof mechanisms [. . . ] have
Nash equilibrium outcomes that do not coincide with the dominant strategy equilibrium
outcome. These Nash equilibrium outcomes are frequently socially undesirable.”

Consider three team members that vote on the allocation of 100 monetary units (MU)
on two public projects: balls and jerseys. Assume that their most preferred allocations
for balls are 25, 40 and 65 MU, respectively.2 The median rule is a strategy-proof voting
rule for aggregating the votes, which implies that truth-telling is a possible Nash equi-
librium. Given that every team member reveals his true preferred allocation, the social
choice under the median rule is to allocate 40 MU on balls and 60 MU on jerseys, respec-
tively. In this equilibrium, one team member achieves exactly his preferred outcome and
therefore given truth-telling of the others, he has no incentive to deviate from revealing
his true preferred allocation. The team member who wants to allocate 25 MU on balls
would favor a social outcome closer to 25 MU. However, he is only able to increase the
social outcome by voting for a higher allocation on balls than the median-value. The
same applies to the third team member, who is also not able to influence the social
outcome to his favor. Hence, truth-telling is a weakly dominant strategy resulting in
a Nash equilibrium. Nevertheless, truth-telling is not the only Nash equilibrium. As
long as the non-pivotal team members stay within their rank, i.e. vote for an allocation
equal to or higher than the median if the preferred allocation exceeds it and an equal or
lower allocation if the true allocation undercuts it, every combination of these votes and
truth-telling of the pivotal voter results in a Nash equilibrium with the same outcome
as truth-telling of all team members.

But what about the ‘bad’ Nash equilibria Cason et al. (2006) were talking about?
Suppose, all three team members vote for an allocation of no budget on balls and the
total budget on jerseys. The social outcome is a median allocation of 0 MU on balls
and 100 MU on jerseys, which increases the sum of the absolute distances from 40 to
130.3 However, no team member has the incentive to deviate from his vote, as the

1We assume single-peaked preferences throughout the paper. The property of symmetry and single-
peakedness regarding preferences will be explained in detail in section 2.2.

2Since a total of 100 MU has to be distributed, this automatically implies that the most preferred
allocations for jerseys are 75, 60 and 35, respectively.

3The sum of the absolute distances is |25 − 40| + |40 − 40| + |65 − 40| = 40 in the first situation and
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median remains unchanged given the other votes, denoting that ‘bad’ Nash equilibria
exist when using the median rule.

Yamamura and Kawasaki (2013) are providing a solution to this problem: “If there
exist a multitude of bad Nash equilibria for a given [. . .] median rule, then using [. . .]
average rules can be a comparable alternative [. . .].” Let’s reconsider the example from
the football club, this time using the average or mean rule to aggregate the votes. A
unique and efficient Nash equilibrium4 exists, in which at most one team member votes
for his true preferred allocation. In this equilibrium, the team member with the lowest
preferred allocation on balls votes for the lowest possible value, 0 MU, whereas the one
with the highest preferred allocation votes for the highest possible value, 100 MU. In
order to achieve a Nash equilibrium outcome that corresponds to the preferred allocation
of the ‘middle-voter’, he has to vote for 20 MU on balls.5

So far, there is nothing really new and surprising about the mean or the median
rule. But what if the number of public projects increases? When using the median
rule, truth-telling is once more a Nash equilibrium. Also, as long as the team member
with the pivotal preferred allocation for one project states the truth and the others
stay within their rank, every combination of votes results in a Nash equilibrium. Even
though the sum of absolute deviations from the true preferred allocation is minimized,
the coordinate-wise median may violate the budget restriction. An adaptation of the
social outcome is possible, but in general, adapted median rules are not strategy-proof.
Besides, ‘bad’ Nash equilibria, that reduce the utility of every team member compared
to the social outcome under truth-telling, do not disappear when using the median rule
on more than two public projects. When following the suggestion of Yamamura and
Kawasaki (2013) again and making use of the mean rule, the allocation problem on two
public projects yields a unique and efficient Nash equilibrium. There exists a focal Nash
equilibrium in many cases in multi-dimensional allocation problems as well. What might
be surprising is the fact that sometimes a multiplicity of Nash equilibria occurs when
using the mean rule, and even inefficient equilibria are possible.

In our theoretical section, we address multi-dimensional budget allocation problems
and provide two possible voting aggregation mechanisms: the mean and the median rule.
We present a way of adaptation under the median rule to satisfy the budget restriction.
Moreover, we examine best strategies and Nash equilibria of the different voting rules.
In a laboratory experiment, we analyze the voting behavior in multi-dimensional and
repeated budget allocation problems and oppose the voting strategies under the mean
and the median rule. In detail, our research questions are whether under the median rule,
the dominant strategy is played if it is existent and whether manipulation possibilities
are exploited. Under the mean rule, we pose the question whether the Nash equilibrium
is played if it is focal. We are also interested in voting behavior and Nash equilibria in
more complex situations.

|25− 0|+ |40− 0|+ |65− 0| = 130 in the new setting.
4Efficiency is defined in detail in section 2.5. We call a social outcome efficient, if it is not smaller

(larger) than the smalles (largest) most preferred allocation.
5The average allocation results in 0+20+100

3
= 40 MU, which is equal to his preferred allocation.
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2 Theoretical Model

2.1 Basic Definitions

Consider a set of individuals I = {1, ..., n}, that decide on the allocation of a budget E on
m public projects J = {1, ...,m}. We claim a budget restriction such that no negative
budget might be allocated as well as the total budget has to be spent. The set of
feasible allocations is therefore given by B := {x ∈ Rm

≥0|
∑
j∈J

xj = E}. The preferences of

each individual are metrically single-peaked, as described in detail in section 2.2. A most
preferred allocation of individual i is called his peak pi = (pi1, . . . , p

i
m) = (pij)j∈J ∈ B, the

vector of all peaks is given by p = (p1, . . . , pn) = (pi)i∈I . In order to decide on the social
outcome of the allocation, every individual submits a vote qi = (qi1, . . . , q

i
m) = (qij)j∈J ∈

B that might differ from his peak. The vector of all votes is q = (q1, . . . , qn) = (qi)i∈I .
We measure the distance between individual i’s peak and the social outcome x(q) =
(x1(q), . . . , xm(q)) ∈ B with the L1 distance, i.e. the sum of their absolute deviation in
every project: d(pi, x(q)) :=

∑
j∈J
|pij − xj(q)|. We exclude negative or budget-exceeding

peaks, votes and social outcomes and make sure that the budget is satisfied as we claim
pi, qi, x(q) ∈ B.

Let the number of public projects be m = 3. The budget constraint is graphically
given by a triangle in a 3-dimensional space, see figure 1a. This simplex contains all
possible allocations, at which the budget constraint is satisfied, i.e. all allocations in B.
The vertices are the allocations at which the total budget is distributed on exactly one
project and no budget on the other two projects. On the lines between the vertices, a
budget of zero is allocated on one project. As can be seen in figure 1b, it is possible to
represent the 3-dimensional simplex as a 2-dimensional one. By doing so, it is obvious
that a shift from one point to another inside the simplex means re-allocating the budget,
such that the budget constraint is not violated.

