

Resource Allocation via the Median Rule

Clemens Puppe joint work with Klaus Nehring

Winter School IT12, Alba di Canazei January 9, 2017

- 2 Generalized Single-Peakedness
- 3 Resource Allocation
 - Theory
 - Simulation

Generalized Single-Peakedness

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト → 国 → の Q ()

• The Gibbard-Satterthwaite Theorem shows that, on an unrestricted preference domain, any non-dictatorial collective decision mechanism is vulnerable to *strategic manipulation*:

Motivation

• The Gibbard-Satterthwaite Theorem shows that, on an unrestricted preference domain, any non-dictatorial collective decision mechanism is vulnerable to *strategic manipulation*: rational agents have an incentive to misrepresent their preferences.

Motivation

- The Gibbard-Satterthwaite Theorem shows that, on an unrestricted preference domain, any non-dictatorial collective decision mechanism is vulnerable to *strategic manipulation*: rational agents have an incentive to misrepresent their preferences.
- Moreover, in general, there is a large *multiplicity* of 'insincere' equilibria.

Motivation

- The Gibbard-Satterthwaite Theorem shows that, on an unrestricted preference domain, any non-dictatorial collective decision mechanism is vulnerable to *strategic manipulation*: rational agents have an incentive to misrepresent their preferences.
- Moreover, in general, there is a large *multiplicity* of 'insincere' equilibria.
- **Question:** Does that mean that strategically robust implementation is impossible in economically relevant applications?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• Possible reactions:

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト → 画 → の Q ()

- Possible reactions:
 - Bayesian implementation

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト → 画 → の Q ()

- Possible reactions:
 - Bayesian implementation
 - Behavioral analysis (Kube & Puppe Public Choice 2009; J.F.Laslier et al.; ...)

- Possible reactions:
 - Bayesian implementation
 - Behavioral analysis (Kube & Puppe Public Choice 2009; J.F.Laslier et al.; ...)
 - Domain restrictions:

- Possible reactions:
 - Bayesian implementation
 - Behavioral analysis (Kube & Puppe Public Choice 2009; J.F.Laslier et al.; ...)
 - Domain restrictions: Clarke-Groves mechanisms

- Possible reactions:
 - Bayesian implementation
 - Behavioral analysis (Kube & Puppe Public Choice 2009; J.F.Laslier et al.; ...)
 - Domain restrictions: Clarke-Groves mechanisms, or the

- Possible reactions:
 - Bayesian implementation
 - Behavioral analysis (Kube & Puppe Public Choice 2009; J.F.Laslier et al.; ...)
 - Domain restrictions: Clarke-Groves mechanisms, or the

Median Voter Theorem: Suppose that social alternatives can be ordered from left to right such that all preferences are single-peaked, then the choice of the median of the individual peaks defines a non-dictatorial and strategy-proof voting rule.

Clemens Puppe

Resource Allocation via the Median Rule

Generalized Single-Peakedness

Is the conclusion of the Median Voter Theorem bound to 'uni-dimensional' situations?

Clemens Puppe Resource Allocation via the Median Rule ▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

э.

メロト メポト メヨト メヨト

Is the conclusion of the Median Voter Theorem bound to 'uni-dimensional' situations?

• Question 1: What is the domain of its validity?

Is the conclusion of the Median Voter Theorem bound to 'uni-dimensional' situations?

- Question 1: What is the domain of its validity?
- **Question 2:** Can we have 'approximate' versions outside this domain?

Is the conclusion of the Median Voter Theorem bound to 'uni-dimensional' situations?

- Question 1: What is the domain of its validity?
- **Question 2:** Can we have 'approximate' versions outside this domain?

Question 1: Generalized Single-Peakedness

Nehring & Puppe JET (2007), GEB (2007), JET (2010) based on prior work by many others

Is the conclusion of the Median Voter Theorem bound to 'uni-dimensional' situations?

- Question 1: What is the domain of its validity?
- **Question 2:** Can we have 'approximate' versions outside this domain?

