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Abstract

We examine whether mobility indices appropriately represent intergenerational changes
in income or status. We suggest three elementary principles for mobility comparisons and
show that many commonly-used measures violate one or more them. These principles
are used to characterise two classes of indices that have a natural interpretation in terms
of distributional analysis.
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1 Introduction

Evidence of individual mobility is often seen as a desirable objective for social and
economic policy. It is also used indirectly as part of the discussion of equality of oppor-
tunity. Improving data on intra- and inter-generational mobility has greatly advanced
the understanding of the strengths and limitations of mobility analysis. However, con-
vincing evidence of mobility requires not only good data but also measurement tools
that have appropriate properties. Perhaps surprisingly, several commonly-used techni-
ques and indices do not appear to conform well to simple principles concerning mobility
and immobility.

This paper develops some of the ideas in Cowell and Flachaire (2018), to show which
types of mobility measures are suitable for the purpose of empirically implementing
conventional notions about the meaning of mobility comparisons. We show that there are
two broad classes of mobility indices that generally satisfy a minimal set of requirements
for mobility comparisons. Each of these classes has a natural interpretation in terms of
distributional analysis

The paper is organised as follows. Section 2 sets out some general principles on the
meaning of mobility comparisons and examines how well some of the standard tools work
in the light of those principles. Section 3 provides a theoretical treatment that embodies
the principles of section 2 in a set of axioms and derives a characterisation of two classes
of mobility indices from the axioms. Section 4 shows how these broad characterisations
can be embodied in two classes of indices that can be easily implemented empirically.
Section 5 concludes.

2 Mobility concepts and measures

What do we want a mobility measure to do? Let us discuss this within a very simple
context of income change. Assume that there are two periods, labelled 0 and 1, and a
given number of individuals with a known status in periods 0 and 1. �Status� could be
something very simple, like income, or something derived from the data on the distri-
bution, such as ordinal rank in the distribution. For each person we refer to the pair
(status-in-0, status-in-1) as the person's history ; if we had intergenerational mobility in
mind we might want to refer to the history of a dynasty.

Now let us go through a very short list of principles.

1 More movement, more mobility. There are two principal interpretations of this
concept: (1) more movement in one person's history (or in one dynasty's history), or
(2) more matched movement-in-pairs history. The reason for considering two versions
of this principle is that each captures a di�erent concept of mobility. Version (1) allows
one to investigate the mobility associated with unbalanced growth: see, for example the
discussion in Bourguignon (2011). Version (2) controls for changes in status for a time-1
marginal distribution with given mean; this idea includes the standard interpretations
of the concept of �exchange mobility� (Jäntti and Jenkins 2015; Kessler and Greenberg
1981, page 54; McClendon 1977). One or other interpretation of this principle seem to
be an almost essential requirement for mobility measurement. The reason is that in each
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interpretation this principle ensures that a mobility measure has a minimum-mobility
property: a situation where there is some movement in status registers higher mobility
than a situation where there is a complete absence of movement.

2 Decomposition. Decomposition analysis is routinely applied to other aspects of
distributional analysis such as income inequality. Several aspects of decomposability �
such as decomposition by population characteristics � seem to be attractive. What has
been argued as extremely important is the ability to decompose mobility in terms of
upward and downward movements (Bárcena and Cantó 2018).

3 Consistency in comparisons. It is useful for mobility comparisons to have a con-
sistency property. A mobility comparison involves comparing one bivariate distribution
of (status-in-0, status-in-1) with another. Suppose one such pair of distributions is cle-
arly �similar� to another � for example where the pair of bivariate distributions in the
second case can be found by a simple transformation of the pair of distributions in the
�rst case, perhaps by just rescaling all the status values by a common factor, or by just
translating the distributions by increasing/decreasing all the status values by the same
given amount.1 Then the mobility-ranking for the �rst pair of distirbutions should be
the same as for the second pair.

It would be useful to examine whether the tools that are conventionally used to study
mobility conform to these three criteria.

2.1 Statistical measures

Many empirical studies use o�-the-shelf tools borrowed from statistics and applied eco-
nometrics. To investigate these let income be denoted y and assume that status is given
by x = log (y), so that the history of person i, or dynasty i, consists of a log- income
pair (x0i, x1i). There are two standard �statistical� meaures that are in wide usage.