2.2 The Voters’ Preferences

In order to determine the best strategy for an individual, his preferences need to be
specified. We use the L1 distance function that sums up the project-wise absolute
differences between two allocations a, b ∈ B. This sum is defined as distance d(a, b)
between the two allocations a and b. Every voter i is assumed to have a preference
ranking that satisfies the following:

• there exists a unique peak pi and

• voter i (weakly) prefers a over b if and only if d(pi, a) ≤ d(pi, b) for all a, b ∈ B.

Preference rankings that satisfy the above conditions are single-peaked in every possible
direction.6 This implies that voters try to minimize the distance between the social
outcome and the true peak, d(pi, x(q)) meaning that a lower distance from the peak

6Nehring et al. (2008) define these preferences as metrically single-peaked, see also Lindner (2011).
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(a) 3-dimensional space (b) 2-dimensional space

Figure 1: The simplex

results in a higher payoff and the payoff reaches its maximum when pi = x(q). Moreover,
we make sure that the budget allocation of every project is equally important. Thus, a
deviation of x(q) from pi in project 1 has the same impact on the payoff as an equally high
deviation from pi in project 2 or 3. Figure 2 shows the indifference curves of individual
i given his peak pi. The highest payoff is given for a social outcome equal to pi and it
decreases symmetrically in every project with a higher distance from the peak, which is
represented by the hexagon-shaped curves.

Figure 2: Single-peaked preferences

4



2.3 The Mean Rule

The social outcome under the mean rule is calculated by adding up the votes of all
individuals separately for every project and dividing these sums by the number of votes:

Meanj(q) =
1

n

n∑
i=1

qij . (1)

Example 2.1. E = 100; q1 = (20, 50, 30); q2 = (10, 40, 50); q3 = (0, 0, 100)
→Mean(q) = (10, 30, 60)

By construction, the social outcome under the arithmetic mean always satisfies the
budget constraint, i.e. the sum of the coordinate by coordinate mean-values adds up to
the allocatable budget. Another property of the mean rule is its manipulability. Given
different peaks, at most one individual votes for the true preferred allocation in a Nash
equilibrium, as shown in section 2.6.1.

2.4 The Median Rule

The median rule selects of all ordered votes q
[i]
j for every project the one in the middle

if the number of individuals is odd or the average of the two middle votes when there
is an even number of voters. Thus, the median consists of m coordinate by coordinate
median-values:

Medj(q) =


q
[n+1

2
]

j , if n is odd

1
2 · (q

[n
2
]

j + q
[n
2
+1]

j ), if n is even.

(2)

Example 2.2. E = 100; q1 = (70, 30, 0); q2 = (10, 40, 50); q3 = (20, 60, 20)
→Med(q) = (20, 40, 20)

A restriction to the median rule is the possibility that the coordinate by coordinate
median-values do not satisfy the total budget in multi-dimensional allocation problems,
i.e.

∑m
j=1Medj(q) 6= E for m > 2. In the previous example 2.2 the total budget is

undercut and therefore an adaptation of the median outcome is necessary.

The Normalized Median Rule

The normalized median rule, suggested by Nehring et al. (2008), chooses the element
on the simplex, at which the values of the coordinates are in the same proportion to each
other compared to the original median-values. Graphically, the normalized median is the
allocation that lies on the simplex as well as on the conduit through the zero point and
the median, as shown in figure 3. Computationally, the normalized median per coordi-
nate is determined by a multiplication of the corresponding median-value with the total
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budget divided by the sum of the median-values for all coordinates before adaptation:

NMedj(q) :=

 Medj(q) · E∑
j∈J

Medj(q)
, if Medj(q) > 0 for at least one j

E
m , else.

(3)

Example 2.3. E = 100; Med(q) = (20, 40, 20)
→ NMed(q) = (20, 40, 20) · 10080 = (25, 50, 25)

Figure 3: The normalized median

2.5 Efficiency of Social Outcomes

As already mentioned, we evaluate the voting rules by their efficiency. Therefore, we
need a more detailed definition and classification of how efficient the social outcome is.

Definition 2.1. A social outcome x(q) is called efficient, if xj(q) is not smaller than
the lowest ranked peak and not larger than the highest ranked peak for each project j, i.e.

p
[1]
j ≤ xj(q) ≤ p

[n]
j for all j.

When considering a budget allocation problem on two public projects, a social out-
come is efficient, if it lies within the convex hull of all peaks. In multi-dimensional budget
allocation problems, the convex hull comprises indeed also only efficient outcomes, how-
ever, the set of efficient outcomes is even larger. Figure 4 displays the difference between
the convex hull and the set of efficient outcomes for m = 3. Moreover, when voting on a
budget allocation on more than two public projects, the set of efficient outcomes as well
as the convex hull of the peaks might include outcomes that are Pareto-inefficient.
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Definition 2.2. A social outcome x(q) is called Pareto-efficient, if there exists no
other social outcome x′(q), such that the distance between x′(q) and pi is shorter compared
to the distance between x(q) and pi for at least one individual i and not greater for all
other individuals: d(pi, x(q)) < d(pi, x′(q)) for at least one i and d(pi, x(q)) ≤ d(pi, x′(q))
for all other i.

Therefore, an outcome satisfies Pareto-efficiency, if it is equal to the median of all
peaks for at least two coordinates. Deviating from this outcome always puts at least
one voter in a worse position. A Pareto-efficient outcome must not necessarily be the
‘best’ social outcome for the group in total. There exists a smaller set of outcomes,
that minimizes the total distance sum over all individuals and thus represents a welfare
optimum, as can be seen in figure 4.

Figure 4: Efficiency

2.6 Individual Strategies

With the knowledge on the voting rules, one should think of possible strategies during the
voting process. A simple and straightforward strategy is truth-telling, i.e. stating a vote
qi that corresponds to the peak pi. Nevertheless, for some individuals there are incentives
to deviate from the truth if the social outcome might be influenced to their benefit. Given
the votes of the other subjects, individual i can influence the social outcome within his
option set. Beside, the option set depends on the ‘weight’ of individual i and therefore
on the number of total votes n:

OSi(q−i) :=

x ∈ B | ∃ qi ∈ B : x =
1

n
·

 ∑
k∈I\{i}

qk + qi

 (4)

The option set can be displayed as a triangular in the simplex, see figure 5.
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Figure 5: The option set of individual i

Definition 2.3. A vote qi of one individual i that differs from the peak pi and decreases
the distance between pi and the social outcome x(q) is called manipulation.