Question 1: Generalized Single-Peakedness

Nehring & Puppe JET (2007), GEB (2007), JET (2010) based on prior work by many others

Question 2: The Median Rule in Public Goods Allocation Problems

2 Generalized Single-Peakedness

3 Resource Allocation

- Theory
- Simulation

3

(日) (同) (三) (三)

Strategy-Proofness

• A social choice function *F* maps profiles of individual preferences on a (finite) set of alternatives *X* to a collectively chosen alternative:

$$(\succeq_1,...,\succeq_n)\mapsto F(\succeq_1,...,\succeq_n)\in X$$

Strategy-Proofness

• A social choice function *F* maps profiles of individual preferences on a (finite) set of alternatives *X* to a collectively chosen alternative:

$$(\succeq_1,...,\succeq_n)\mapsto F(\succeq_1,...,\succeq_n)\in X$$

 F is strategy-proof if it is a (weakly) dominant strategy to submit true preference ordering: for all
 [⊥]₁,...,
 [⊥]_n and
 [⊥]_i,
 [⊥]_i
 [⊥]
 [⊥]

$$F(\succeq_1,...,\succeq_i,...,\succeq_n) \succeq_i F(\succeq_1,...,\succeq'_i,...,\succeq_n)$$

Resource Allocation via the Median Rule

Generalized Single-Peakedness

Resource Allocation 0 0000000 000000

Single-peakedness and betweenness

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - ∽��?

• **Observation:** \succeq_i is single-peaked iff it has a unique peak, say x_i , such that $y \succ_i z$ whenever y between x_i and z

- **Observation:** \succeq_i is single-peaked iff it has a unique peak, say x_i , such that $y \succ_i z$ whenever y between x_i and z
- Any graph gives rise to associated domain of 'single-peaked' preferences

- **Observation:** \succeq_i is single-peaked iff it has a unique peak, say x_i , such that $y \succ_i z$ whenever y between x_i and z
- Any graph gives rise to associated domain of 'single-peaked' preferences (with betweenness as 'lying on a shortest path'):

(日) (同) (三) (三)

Single-peakedness and betweenness

- **Observation:** \succeq_i is single-peaked iff it has a unique peak, say x_i , such that $y \succ_i z$ whenever y between x_i and z
- Any graph gives rise to associated domain of 'single-peaked' preferences (with betweenness as 'lying on a shortest path'):

••••

- **Observation:** \succeq_i is single-peaked iff it has a unique peak, say x_i , such that $y \succ_i z$ whenever y between x_i and z
- Any graph gives rise to associated domain of 'single-peaked' preferences (with betweenness as 'lying on a shortest path'):

- **Observation:** \succeq_i is single-peaked iff it has a unique peak, say x_i , such that $y \succ_i z$ whenever y between x_i and z
- Any graph gives rise to associated domain of 'single-peaked' preferences (with betweenness as 'lying on a shortest path'):

- **Observation:** \succeq_i is single-peaked iff it has a unique peak, say x_i , such that $y \succ_i z$ whenever y between x_i and z
- Any graph gives rise to associated domain of 'single-peaked' preferences (with betweenness as 'lying on a shortest path'):

- **Observation:** \succeq_i is single-peaked iff it has a unique peak, say x_i , such that $y \succ_i z$ whenever y between x_i and z
- Any graph gives rise to associated domain of 'single-peaked' preferences (with betweenness as 'lying on a shortest path'):

Clemens Puppe

Resource Allocation via the Median Rule

- **Observation:** \succeq_i is single-peaked iff it has a unique peak, say x_i , such that $y \succ_i z$ whenever y between x_i and z
- Any graph gives rise to associated domain of 'single-peaked' preferences (with betweenness as 'lying on a shortest path'):

Clemens Puppe

Resource Allocation via the Median Rule

Generalized Single-Peakedness

Resource Allocation

The Structure of Strategy-Proof Social Choice (N & P 2007, JET)

3

<ロ> (日) (日) (日) (日) (日)