2.1.1 The elasticity coe�cient

Perhaps the most commonly used measure of mobility is 1 − β̂, where β̂ is an elasti-
city coe�cient, computed as the OLS estimation of the slope coe�cient from a linear
regression of log-income in period 1 (x1) on log-income on period 0 (x0):

x1i = α + βx0i + εi. (1)

A high value of 1− β is usually taken as evidence of signi�cant mobility. However, it is
easy to show that a low value does not necessarily imply low mobility. Indeed we can
provide many examples for which we have 1− β̂ = 0 but where common sense suggests
that there is indeed mobility in log incomes. To see this note that, since

β̂ =
cov(x0,x1)

var(x0)
, (2)

1Note that this consistency-in-comparisons property does not imply that the value of a mobility
index should be constant under scale or translation changes.
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it is true that
1− β̂ = 0 ⇔ cov(x0,x1) = var(x0). (3)

It follows that, with equidistant log-incomes x0 = (x01, x01 +k, x01 +2k) in period 0, and
with log-incomes x1 = (x11, x12, x11 + 2k) in period 1, we have 1− β̂ = 0, ∀x01, x11, x12.2

For instance, with log-incomes x0 = (1, 2, 3) in period 0, and with log-incomes

x1 ∈ {(2, 0, 4), (2, 1, 4), (2, 1760, 4), (2100, 1, 2102), (2100, 74, 2102), . . . } (4)

in period 1, the mobility index based on the elasticity coe�cient suggests no mobility:
in all cases, we have 1− β̂ = 0. This implies that the regression coe�cient violates the
minimal-mobility property discussed under �more movement, more mobility�.

2.1.2 The correlation coe�cient

As a further problematic example consider another widely used mobility measure, 1− ρ̂,
where ρ̂ is the Pearson correlation coe�cient. This measure is both scale and translation
independent, that is:

if x1 = ax0 + b, then ρ̂ = 1 ⇔ 1− ρ̂ = 0 (5)

So if x1i = ax0i+b across individuals or dynasties we will �nd that ρ = 1 so that mobility
(1−ρ) is zero. For instance, with log-incomes x0 = (1, 2, 3) in period 0 and x1 = (0, 2, 4)
in period 1, we have x1 = 2x0 − 2 and, thus, 1− ρ̂ = 0.

This measure may appear attractive. However, it behaves strangely in several cases.
Indeed, we can show that with equidistant log-incomes x0 = (x01, x01 + k, x01 + 2k) in
period 0, and with period-1 log-incomes x1 = (x11, x12, x11), we have 1 − ρ̂ = 1 and
1− β̂ = 1, ∀x01, x11, x12.3

For instance, with period-0 log-incomes x0 = (1, 2, 3) and period-1 log-incomes

x1 ∈ {(3, 2, 3), (3, 0, 3), (3, 100, 3), (1, 2, 1), (10, 1, 10), (2, 1, 2), (2, 100, 2), . . . } (6)

the standard statistical mobility indices indicate that there is identical mobility: in all
cases, we have 1− ρ̂ = 1 and 1− β̂ = 1.

2.1.3 A simple example

Consider the cases depicted in Table 1. It is clear that case 2 exhibits more income
movements. Indeed, from period 0 to 1, log-income variations (x1 − x) are equal to
(2,0,0) in case 1 and to (2,-1,2) in case 2. However, with standard mobility measures,
1− ρ̂ and 1− β̂, we �nd more mobility in case 1. The measure based on elasticity even
suggests no mobility in case 2.

2With equidistant values, mean log-income in period 0 is x̄0 = x01 + k and we have x01 − x̄0 =
x̄0−x03 = −k. So cov(x0,x1) = var(x0) is equivalent to (x01−x̄0)[(x11−x̄1)−(x13−x̄1)] = 2(x01−x̄0)2,
which can also be written x11 − x13 = −2k.

3With equidistant values, mean log-income in period 0 is x̄0 = x01+k and we have x01−x̄0 = x̄0−x03.
Thus, cov(x0,x1) = k(x13 − x11). When x13 = x11 we have cov(x0,x1) = 0 ; therefore β̂ = ρ̂ = 0
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period 0 period 1 mobility

x0 x1 1− ρ̂ 1− β̂
case 1 (1, 2, 3) (3, 2, 3) 1.0 1.0
case 2 (1, 2, 3) (3, 1, 5) 0.5 0.0

Table 1: �statistical� mobility measures

2.2 Other mobility indices

Now let us consider other approaches in the literature. In addition to the well-known
mobility measures based on the elasticity and correlation coe�cients discussed in the
introduction, we consider the following mobility measures:

• Fields and Ok (1996) provided a measure of mobility based on income di�erences:4

FO1 =
1

n

∑
i=1

| y0i − y1i | .