For the analysis of best strategies, we suppose perfect information on the true peaks
of the other voters. Best strategies may not be unique but might comprise ranges of
allocations. Due to the construction of the voters’ preferences, given the votes of the
others, there might be several best responses of an individual that result in the same
distance and therefore yield equal utilities. Moreover, we assume that there are no
manipulation costs, which among others implies that lying itself does not affect the
payoff (whereas a shift in the social outcome due to a changed vote might). However,
one might argue that lying decreases the payoff not directly but in a more subtle and
moral way that is unobservable or unquantifiable. We disregard these kind of costs.

2.6.1 Nash Equilibria of the Mean Rule

Under the mean rule, manipulation is possible for most peak distributions.7 For the
following analysis, we assume m = 3. Suppose there exists a total budget of E = 100 and
i = 2 individuals with the peaks p1 = (35, 60, 5) and p2 = (22, 15, 63). Given both state
their true preferred allocation, the social outcome x(q) is Mean(q) = (28.5, 37.5, 34),
resulting in distances from the peaks of each individual of d(pi, x(q)) = 58. If the first
individual reallocates 5 units from the third to the second project, the mean outcome
changes to Mean(q) = (28.5, 40, 31.5), decreasing the distance from the first individual’s
peak to 53 (and increasing the distance from the second one’s to 63). Analogically, the
second individual has an incentive to deviate from truth-telling and is able to manipulate
by shifting units from the second to the third project. We can not only state that
manipulation is possible, but also in which direction and to what extent.

7Exceptions include equal peaks of all voters and peaks that allocate zero budget to at least one project.
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Given the votes of the other participants, individual i might face two different scenar-
ios. In the first one, pi ∈ OSi(q−i) , such that i is able to manipulate the social outcome
in a way that it corresponds to his peak. Therefore, the triangular-shaped option set is
dilated by the factor n on the size of the simplex. Given the mean outcome of the other
votes, individual i’s best response is to vote for an allocation, such that Mean(q) = pi.
In this situation, qi is strictly positive for every project as long as pi lies on the inside
of the option set (see figure 6a), zero for one project, if pi lies on an edge of the option
set (see figure 6b) and zero for two projects, if pi lies on a vertex of the option set (see
figure 6c). In summary, if pi ∈ OSi(q−i), then pi = Mean(q) can be achieved by voting
either qij > 0 for all j, qij = 0 for one j or qij = 0 for two j, depending on the location of
the peak in the option set.

In the second scenario, pi /∈ OSi(q−i), as displayed in figure 6d. Individual i might
now only manipulate to the extent that he minimizes the distance between the social
outcome and his peak. In order to achieve the lowest possible distance, he submits a
vote qi, which results in a mean outcome that is tangent to his closest hexagon-shaped
indifference curve. The best response is unique, if the closest tangent is a vertex of the
option set. In this case, qij = 0 for two j. If the intersection between indifference curve
and option set is a line segment, the optimal choice of individual i is not unique, since he
might vote for a set of allocations that result in social outcomes with the same distance
to his peak. Here, a best response is voting zero for at least one project.

Observation 1. Given a budget allocation problem on m = 3 public projects. In every
Nash equilibrium of the mean rule, if all individuals have different peaks, at most one
individual votes for a strictly positive amount of every public project, i.e. for at most
one voter i, qij > 0 for all j.

Consider a situation in which two individuals vote for a strictly positive amount of
every public project. Since we assume different peaks, at most one individual’s peak is
equal to the social outcome. If the social outcome differs from the peak, the mean-value
deviates from the preferred allocation in at least two projects. Moreover, in at least one
project, the mean-value is larger than the own preferred allocation, since the total budget
has to be allocated by the peak as well as by the social outcome (i.e. pi,Mean(q) ∈ B).
The best strategy in this situation is to shift the allocation in order to vote for a smaller
amount for these projects. The other individual, that also voted for a strictly positive
amount of every project, might manipulate the outcome and will behave accordingly if
his peak differs from the social outcome. As long as the outcome is not equal to one of
the peaks, both individuals have an incentive to allocate a smaller amount to the project
for that pij < Meanj(q) holds, until the smallest possible vote for this project is reached,
namely zero. Therefore, in a Nash equilibrium, there is maximal one individual, who
does not vote zero for at least one project: the individual, that can achieve a social
outcome equal to his preferred allocation. Thus, given different peaks of all individuals,
at most one voter announces his true peak pi in a Nash equilibrium and at least (n− 1)
individuals vote zero for at least one project.

Block (2014) as well as Bauer and Puppe (2016) show that under the mean rule, there
exists a unique Nash equilibrium, which is efficient. Nevertheless, this statement is only
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(a) Peak within option set (b) Peak on edge of option set

(c) Peak on vertex of option set (d) Peak outside of option set

Figure 6: Option sets

true for one-dimensional allocation problems. With more than two public projects, the
uniqueness and efficiency of the Nash equilibrium might dissolve, as there are multiple
Nash outcomes including some that increase the distance between the social outcome
and all peaks.

Observation 2. Given a budget allocation problem on m = 3 public projects. Under the
mean rule there might exist several Nash equilibria, including Nash outcomes that lower
the utilities of all voters.

Assume that under the mean rule and m = 3 public projects there exists only one
Nash equilibrium that is always unique and efficient. The following example provides a
contradiction.

Example 2.4. Consider a budget of E = 100 that has to be allocated on m = 3 pub-
lic projects using the mean rule. The voters’ peaks are as follows: p1 = (30, 10, 60),
p2 = (10, 30, 60) and p3 = (20, 20, 60). A Nash equilibrium consists of the votes q1 =
(10, 0, 90), q2 = (0, 10, 90) and q3 = (50, 50, 0), with a social outcome equal to the pre-
ferred allocation of the third voter, Mean(q) = (20, 20, 60). In this situation, no voter
can improve himself by deviating from his vote and the sum over all individual distances
between social outcome and peak is 40, as d(p, x(q) = (20; 20; 0). However, there ex-
ists another Nash equilibrium that is inefficient: q1 = (90, 0, 10), q2 = (0, 90, 10) and
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q3 = (0, 0, 100), leading to a social outcome of Mean(q) = (30, 30, 40). The absolute
deviation from the peaks is higher for every voter, d = (p, x(q) = (40; 40; 40)), with a
total sum of 120.

In games with multiple Nash equilibria, Schelling (1960) introduces the concept of
focal points. Focal points are solutions with outstanding character, such that players
expect of others to play the prominent strategy. Following Myerson and Weber (1993),
we call a Nash equilibrium focal, if all players act according to these expectations. In
terms of our concrete budget allocation problem, we say that an equilibrium strategy is
focal if it is to vote for the highest possible amount in exactly the project that comes
with the highest peak value.

2.6.2 Nash Equilibria of the Median Rule

In order to determine individual strategies and Nash equilibria of the median rule, a
definition of pivotality is necessary.

Definition 2.4. Given a profile q ∈ Bn, voter i ∈ I is pivotal with respect to project
j ∈ J at q if for all ε > 0 there exists q̂i ∈ Uε(q

i) such that xj(q) 6= xj(q̂
i, q−i), with

Uε(q
i) := {x ∈ B : d(x; qi) < ε}.