The Structure of Strategy-Proof Social Choice (N & P 2007, JET)

Characterization of all strategy-proof voting rules on **all** generalized single-peaked domains:

The Structure of Strategy-Proof Social Choice (N & P 2007, JET)

Characterization of all strategy-proof voting rules on **all** generalized single-peaked domains:

- Betweenness-preserving embedding of graph in (high-dimensional) hypercube
- Simple game in each dimension ('voting by issues')
- Key steps:
 - 'peaks only' based on Barberá, Masso & Neme 1997
 - consistency of simple games across dimensions ('intersection property')
A General Possibility Result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - ∽��?

æ

< ロト < 同ト < ヨト < ヨト

A General Possibility Result

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents)

э

< ロト < 同ト < ヨト < ヨト

A General Possibility Result

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**:

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

< ロト < 同ト < ヨト < ヨト

A General Possibility Result

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

Clemens Puppe

< ロト < 同ト < ヨト < ヨト

A General Possibility Result

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

....

Clemens Puppe

(日) (同) (三) (三)

A General Possibility Result

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

....

Clemens Puppe

(日) (同) (三) (三)

A General Possibility Result

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

....

Clemens Puppe

< ロト < 同ト < ヨト < ヨト

A General Possibility Result

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

....

A General Possibility Result

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

Clemens Puppe

A General Possibility Result

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

Clemens Puppe

A General Possibility Result

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

Clemens Puppe

A General Possibility Result

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

Clemens Puppe

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへぐ

Clemens Puppe

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

Clemens Puppe

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

Clemens Puppe

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

Clemens Puppe

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

Clemens Puppe

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

Clemens Puppe

Theorem (N & P 2007)

There exist anonymous and neutral strategy-proof rules on the associated single-peaked domain (for an odd number of agents) iff the underlying space is a **median space**: for each triple of social states there exists a social state (their 'median') that is between any pair of them.

Special cases: Moulin 1980, Demange 1982, Barberá, Sonnenschein & Zhou 1991, Barberá, Gul & Stacchetti 1993 , Carlo Carl

Clemens Puppe

And an Impossibility Result

3

(日) (同) (三) (三)

And an Impossibility Result

Theorem (N & P 2010)

There exist only dictatorial strategy-proof rules on the associated single-peaked domain iff the underlying graph is 'totally blocked.'

And an Impossibility Result

Theorem (N & P 2010)

There exist only dictatorial strategy-proof rules on the associated single-peaked domain iff the underlying graph is 'totally blocked.'

Clemens Puppe

And an Impossibility Result

Theorem (N & P 2010)

There exist only dictatorial strategy-proof rules on the associated single-peaked domain iff the underlying graph is 'totally blocked.'

・ロン ・四 ・ ・ ヨン

Special cases: Gibbard-Satterthwaite, Schummer & Vohra 2002

Clemens Puppe

Resource Allocation

0 00000000 000000

- 2 Generalized Single-Peakedness
- 3 Resource Allocation
 - Theory
 - Simulation

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 三回 めんの

Resource Allocation

The Allocation of Pure Public Goods

Resource Allocation

The Allocation of Pure Public Goods

• **Problem:** Allocate money amount $M \ge 0$ to L public goods.

Clemens Puppe Resource Allocation via the Median Rule ▲ロト▲聞と▲目と▲目と 目 のぐら

Resource Allocation

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Allocation of Pure Public Goods

- **Problem:** Allocate money amount $M \ge 0$ to L public goods.
- Space of alternatives $X = \{x \in \mathbf{R}_+^L : \sum_{\ell=1}^L x^{\ell} = M\}$, where x^{ℓ} is the amount spent on public good ℓ .

Resource Allocation

э

ロト く得下 くほと くほう

The Allocation of Pure Public Goods

- **Problem:** Allocate money amount $M \ge 0$ to L public goods.
- Space of alternatives $X = \{x \in \mathbf{R}_+^L : \sum_{\ell=1}^L x^{\ell} = M\}$, where x^{ℓ} is the amount spent on public good ℓ .