• Fields and Ok (1999) provided a measure of mobility based on di�erences in log
incomes:5

FO2 =
1

n

∑
i=1

| log y1i − log y0i | .

• Shorrocks (1978) provided mobility measures related to inequality:

SI = 1− I(y0 + y1)
µy0

µy0+y1
I(y0) +

µy1
µy0+y1

I(y1)
,

where I(.) is a prede�ned inequality measure.

Table 2 presents values of these mobility measures in di�erent situations. We consider a
three-person world (A, B, C), with always the same incomes in period 0, y0 = (e, e1.5, e2),
and several scenarios in period 1, with shifted, rescaled and/or reranked incomes. Elasti-
city and correlation coe�cients are independent of units of measurement of the variables.
So mobility indices based on these coe�cients respect the scale-independence property.
It is clear from Table 2, where scenario 1a gives a zero value (1−β = 0), and scenarios 1c

and 1d provide the same value (1−β = 1.5). Furthermore, the major drawback provided
in the introduction is also clear, since zero mobility is obtained with scenarios 1f or 1g.
It follows that a low value of these measures cannot be associated to low mobility.

The Fields-Ok mobility measures are not scale-independent, they have values di�e-
rent from zero in scenario 1a (FO1 = 4.863 and FO2 = 0.693) and they have di�erent
values in 1c and 1d. In Table 2, we can see that the same value is given to Fields-Ok me-
asures in scenarios 1f and 1g, who share the same income values, with the same ranking
at the two periods in 1g and a reranking in 1f .

4No mobility is de�ned when incomes at both periods are shifted by the same value.
5No mobility is de�ned when incomes int both periods are multiplied by the same value.
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period period

0 1a 1b 1c 1d 1e 1f 1g

A e1.0 2 e1.0 e1.0 + 2 e1.5 2 e1.5 e1.5 + 2 e1 e1

B e1.5 2 e1.5 e1.5 + 2 e2.0 2 e2.0 e2.0 + 2 e3 e2

C e2.0 2 e2.0 e2.0 + 2 e1.0 2 e1.0 e1.0 + 2 e2 e3

Income-mobility measures
Elasticity 1− β 0 0.312 1.500 1.500 1.318 0 -1.000

Pearson Corr. 1− r 0 0.001 1.500 1.500 1.461 0.500 0

Fields-Ok 1 FO1 4.863 2.000 3.114 6.165 3.781 5.201 5.201

Fields-Ok 2 FO2 0.693 0.387 0.667 0.898 0.686 0.500 0.500

Shorrocks STheil 0 0.031 0.743 0.679 0.751 0.281 0.069

Shorrocks SGini 0 0 0.500 0.459 0.500 0.132 0

Table 2: Income and rank mobility measures in di�erent scenarios.

The Shorrocks measures are not scale-independent (scenarios 1c and 1d provide di�e-
rent values). In addition, they are sensitive to the choice of the inequality index. Indeed,
Table 2 gives very di�erent results with the Theil and Gini indices (STheil, SGini). At �rst
sight, the Shorrocks index based on the Gini may appear to be an appropriate measure
of rank mobility (Aaberge et al. 2002), because it is equal to zero when no individual
position shifts takes place (scenarios 1a, 1b and 1g). However, it should not be used to
measure rank mobility, because two similar reranking scenarios (1c and 1d) give di�erent
values of the index (0.5 vs 0.459).

3 Mobility measures: theory

In this section we develop the general principles discussed in section 2 to formalise the
principles into axioms and then using the axioms to characterise mobility orderings. As
in section 2 we deal with the problem of two-period mobility and a �xed population.

3.1 Status, histories, pro�les

The fundamental ingredient is the individual's status, which could be income, position
in the distribution, or something else. Let ui denote i's status in period 0 and vi denote
i's status in period 1. Individual history is the pair zi = (ui, vi). Individual movements
or changes in status are completely characterised by the histories zi, i = 1, 2, ..., n Call
the array of such histories z := (z1, ..., zn) a movement pro�le6 and denote the set of all
possible movement pro�les for a population of size n as Zn.