Example 2.5. E = 100; m = 3; p1 = (20, 50, 30); p2 = (20, 20, 60); p3 = (10, 20, 70).
Given the median rule and q1 = p1, q3 = p3, voter two is pivotal with respect to the third
project, such that p23± ε will change the social outcome. Voter two might as well change
the social outcome of the first and the second project by p21 − ε and p22 + ε. Analogously,
voter one is also pivotal with respect to the first and voter three with respect to the second
project.

Observation 3. Given a budget allocation problem on m = 3 public projects. Truth-
telling is a Nash equilibrium of the normalized median rule if there exists one voter who
is pivotal with respect to all projects j ∈ J .

Consider a situation in which one voter is pivotal with respect to every public project.
Given truth-telling of every individual, the median outcome is equal to the peak of this
pivotal voter. Since the peaks satisfy the budget, in this case the same is true for the
median outcome and normalization is not necessary. The social outcome is equal to the
peak of the pivotal voter, leading to the lowest possible distance, such that revealing
the true preferred allocation is the best strategy. For the non-pivotal voters or voters,
that are pivotal with respect to m− 1 projects, beneficial manipulation is not possible.
The only way to change the social outcome is to vote for an allocation that increases
the distance from the own peak, such that these individuals do not have an incentive to
deviate from truth-telling. Given the impossibility for every voter to improve his utility
by voting for a different allocation than his peak, truth-telling is a Nash equilibrium if
one voter is pivotal with respect to all projects.

Observation 4. Given a budget allocation problem on m = 3 public projects. If there
exists no voter who is pivotal with respect to all projects, manipulation might be possible
under the normalized median rule.
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Assume that beneficial manipulation is not possible. The following example provides
a contradiction.

Example 2.6. E = 100; m = 3; p1 = (100, 0, 0); p2 = (0, 100, 0); p3 = (1, 1, 98).
Individuals one and two are pivotal with respect to the third project, whereas individual
three is pivotal with respect to the first and second project. Truth-telling of all individuals
leads to a social outcome of Med(q) = (1, 1, 0), or NMed(q) = (50, 50, 0) after normal-
ization. The distances of the three individuals are d(p, x(q)) = (100; 100; 196). However,
truth-telling is not a Nash equilibrium. Given truth-telling of the others, individual three
is able to manipulate the social outcome. Since he is pivotal with respect to the first and
second project, voting for q3 = (0, 0, 100), leads to a social outcome of Med(q) = (0, 0, 0),
or NMed(q) = (33.3̄, 33.3̄, 33.3̄). For the other individuals, beneficial manipulation is not
possible, resulting in a Nash equilibrium with distances d(p, x(q)) = (133.3̄; 133.3̄; 129.3̄).

3 Experiment on the Mean and Median Rule

In a laboratory experiment, we analyze the voting behavior in multi-dimensional and
repeated budget allocation problems and oppose the voting strategies under the mean
and the median rule.

3.1 Hypotheses

The experiment seeks to test the following hypotheses, which we assemble into three
groups:

The Mean Rule

H1.1 Under the mean rule, the Nash equilibrium will be played.

H1.2 Nash-play increases over time under the mean rule.

H1.3 Full information reduces truth-telling under the mean rule.

The Median Rule

H2.1 Under the normalized median rule, truth-telling prevails.

H2.2 Under the normalized median rule, best-response-to-truth is played.

Mean versus Median Rule

H3.1 The deviation of votes from the true peak is higher under the mean than under
the normalized median rule.

H3.2 The normalized median rule leads to more truth-telling than the mean rule.

12



3.2 Experimental Setup, Laboratory Procedure and Design

The experiment took place at the KD2Lab of the Karlsruhe Institute of Technology
(KIT) in October 2015. In order to test the hypotheses, eight sessions are conducted
that last about 1.25 hours each. The recruitment of the participants is made by ORSEE
(see Greiner (2004)). As our experiment is arranged in groups of five, three cohorts, i.e.
15 subjects (120 in total) participate. The average age of the participants is 24.1, the
share of women 24.2%. 52.5% study Business Engineering and more than 70% have an
economic part in their field of study. These shares correspond to the ORSEE subject
pool of the KIT.

Directly after arrival, the participants are allocated randomly to the cabins. The
workplaces are equipped with computer, paper, pencil and calculator. The software used
for the experiment is zTree (see Fischbacher (2007)). As soon as all 15 participants sit at
their workplaces, the instruction that is given to them at registration is read out loud by
audiotape to avoid variation in the readings across sessions. Beside some mathematical
information on the calculation of the mean or normalized median rule, it includes the
session procedure. Subsequently, participants answer a short quiz to make sure the
task is understood properly. The instruction can be reread on the handout during the
entire study. After the experiment, participants are asked to fill out a questionnaire on
demographic data and the strategy underlying their decisions. The average payoff of the
participants amounts to 13.98 Euros, including a show-up fee of 5.00 Euros.

The subjects are told that they attend an election together with four other anonymous
participants at which the funding of three public projects is determined. Therefore,
the participants vote on the allocation of 100 monetary units on the three projects.
Since the experiment is designed as between-subjects, the election is either done by
mean (the first four sessions) or normalized median rule (the second four sessions).
Every participant receives an individual peak that represents the preferred funding of
the projects. Thereby, we make sure that the ‘true’ peaks are known to us. We vary
the stated information from no info, where the participants obtain only their own peak,
to full info, where the peaks of the other four participants are displayed. These peak
distributions, i.e. five different peaks that belong to the voters of one group, remain the
same for several rounds: we repeat the peak distributions of the no info five and the full
info treatment three periods. The peak distributions, degree of information and number
of periods are identical for both voting rules.

The underlying individual payoff function in the unit ECU8 is the following:

f i(pi, x(q)) = 10 +
760

4 +
∑3

j=1 |pij − xj(q)|
, (5)

where pij denotes the peak of individual i for one of the three projects j and xj(q)j
the social choice, calculated either by the mean or normalized median of all five votes.
One vote represents the share of 100 monetary units that should be allocated to three
projects and therefore consists of three natural numbers that have to add up to 100.

8Experimental Currency Unit; 100 ECU corresponds to 1.00 Euro.
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The minimum payoff per period is 13.73 ECU , because the highest possible distance is
200, e.g. between a social choice x(q) = (100, 0, 0) and a peak pi = (0, 100, 0). Once
the social outcome corresponds to the given peak, the maximal payoff of 200 ECU is
reached. Figure 7 shows the payoff function, which is also displayed during the exper-
iment. ‘Distance’ adds up the absolute distance between the own peak and the social
choice in every project, i.e.

∑3
j=1 |pij − xj(q)j |.