Clemens Puppe

Resource Allocation

The Allocation of Pure Public Goods

- **Problem:** Allocate money amount $M \ge 0$ to L public goods.
- Space of alternatives $X = \{x \in \mathbf{R}_+^L : \sum_{\ell=1}^L x^{\ell} = M\}$, where x^{ℓ} is the amount spent on public good ℓ .

Clemens Puppe

Theory

- 2 Generalized Single-Peakedness
- 3 Resource Allocation
 Theory
 Simulation

Resource Allocation

Theory

Strategy-Proofness Cannot be Obtained

Corollary (from Impossibility Theorem)

If $L \ge 3$, then all strategy-proof allocation mechanisms are dictatorial,

Clemens Puppe Resource Allocation via the Median Rule ▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ▲日 > ④ < ④

Resource Allocation

3

イロン イ理 とく ヨン ト ヨン・

Theory

Strategy-Proofness Cannot be Obtained

Corollary (from Impossibility Theorem)

If $L \ge 3$, then all strategy-proof allocation mechanisms are dictatorial, **even if** one restricts the domain to sufficiently rich sets of 'generalized single-peaked' preferences (e.g. Euclidean, Cobb-Douglas, etc.).

Resource Allocation

Theory

Why not Simply Averaging?

Resource Allocation

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Theory

Why not Simply Averaging?

Mean rule: Given individual peaks $x_1^*, ..., x_n^*$, choose

$$Mean(x_1^*,...x_n^*) := \frac{\sum_{i=1}^n x_i^*}{n}$$

Resource Allocation

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Theory

Why not Simply Averaging?

Mean rule: Given individual peaks $x_1^*, ..., x_n^*$, choose

$$Mean(x_1^*,...x_n^*) := rac{\sum_{i=1}^n x_i^*}{n}$$

Problem: Highly vulnerable to strategic manipulation!
Theory

Why not Simply Averaging?

Mean rule: Given individual peaks $x_1^*, ..., x_n^*$, choose

$$Mean(x_1^*,...x_n^*) := rac{\sum_{i=1}^n x_i^*}{n}.$$

Problem: Highly vulnerable to strategic manipulation!

Idea: Give up uniqueness of choice but insist in 'peaks only'

ヘロン 人間 とくほど 人 ほとう

Theory

Why not Simply Averaging?

Mean rule: Given individual peaks $x_1^*, ..., x_n^*$, choose

$$Mean(x_1^*,...x_n^*) := rac{\sum_{i=1}^n x_i^*}{n}.$$

Problem: Highly vulnerable to strategic manipulation!

Idea: Give up uniqueness of choice but insist in 'peaks only'

Observation

The one-dimensional median minimizes the sum of the distances to the individual peaks.

Clemens Puppe

Resource Allocation ○ ○○○●○○○○ ○○○○○○

Theory

The Median Rule

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● 臣 = • • ○ � ○

Resource Allocation

2

▲□▶ ▲圖▶ ▲国▶ ▲国▶

Theory

The Median Rule

Given individual peaks $x_1^*, ..., x_n^*$, choose

$$Med(x_1^*,...x_n^*) := \arg\min_{x \in X} \sum_{i=1}^n ||x - x_i^*||$$

Resource Allocation

Theory

The Median Rule

Given individual peaks $x_1^*, ..., x_n^*$, choose

$$Med(x_1^*,...x_n^*) := \arg\min_{x \in X} \sum_{i=1}^n ||x - x_i^*||_1$$

where $|| \cdot ||_1$ is the I_1 -distance, i.e.

$$||z||_1 = \sum_{\ell=1}^{L} |z^{\ell}|.$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のQの

Clemens Puppe

Theory

The Median Rule

Given individual peaks $x_1^*, ..., x_n^*$, choose

$$Med(x_1^*,...x_n^*) := \arg\min_{x \in X} \sum_{i=1}^n ||x - x_i^*||_1$$

where $|| \cdot ||_1$ is the I_1 -distance, i.e.

$$||z||_1 = \sum_{\ell=1}^{L} |z^{\ell}|.$$

- By observation above, median rule chooses usual median if L = 2.
- Chooses the coordinate-wise median whenever that is feasible.
- Preference aggregation: 'Kemeny-Young rule' (Young & Levenglick 1978)
- In the general judgement aggregation model: Nehring & Pivato (2014a-c)

Clemens Puppe

Resource Allocation

Theory

The Median Rule is in General Set-Valued

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - ∽��?