20 40 60 80 100 120 140 160 180 200

20
40
60
80

100
120
140
160
180
200

Distance

ECU

Figure 7: The payoff function

The election is done anonymously and in several rounds. In a first step, the partic-
ipants get to know their peaks and under full information the peaks of the four other
participants of their group. As soon as all participants submit their votes, the subjects
get to know the social outcome and their payoff. In total, four peak distributions are used
of which three different ones are played in every session. The detailed peak distributions
by session are displayed in table 1, where the voting rules of sessions one to four is the
mean and of sessions five to eight the normalized median rule. The peak distributions
remain the same for five periods in the no info treatment and for three periods in the
full info treatment. Accordingly, each participant has to make 24 decisions, consisting
of three natural numbers that add up to 100.
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Table 1: Peak distributions
Peak Peaks by Participant Number of

Session Information Distribution p1 p2 p3 p4 p5 Periods

1;5

No Info

A

10 5 70 20 10

5

65 10 10 20 8
25 85 20 60 82

B

75 70 20 12 40
10 15 15 78 30
15 15 65 10 30

C

20 15 20 30 10
10 30 20 15 20
70 55 60 55 70

Full Info

A

20 10 10 70 5

3

20 8 65 10 10
60 82 25 20 85

B

12 40 70 75 20
78 30 15 10 15
10 30 15 15 65

C

20 20 30 10 15
20 10 15 20 30
60 70 55 70 55

2;6

No Info

A

5 10 20 10 70

5

10 8 20 65 10
85 82 60 25 20

B

40 20 12 75 70
30 15 78 10 15
30 65 10 15 15

D

50 15 25 25 10
30 60 70 50 20
20 25 5 25 70

Full Info

A

10 20 5 70 10

3

8 20 10 10 65
82 60 85 20 25

B

12 75 20 70 40
78 10 15 15 30
10 15 65 15 30

D

25 15 50 10 25
70 60 30 20 50
5 25 20 70 25
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3;7

No Info

D

15 25 25 50 10

5

60 70 50 30 20
25 5 25 20 70

B

75 70 20 12 40
10 15 15 78 30
15 15 65 10 30

C

20 30 20 15 10
20 15 10 30 20
60 55 70 55 70

Full Info

D

25 15 10 25 50

3

70 60 20 50 30
5 25 70 25 20

B

70 40 12 75 20
15 30 78 10 15
15 30 10 15 65

C

10 20 30 20 15
20 10 15 20 30
70 70 55 60 55

4;8

No Info

A

5 70 10 20 10

5

10 10 65 20 8
85 20 25 60 82

D

15 10 25 50 25
60 20 50 30 70
25 70 25 20 5

C

20 30 20 10 15
20 15 10 20 30
60 55 70 70 55

Full Info

A

10 20 70 10 5

3

8 20 10 65 10
82 60 20 25 85

D

50 25 10 25 15
30 50 20 70 60
20 25 70 5 25

C

10 20 30 15 20
20 10 15 30 20
70 70 55 55 60

3.3 Results

3.3.1 The Mean Rule

Truth-telling
When using the mean rule, we find that participants rarely reveal their true peak. Only
5.7% of all votes are equal to the peaks and truth-telling is low over all four peak distribu-
tions.9 Moreover, truth-telling decreases over time, especially without any information

9Note that by truth-telling we only consider peaks of inidividuals for which choosing the true allocation
is no Nash-play.
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on the peaks of the other participants. While 21.1% of the votes are equal to the indi-
vidual peaks in the first period, this number declines to 2.3% in the fifth period. We are
also able to reject the hypothesis that the share of truth-telling without any information
is the same compared to full information, in support of the alternative hypothesis that
the mean share of truth-telling is significantly higher in the no info treatment, which
supports hypothesis H1.3.

In order to get a better insight of the influencing factors on truth-telling, we run a
regression of the ‘Peak-Vote-Distance’, i.e. the absolute deviation of the vote from the
true peak, on a variety of independent variables. The detailed results can be found in
table 2. As stated before, we find a positive and significant correlation with the variable
‘period’, indicating a higher degree of deviation from truth-telling over time. Since the
coefficient of ‘round’, which labels the total decisions over all periods from 1 to 24, is
positive and significant, there is not only a higher degree of lying over periods but also
over the entire decision-making process. As anticipated, truth-telling decreases slightly
with an increasing distance between the true peak and the theoretical Nash-play, since
a greater ‘Peak-Nash-Distance’ indicates that participants have to deviate more from
their true peak to play their Nash-strategy.

Contrary to our expectation, the deviation from the peak is positively affected by the
‘Nash-Vote-Distance’, i.e. the distance between theoretical Nash-play and actual vote.
This implies that the higher the deviation of the vote from Nash-play, the more partic-
ipants tend to lie. In other words, the degree of lying is higher if voters don’t behave
according to the predicted Nash-strategy. Given Nash-play of the other four voters, this
strategy results in a lower payoff. After the experiment, we asked the participants about
their approach of voting. Some argued that they tried to deceive the others by votes
that lead to a lower payoff in order to receive a higher payoff in the next period. This
behavior might explain the results that seem non-strategic at first appearance. Partic-
ipants also tend to significantly lower truth-telling with a higher distance between the
peak and the result of the previous round (‘PPR Dist’). Thereby, we are able to observe
a learning effect over periods of increasing manipulation. Although in absolute numbers
the difference of truth-telling across the peak distributions is low, we find a significant
and high difference in the extent of truth-telling dependent on the theoretical Nash-play.
The dummy variable ‘edgetruth d’ takes the value 1 if the peak distribution contains
an individual Nash-play of either truth-telling (peak distribution D) or voting zero for
exactly one project (peak distribution B) and the value 0 if Nash-play of all subjects is
to vote zero for two projects. We find that the deviation from the true peak is 26.2 times
lower (24.4 times when including answers on the questionnaire to the regression) if the
theoretical Nash-play is truth-telling or voting zero for exactly one project, compared to
voting zero for two projects. We conclude that truth-telling is higher if the theoretical
Nash-play is not focal, like a vote that allocates the total budget in the project with the
highest share of the true peak.
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Table 2: Regression results mean: peak-vote-distance
(1) (2)

VARIABLES PeakVoteDist PeakVoteDist

per 3.091*** 3.114***
(0.849) (0.842)

subj -0.0633 -0.131
(0.193) (0.207)

round 0.697** 0.617*
(0.331) (0.333)

PeakNashDist 0.171*** 0.161***
(0.0322) (0.0321)

NashVoteDist 0.181*** 0.190***
(0.0154) (0.0155)

PPR Dist 0.0279** 0.0304***
(0.0115) (0.0114)

edgetruth d -9.873*** -9.385***
(3.024) (3.006)

peak d -26.18*** -24.96***
(2.957) (2.992)

info d 5.862 7.049
(4.668) (4.678)

male d 3.309
(2.178)

understandrule d 3.291
(2.104)

econstudy d 7.996***
(1.905)

Constant 17.69*** 7.884*
(3.577) (4.053)

Observations 1,440 1,440
R-squared 0.183 0.200

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Nash-play
Hypotheses H1.1 and H1.2 state that we expect Nash-play under the mean rule and that
Nash-play increases over time. Table 3 represents the theoretical Nash equilibria of the
peak distributions we used in the experiment.