Resource Allocation

Theory

The Median Rule is in General Set-Valued

The formula $Med(x_1^*, ..., x_n^*) := \arg \min_{x \in X} \sum_{i=1}^n ||x - x_i^*||_1$ does in general not determine a *unique* allocation.

Resource Allocation

Theory

The Median Rule is in General Set-Valued

The formula $Med(x_1^*, ..., x_n^*) := \arg \min_{x \in X} \sum_{i=1}^n ||x - x_i^*||_1$ does in general not determine a *unique* allocation. But the outcome is always within the triangle 'spanned' by the coordinate-wise median, the so-called **Condorcet set** (Nehring, Pivato & Puppe, JET 2014):

Resource Allocation

Theory

The Median Rule is in General Set-Valued

The formula $Med(x_1^*, ..., x_n^*) := \arg \min_{x \in X} \sum_{i=1}^n ||x - x_i^*||_1$ does in general not determine a *unique* allocation. But the outcome is always within the triangle 'spanned' by the coordinate-wise median, the so-called **Condorcet set** (Nehring, Pivato & Puppe, JET 2014):

Resource Allocation

Theory

Properties of the Median Rule

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● 臣 = • • ○ � ○

Resource Allocation

æ

イロト イヨト イヨト イヨト

Theory

Properties of the Median Rule

Call the set of allocations that solve arg min_{$x \in X$} $\sum_{i=1}^{n} ||x - x_i^*||_1$ the **median set** (given individual peaks x_1^*, \dots, x_n^*).

Resource Allocation

3

イロト イヨト イヨト イヨト

Theory

Properties of the Median Rule

Call the set of allocations that solve arg $\min_{x \in X} \sum_{i=1}^{n} ||x - x_i^*||_1$ the **median set** (given individual peaks $x_1^*, \dots x_n^*$).

• The median set is convex in the l_1 -metric.

Resource Allocation

Theory

Properties of the Median Rule

Call the set of allocations that solve arg $\min_{x \in X} \sum_{i=1}^{n} ||x - x_i^*||_1$ the **median set** (given individual peaks $x_1^*, \dots x_n^*$).

- The median set is convex in the *l*₁-metric.
- The median set is 'locally determined.'

Resource Allocation

Theory

Properties of the Median Rule

Call the set of allocations that solve arg min_{$x \in X$} $\sum_{i=1}^{n} ||x - x_i^*||_1$ the **median set** (given individual peaks $x_1^*, \dots x_n^*$).

- The median set is convex in the *l*₁-metric.
- The median set is 'locally determined.'
- Interior median allocations have no mass.

Resource Allocation

Theory

Properties of the Median Rule

Call the set of allocations that solve arg min_{$x \in X$} $\sum_{i=1}^{n} ||x - x_i^*||_1$ the **median set** (given individual peaks $x_1^*, \dots x_n^*$).

- The median set is convex in the *l*₁-metric.
- The median set is 'locally determined.'
- Interior median allocations have no mass.
- If the set of peaks is connected, median set has diameter ≤ 1 .

Theory

Properties of the Median Rule

Call the set of allocations that solve arg min_{$x \in X$} $\sum_{i=1}^{n} ||x - x_i^*||_1$ the **median set** (given individual peaks $x_1^*, \dots x_n^*$).

- The median set is convex in the *l*₁-metric.
- The median set is 'locally determined.'
- Interior median allocations have no mass.
- If the set of peaks is connected, median set has diameter ≤ 1 .

Single-valued selections: Take any fixed allocation $\tilde{x} \in X$, and choose median allocation with minimal *Euclidean* distance to \tilde{x} .

Resource Allocation ○ ○○○○○○●○ ○○○○○○

Theory

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト → 国 → の Q ()

Resource Allocation ○ ○ ○ ○ ○ ○ ○ ○ ○

Theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Clemens Puppe

Theorem

Under the median rule, a voter can move neither the closest nor the farthest median allocation closer in the l_1 -metric to his/her own peak by misrepresentation.

Clemens Puppe Resource Allocation via the Median Rule ▲ロト ▲圖 ▼ ▲ 画 ▼ ▲ 画 ■ ● 今 Q @

æ

イロト イ理ト イヨト イヨト

Theory

Theorem

Under the median rule, a voter can move neither the closest nor the farthest median allocation closer in the l_1 -metric to his/her own peak by misrepresentation.

Corollary

The (single-valued) median rule is strategy-proof on the domain of all preferences admitting a utility representation of the form $u(x) = -||x - x^*||_1$, for some $x^* \in X$ (the peak).

Theorem

Under the median rule, a voter can move neither the closest nor the farthest median allocation closer in the l_1 -metric to his/her own peak by misrepresentation.

Corollary

The (single-valued) median rule is strategy-proof on the domain of all preferences admitting a utility representation of the form $u(x) = -||x - x^*||_1$, for some $x^* \in X$ (the peak).

Question:

Theorem

Under the median rule, a voter can move neither the closest nor the farthest median allocation closer in the l_1 -metric to his/her own peak by misrepresentation.

Corollary

The (single-valued) median rule is strategy-proof on the domain of all preferences admitting a utility representation of the form $u(x) = -||x - x^*||_1$, for some $x^* \in X$ (the peak).

Question: How robust is this conclusion?

Clemens Puppe

Theorem

Under the median rule, a voter can move neither the closest nor the farthest median allocation closer in the l_1 -metric to his/her own peak by misrepresentation.

Corollary

The (single-valued) median rule is strategy-proof on the domain of all preferences admitting a utility representation of the form $u(x) = -||x - x^*||_1$, for some $x^* \in X$ (the peak).

Question: How robust is this conclusion? What about general monotonic and convex preferences?

Theorem

Under the median rule, a voter can move neither the closest nor the farthest median allocation closer in the l_1 -metric to his/her own peak by misrepresentation.

Corollary

The (single-valued) median rule is strategy-proof on the domain of all preferences admitting a utility representation of the form $u(x) = -||x - x^*||_1$, for some $x^* \in X$ (the peak).

Question: How robust is this conclusion? What about general monotonic and convex preferences? E.g. Cobb-Douglas

Theorem

Under the median rule, a voter can move neither the closest nor the farthest median allocation closer in the l_1 -metric to his/her own peak by misrepresentation.

Corollary

The (single-valued) median rule is strategy-proof on the domain of all preferences admitting a utility representation of the form $u(x) = -||x - x^*||_1$, for some $x^* \in X$ (the peak).

Question: How robust is this conclusion? What about general monotonic and convex preferences? E.g. Cobb-Douglas, or CES ...

Clemens Puppe

Resource Allocation

0 00000000 000000

Simulation

- 2 Generalized Single-Peakedness
- 3 Resource Allocation• Theory
 - Simulation

Resource Allocation

0 00000000 000000

Simulation

Simulation Study (with Tobias Lindner)

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Resource Allocation

(日) (同) (三) (三)

Simulation

Simulation Study (with Tobias Lindner)

- Peaks randomly drawn from Dirichlet distribution.
- Voters play myopic best response in random sequence ...
- ... under Cobb-Douglas preferences.
- Maximal 15 iterations with ...
- ... sample size 10.000.
- Parameters:
 - rule (mean vs. median),
 - number of voters,
 - number of goods,
 - budget size.