We observe indeed a high ratio of votes (35.8%) that correspond to the theoretical
Nash equilibrium. When adding a tendency to Nash-play, which comprises votes with
a sum of absolute distance to Nash-play of maximal ten (

∑
j∈J d(Nash-play i

j , q
i
j) ≤ 10),

48.5% of all votes are Nash-play and Nash-tendency. Further, we perceive a learning
effect over periods, both with and without information on the other peaks, indicating a
convergence to the group Nash equilibrium. Nevertheless, the group Nash equilibrium,
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Table 3: Nash equilibria

Individual
A 1 2 3 4 5

20 10 10 70 5
pi 20 65 8 10 10

60 25 82 20 85

0 0 0 100 0
qiMean 0 100 0 0 0

100 0 100 0 100

≥10 =10 =10 ≥10 ≤10
qiNMed ≥10 ≥10 ≤10 =10 =10

=30 ≤30 ≥30 ≤30 ≥30

B

40 75 70 20 12
pi 30 10 15 15 78

30 15 15 65 10

0 100 100 0 0
qiMean 50 0 0 0 100

50 0 0 100 0

=20 ≥20 ≥20 ≤20 ≤20
qiNMed ≥15 ≤15 = 15 =15 ≥15

≥15 =15 =15 ≥15 ≤15

C

10 20 20 30 15
pi 20 10 20 15 30

70 70 60 55 55

0 0 0 100 0
qiMean 0 0 0 0 100

100 100 100 0 0

≤20 =20 =20 ≥20 ≤20
qiNMed =20 ≤20 =20 ≤20 ≥20

≥60 ≥60 =60 ≤60 ≤60

D

10 50 25 15 25
pi 20 30 50 60 70

70 20 25 25 5

0 100 25 0 0
qiMean 0 0 50 100 100

100 0 25 0 0

≤25 ≥25 =25 ≤25 =25
qiNMed ≤50 ≤50 =50 ≥50 ≥50

≥25 ≤25 =25 =25 ≤25
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i.e. the situation in which each of the five group members chooses his individual Nash-
play, arises in only 2.8% of the social outcomes. Compared to the no info treatment,
Nash-play is higher under full information in every period when using peak distributions
B, C and D. This outcome is in line with the fact that we observe less truth-telling with
full disclosure of the other peaks. Figures 8 and 9 summarize truth-telling, Nash-play
and tendency to Nash-play shares of total possible votes over periods and for each peak
distribution under no and full information.

Figure 8: Results of the mean rule under no information (in percentage of total decisions)

Figure 9: Results of the mean rule under full information (in percentage of total deci-
sions)

A further interesting result can be found with peak distribution C. We created a
situation at which all peaks allocate the highest amount on the third project. Only a
small proportion of the overall votes are Nash-play (10.8% in comparison to the other
three peak distributions with an average of 44.0%) and even under full information, the
share is with 16.3% relatively low. Another conspicuousness of peak distribution C is the
result that Nash-play decreases by periods under no information. We run a regression
of the ‘Nash-Vote-Distance’ to get a better insight on the deviation from votes to the
Nash-play. Table 4 reveals the regression results.
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Table 4: Regression results mean: Nash-vote-distance
(1) (2)

VARIABLES NashVoteDist NashVoteDist

per -0.854 -0.845
(1.397) (1.376)

subj -0.173 -0.131
(0.316) (0.337)

round -2.032*** -2.048***
(0.541) (0.539)

PeakNashDist 0.376*** 0.393***
(0.0524) (0.0516)

PeakVoteDist 0.485*** 0.503***
(0.0414) (0.0409)

PPR Dist -0.0644*** -0.0664***
(0.0188) (0.0186)

edgetruth d 17.04*** 16.65***
(4.952) (4.886)

peak d 34.31*** 33.86***
(4.891) (4.901)

info d 2.933 2.944
(7.651) (7.613)

male d -17.82***
(3.513)

understandrule d -7.529**
(3.418)

econstudy d -5.202*
(3.114)

Constant 23.78*** 44.61***
(5.876) (6.492)

Observations 1,440 1,440
R-squared 0.217 0.245

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

The coefficients of period (‘per’) and ‘round’ have the anticipated negative sign but
only the one of the latter variable is statistically significant. This supports the expecta-
tion of a learning effect in playing the Nash-strategy over the session. Another indicator
for a change in voting behavior is the negative and significant coefficient of the distance
between the peak and the result of the previous period (‘PPR Dist’), which reflects the
higher gain in utility by Nash-play if the peak is distant from the social outcome of the
last round. The positive and significant correlation of the deviation of the vote to the
theoretical Nash-play and the peak-Nash-distance (‘PeakNashDist’) highlights the grow-
ing difficulties of finding the corresponding Nash equilibrium the more remote Nash-play
is from the peak. The distance between Nash-play and vote increases with a higher peak-
vote-distance (‘PeakVoteDist’), indicating that manipulation occurs for subjects with a
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Nash-play that is more ‘difficult’ to predict but not towards the Nash equilibrium. We
also find a higher deviation from Nash-play if the theoretical Nash-strategy is to vote
zero for one project (edge) or to vote for the actual peak (truth) compared to voting zero
for two projects, denoted by the positive coefficient of the dummy-variable ‘edgetruth d’.
Votes deviate also more from Nash-play if the peak distribution in C, compared to the
other peak distributions, see the coefficient of the dummy-variable ‘peak d’. Surprisingly,
we are not able to find a significant effect of the degree of information on the distance
to Nash-play. Only when including dummy variables with demographic data from the
questionnaire, the coefficient of the dummy variable ‘info d’ is negative. Nevertheless,
we are able to reject the hypothesis that the mean of votes that are Nash-play is similar
for rounds without any and under full information. Instead, we find that the mean share
of Nash-play is higher under full information compared to no information.

Best Response to the Previous Period Result
When analyzing the voting behavior, we also find some further interesting strategies.
Besides truth-telling or Nash-play, subjects might vote for an allocation that is a best
response to the social outcome of the previous period result (BRP). Therefore, we first
calculate the theoretical best response (tBRP) in period t, where t takes the values 2
to 5 in the no info and 2 and 3 in the full info treatment. Given the votes of the other
subjects in the previous period, q−it−1, under the assumption that the mean of the other
subjects remains the same in the current period t, the theoretical best response is to
vote for an allocation such that the social outcome is equal to the own peak:

pi = Meant−1(q)− 1

5
· qit−1 +

1

5
· tBRP i

t . (6)

Solving for the theoretical best response to the previous period result gives the following
optimization problem:

tBRP i
t = 5 · (pi −Meant−1(q)) + qit−1. (7)

A nice feature of this computation is the fact that the sum of tBRP i
t over all j is equal

to the total budget E = 100. But there might exist allocations that include project-wise
votes we prohibited in the experiment, like non-negative votes or ones that exceed the
total budget. Hence, by using the tBRP, we calculate the BRP, again, separately for all
j projects, but only with feasible allocations ∈ B by ‘cutting off’ the unfeasible ones:

BRP i
j,t :=


100, if tBRP i

j,t > 100

0, if tBRP i
j,t < 0

tBRP i
j,t else.

(8)

This calculation excludes prohibited votes, i.e. the allocation for each project is a natural
number between zero and 100, like we demanded in the experiment. However, there
might be allocations at which the sum of BRP i

t over all projects exceeds the total
budget. Note that by construction of BRP i

j,t, it is not possible that the sum of BRP i
t
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over all projects undercuts the total budget. Since the sum of tBRP i
t over all j is equal

to the total budget E, the positive values have to add up to at least E. Thus, in a further
step, we create ranges of best responses to the previous period result that reach from
a lower (lBRP) to an upper boundary of the BRP (uBRP). Within these ranges, the
social outcomes result in equal payoffs due to the hexagon shaped indifference curves.
The ranges for each project are calculated by the following equations:

lBRP i
j,t =

{
100−BRP i

−j,t, if BRP i
j,t 6= 0

BRP i
j,t else

(9)

uBRP i
j,t = BRPj,t (10)

We find that with 46.9% a relatively high share of votes are indeed a best response to
the result of the previous period. Over all peaks and degrees of information, the share of
BRP is higher in the last period compared to the first. This result complies with the ob-
servation of the increase in Nash-play over time. Once a Nash equilibrium is reached, the
BRP in the next period is always equal to the Nash-play, indicating the stability of the
Nash equilibrium. When distinguishing between the different info treatments and peak
distributions, the results are similar to Nash-play: The share of votes that are a BRP is
higher under full information and peak distribution C has a considerably lower share of
BRP votes compared to the other distributions. Nevertheless, within peak distribution
C the share of votes that are a BRP amount to 27.8% which constitutes a higher share
than Nash-play with 10.8%. Therefore, we conclude that even if the theoretical Nash
equilibrium is elusive, a considerable share of votes is strategical.

Best Response to a Uniform Distribution of the Other Votes
One might argue that without any information, a reasonable belief on the other subjects’
peaks is a uniform distribution on the feasible allocations. This results in an expected
mean of the other peaks that allocates a third of the budget on every project. A strat-
egy might now be to play a best response to uniformly distributed votes of the other
subjects (BRUD). Table 5 shows all four peaks at which Nash-play and BRUD differ.
As the conditions of Nash-play and BRUD are identical for the other peaks, the results
are similar. The total share of decision that are a BRUD adds up to 33.5%.10

In all cases where BRUD is unequal to Nash-play, five votes are a BRUD (three at
peak distribution C and two at D), which represents 8.3% of possible votes. For most
peaks Nash-play and BRUD are identical and therefore subjects might play their Nash-
strategy automatically because they intend to play a BRUD. Nevertheless, the very low
shares of BRUD in cases where it is not identical to Nash-play, show that subjects might
indeed realize their Nash-play and not vote according to a BRUD.

3.3.2 The Median Rule

Truth-telling
Compared to the mean rule, the normalized median is more difficult to understand

10Due to the restriction on natural numbers of the votes, we considered for peak distribution B all
feasible combinations of votes: qi = (66, 17, 17), qi = (67, 16, 17) and qi = (67, 17, 16).
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Table 5: Distinctions between Nash-play and BRUD under the mean rule

Peak- Nash- #Nash-
distribution pi play BRUD play #BRUD

40 0 66.6
B 30 50 16.6 15 0

30 50 16.6

15 0 0
C 30 100 0 6 1

55 0 100

30 100 0
C 15 0 0 5 1

55 0 100

25 25 0
D 50 50 100 11 3

25 25 0

and therefore the voting behavior is more subtle and not as straightforward to predict.
Hence, as stated in Hypothesis H2.1, we anticipate truth-telling since voting for the
true preferred allocation is a weakly dominant strategy under the median rule without
adaptation. Nevertheless, only 15.8% of all votes are equal to the true peaks.11 We also
find a tendency of less truth-telling with increasing periods over all peak distributions
and degrees of information, i.e. the share of truth-telling is lower in period five than in
period one. Interestingly, there are rises in truth-telling in the last periods in a lot of
peak distributions. This strategy might reveal failure in manipulation and therefore go-
ing back to the original voting behavior in the first round. Some participants state in the
questionnaire to vote for an extreme allocation in order to irritate the other voters and
benefit in the next period. We are able to reject the hypothesis of equal mean shares of
truth-telling under full and no information and find a higher share of truth-telling with
a higher level of information over all periods and rounds. Since truth-telling is only a
weakly dominant strategy in the median rule without adaptation and within-rank de-
viation of the non-pivotal voters has no effect on the social outcome, the low shares of
true votes come not as a surprise.

Best Response to Truth
In a further step, we expand the strategy of truth-telling to a best response to the
true peaks of the other participants (BRT). A BRT of an individual, who is pivotal in
every project, is to vote for his true preferred allocation. By contrast, the BRT of semi-
pivotal or non-pivotal voters is just to stay within their rank, i.e. voting for an equal or
higher (lower) value than the pivotal voter if the own true value is higher (lower) in this
project. As we assume truth-telling of the other individuals, the BRT might differ from

11Again, we only conisder votes where truth-telling is no Nash-play.
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the Nash-strategies, where manipulation of the (semi-)pivotal voter might be possible.
The detailed BRT of all voters is shown in table 6. An interesting peculiarity is given
with respect to peak distributions A and B. The voter that is pivotal in only one project
is able to manipulate the social outcome given truth-telling of the other voters. The
median of peak distribution A under BRT is Med(q) = (10, 10, 30), resulting in a nor-
malized median of NMed(q) = (20, 20, 60), which is equal to the peak of individual 1. A
similar situation holds for peak distribution B, with Med(q) = (20, 15, 15) under BRT,
i.e. a normalized median equal to p1, NMed(q) = (40, 30, 30).

A consideration of the experimental results confirms hypothesis H2.2: a relatively
high share of votes (59.7%) are a best response to true revelation of the other peaks.
This value fluctuates slightly but remains high over all periods and peak distributions.
The shares of BRT are high under both info treatments, we observe 56.0% under no
info and 65.9% under full information, and we are able to reject the hypothesis that
there is no difference between the treatments. The shares of BRT under full information
are significantly higher compared to no information, which stands to reason as the indi-
viduals in the experiment can only play a BRT if the entire peak distribution is disclosed.

Nash-play
Table 3 provides the peak distributions we used in the experiment with the correspond-
ing Nash equilibria of the normalized median rule. A comparison to table 6 reveals the
differences to best response to truth-telling of the other subjects. While the BRT of
semi-pivotal voters is to stay within their rank, Nash-play corresponds to truth-telling.
Therefore, the possibility of votes that are a theoretical Nash-play is more limited com-
pared to BRT. Since pivotal voters are able to manipulate the social outcome, Nash-play
of the other voters takes manipulation into consideration and adjusts the margins of the
ranks, as in peak distributions A and B.