Resource Allocation

0 000000000 0000000

Simulation

Simulation Study: Results

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト → 画 → の Q ()

Resource Allocation

00000000 00000000

Simulation

Simulation Study: Results

Extent of Manipulation:

Resource Allocation

Simulation

Simulation Study: Results

Extent of Manipulation:

Table: Number of agents = 5

	No. of Revisions	Max. Utility Gain	Manipulating Agents
Mean	12.11	7.41%	99.98%
Med	16.19	1,94%	59.60%

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Clemens Puppe

Resource Allocation

Simulation

Simulation Study: Results

Extent of Manipulation:

Table: Number of agents = 5

	No. of Revisions	Max. Utility Gain	Manipulating Agents
Mean	12.11	7.41%	99.98%
Med	16.19	1,94%	59.60%

Table: Number of agents = 45

	No. of Revisions	Max. Utility Gain	Manipulating Agents
Mean	53.09	1.87%	100.00%
Med	58.09	0.78%	39.05%

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Clemens Puppe

Resource Allocation

0 00000000 000000

Simulation

Simulation Study: Results

Effect of Manipulation

▲ロト ▲課 ト ▲語 ト ▲ 語 ト → 語 → のへの

Resource Allocation

æ

イロト イヨト イヨト イヨト

Simulation

Simulation Study: Results

Effect of Manipulation

Table: Number of agents = 5

	Deviation	Distance of Outcome	Welfare Loss
Mean	39.28%	7.38%	1.60%
Med	4.86%	4.51%	1.05%

Clemens Puppe

Resource Allocation

Simulation

Simulation Study: Results

Effect of Manipulation

Table: Number of agents = 5

	Deviation	Distance of Outcome	Welfare Loss
Mean	39.28%	7.38%	1.60%
Med	4.86%	4.51%	1.05%

Table: Number of agents = 45

	Deviation	Distance of Outcome	Welfare Loss
Mean	43.09%	5.73%	1.02%
Med	2.96%	0.88%	0.20%

Clemens Puppe
Generalized Single-Peakedness

Resource Allocation

Simulation

Simulation Study: Effect of Manipulation with CES

Clemens Puppe

Resource Allocation via the Median Rule

Generalized Single-Peakedness

Resource Allocation

0 000000000 00000●

Simulation

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト → 国 → の Q ()

Clemens Puppe Resource Allocation via the Median Rule

Conclusion

 Negative results on the non-existence of dominant strategy mechanisms do **not** imply that strategically robust implementation is impossible.

- Negative results on the non-existence of dominant strategy mechanisms do **not** imply that strategically robust implementation is impossible.
- The median rule represents an attractive mechanism that appears to be quite robust against strategic manipulations

- Negative results on the non-existence of dominant strategy mechanisms do **not** imply that strategically robust implementation is impossible.
- The median rule represents an attractive mechanism that appears to be quite robust against strategic manipulations in the context of allocating pure public goods.

- Negative results on the non-existence of dominant strategy mechanisms do **not** imply that strategically robust implementation is impossible.
- The median rule represents an attractive mechanism that appears to be quite robust against strategic manipulations in the context of allocating pure public goods.
- The median rule can be applied much more generally: Nehring & Pivato 2014.

- Negative results on the non-existence of dominant strategy mechanisms do **not** imply that strategically robust implementation is impossible.
- The median rule represents an attractive mechanism that appears to be quite robust against strategic manipulations in the context of allocating pure public goods.
- The median rule can be applied much more generally: Nehring & Pivato 2014.
- Experimental investigation: Bauer & Puppe 2013, Rollmann 2016.

Conclusion

- Negative results on the non-existence of dominant strategy mechanisms do **not** imply that strategically robust implementation is impossible.
- The median rule represents an attractive mechanism that appears to be quite robust against strategic manipulations in the context of allocating pure public goods.
- The median rule can be applied much more generally: Nehring & Pivato 2014.
- Experimental investigation: Bauer & Puppe 2013, Rollmann 2016.

Thanks for your attention!!

Image: A (1)