The proportion of votes that are Nash-play amounts to a total of 40.6% and remains
constant at a level between 34 and 36% over periods under no information. Under full
information, Nash-play decreases unexpectedly from 55.0% in period one to 46.1% in the
third period. An analysis of Nash-play under different information treatments leads to
a rejection of the hypothesis of equal mean shares in favor of the alternative hypothesis
that the mean percentage of Nash-play under full information exceeds the one under
no information. We also examine not only Nash-play but Nash equilibrium outcomes
and find that 13.5% of all social choices are Nash outcomes. The highest shares of Nash
outcomes are achieved with peak distribution C and D, where the social choices are more
often equal to the Nash equilibrium outcomes under full information.

When considering only subjects that have a possibility of manipulation under the
normalized median rule, i.e. one subject in peak distribution A and B, we find that
they never play their corresponding Nash strategy. We conclude that manipulation is
not exploited if it is complex but the high values of total Nash-play and BRT show that
subjects vote strategically.

Figures 10 and 11 provide an overview of the votes as percentage of the total possible
decisions under the median rule that are a best response to truth-telling of the other
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Table 6: BRT median

Individual
A 1 2 3 4 5

20 10 10 70 5
pi 20 65 8 10 10

60 25 82 20 85

≥ 10 ≤ 10 ≤ 10 ≥ 10 ≤ 10
BRT i ≥ 10 ≥ 10 ≤ 10 ≤ 10 ≤ 10

= 30 ≤ 60 ≥ 60 ≤ 60 ≥ 60

B

40 75 70 20 12
pi 30 10 15 15 78

30 15 15 65 10

= 20 ≥ 40 ≥ 40 ≤ 40 ≤ 40
BRT i ≥ 15 ≤ 15 ≤ 15 ≤ 15 ≥ 15

≥ 15 ≤ 15 ≤ 15 ≥ 15 ≤ 15

C

10 20 20 30 15
pi 20 10 20 15 30

70 70 60 55 55

≤ 20 ≥ 20 ≥ 20 ≥ 20 ≤ 20
BRT i ≥ 20 ≤ 20 ≥ 20 ≤ 20 ≥ 20

≥ 60 ≥ 60 = 60 ≤ 60 ≤ 60

D

10 50 25 15 25
pi 20 30 50 60 70

70 20 25 25 5

≤ 25 ≥ 25 ≥ 25 ≤ 25 ≥ 25
BRT i ≤ 50 ≤ 50 = 50 ≥ 50 ≥ 50

≥ 25 ≤ 25 ≥ 25 ≥ 25 ≤ 25

26



subjects, Nash-play as well as truth-telling per peak distribution and period.

Figure 10: Results of the median rule under no information (in percentage of total deci-
sions)

Figure 11: Results of the median rule under full information (in percentage of total
decisions)

3.3.3 Mean vs. Median Rule

In order to compare the mean to the median rule, we analyze the influence of the voting
rule on the parameters truth-telling, distance between peak and vote as well as Nash-play.
We are able to reject the hypothesis of equal mean shares of truth-telling in both voting
rules and find a significantly higher share of true votes under the normalized median
rule, which confirms hypothesis H3.2. The fact that the median rule is a strategy-proof
voting mechanism if we disregard adaptation plays a crucial role in the different voting
behaviors. The mean rule is highly manipulable and as mentioned in section 2, in a Nash
equilibrium at most one individual votes for a strictly positive amount of every project.
By contrast, with the normalized median rule, manipulation is seldom possible and very
hard to realize.

Going further into detail, we consider not only truth-telling but also the degree of
lying. As stated in hypothesis H3.1, we expect a higher deviation of votes from the true
peaks under the mean rule, which is indeed what we find in our analysis. The absolute
value of the mean peak-vote-distance under the median rule adds up to 52, as against
32 under the mean rule and the difference is significant.

A comparison between the two voting rules concerning Nash-play is possible, but has
to be done cautiously. While the Nash equilibria of the peak distributions we used
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in the experiment were unique and efficient under the mean rule, there exist several
Nash-plays under the median rule that lead to the same social outcome. Moreover,
there exist an infinite number of inefficient Nash equilibria, which we excluded in our
theoretical analysis. Like stated in section 2, there are ranges of allocations that form
a Nash equilibrium and therefore theoretically votes are more often categorized Nash-
play under the median rule compared to the mean rule. The experimental results show
indeed a higher mean share of Nash-play under the median rule, but since the difference
between the rules is not so high, one might argue that the mean rule leads to relatively
higher shares. Nevertheless, the mean shares of Nash outcomes are considerably higher
under the median rule.

We further analyze the influence of the degree of information on truth-telling and
Nash-play under both voting rules. Regarding truth-telling, we are not able to find a
significant influence of information on the aggregated results of the mean and the median
rule. As stated in the previous sections, the mean share of truth-telling under the median
rule is higher with full information, what might come as a surprise. In contrast, under
the mean rule, we find a higher mean share of truth-telling when the peaks of the other
subjects are unknown.

We are able to reject the hypothesis of equal frequencies of Nash-play under both
information treatments. Like already stated before, the mean shares of Nash-play are
higher under full information for both voting rules. Comprising results for all voting
rules, we also find statistical evidence that full information is accompanied by higher
mean shares of Nash-play compared to no information.

4 Conclusion

We developed a theoretical model and determined individual strategies as well as Nash
equilibria of the mean and the median rule. The mean rule is highly manipulable and we
showed that under single-peaked preferences, at most one individual votes for a strictly
positive amount of every public project in a Nash equilibrium. Moreover, we stated
that in multi-dimensional allocation problems, inefficient equilibria exist even under the
mean rule. Voting behavior under median-based rules are more difficult to predict and
manipulation might be possible. In a laboratory experiment, we empirically analyzed
the voting behavior under the mean and the median rule on the allocation of three public
projects. In particular, we were interested in the occurrence of beneficial manipulation
and contrasted both rules.

We observed low shares of truth-telling under the mean rule and a strong tendency of
playing the individual Nash equilibrium strategy if it is focal. Nevertheless, group Nash-
play rarely emerged. The normalized median rule yielded contrary results. While most
subjects played a best response to truth-telling of the other voters, only a small fraction
voted truthfully themselves. However, theoretical manipulation was never exploited in
the experiment. A comparison of the rule-dependent voting behavior revealed higher
shares of truth-telling as well as less absolute deviation from the peak under the median
rule. Even though the frequency of Nash-play was higher under the median rule, this
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result does not provide us with detailed information due to the different Nash-conditions.
The findings of the degree of information and its influence on truth-telling are quite
surprising. While the shares of truth-telling under the mean rule were higher without
any information on the peak distribution, under the median rule, subjects tended to vote
truthfully more frequently if information on the detailed peak distribution was provided.

Further research should be done both, on the theoretical model and the experiment.
The implementation of manipulation costs as well as further adaptations of the median
rule are interesting topics that should be covered.
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