The principal problem concerns the representation of the changes embedded in a
movement pro�le. Overall mobility for any member of Zn can be described in terms

6note that the pro�le concept here is somewhat di�erent from that developed in pro�lesVan Kerm
(2009)
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of the status changes of each the n persons or dynasties. We need to specify a set of
axioms for comparing the elements of Zn that capture the the principles in section 2

3.2 Mobility ordering: basic structure

In this section and section 3.3 we characterise an ordering that enables us to compare
movement pro�les. Use � to denote a weak ordering on Zn; denote by � the strict
relation associated with � and denote by ∼ the equivalence relation associated with �.
We �rst consider the interpretation of �ve axioms that underpin the approach; we then
state a basic result that follows from them.

Axiom 1 [Continuity] � is continuous on Zn.

Axiom 2 [Monotonicity] If z, z′ ∈ Zn di�er only in their ith component and u′i = ui
then, if vi > v′i ≥ ui, or if vi < v′i ≤ ui, z � z′

Axiom 3 [Independence] Let z (ζ, i) denote the pro�le formed by replacing the ith
component of z by the history ζ ∈ Z and let Ẑi :=

[
u(i−1), u(i+1)

]
×
[
v(i−1), v(i+1)

]
where

the subscript (i− 1) (resp. (i+ 1))denotes the largest (resp. smallest) component of the
vector that is less than (resp. greater than) the ith component. For z, z′ ∈ Zn suppose
that z ∼ z′ and zi = z′i for some i ∈ 2, ..., n− 1: then z (ζ, i) ∼ z′ (ζ, i) for all ζ ∈ Ẑi .

Axiom 4 [Local immobility] Let z, z′ ∈ Zn where for some i, ui = vi, v
′
i = u′i and,

for all j 6= i, u′j = uj, v
′
j = vj. Then z ∼ z′.

.

We can then show:7

Theorem 1 Given Axioms 1 to 4 then ∀z ∈ Zn the mobility ordering � is representable
by an increasing monotonic transform of

n∑
i=1

φi (zi) , (7)

where the φi are continuous functions Z → R, de�ned up to an a�ne transformation,
each of which is increasing (decreasing) in vi if vi > (<) ui and that has the property
φi (u, u) = biu, where bi ∈ R.

The interpretation of these axioms and the result in Theorem 1 is as follows. First,
suppose we know that, with the sole exception of person i, each person's history in pro�le
z is the same as it is in pro�le z′. Person i's history can be described as follows: i starts
with the same period-0 status in z and in z′ and then moves up to a higher status in
period 1; but i's period-1 status in pro�le z is even higher than it is in z′. Then Axiom
2 implies that mobility would be higher in z than in z′ ; a corresponding story holds for

7The proof is in the Appendix.
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downward movement. Second, suppose that the pro�les z and z′ are equivalent in terms
of overall mobility and that there is some person i with the same history zi in both z and
z′. Then consider a change ∆zi in i's history in both z and z′ that is su�ciently small
as to leave unchanged the person's ranking in the initial and �nal distributions. Axiom
3 requires that such a change leaves the two modi�ed pro�les as equivalent in terms of
overall mobility. It is this property that allows some form of decomposability of mobility
measures. Third, consider a pro�le z in which person i is immobile: if i's status by the
same amount in both periods then the new pro�le z′ should exhibit the same mobility
as the original z. Theorem 1shows that mobility comparisons should be based on the
sum of evaluations of the n individual histories; but these evaluations may di�er from
person to person and may, accordingly depend on the rank-order of the person's history
in the movement pro�le.8

3.3 Mobility ordering: scale

The second part of our characterisation of the mobility ordering involves the comparison
of pro�les at di�erent levels of status. To do this let z × (λ0, λ1) denote the movement
pro�le that is derived from z if all the 0-components (ui) are multiplied by λ0 and all the
1-components (vi) are multiplied by λ1. Then we can introduce the following additional
axiom:

Axiom 5 [Status scale irrelevance] For any z, z′ ∈ Zn such that z ∼ z′, z×(λ0, λ1) ∼
z′ × (λ0, λ1), for all λ0, λ1 > 0.

We then have9

Theorem 2 Given Axioms 1 to 5 � is representable by (7), where φi is given by

φi (u, v) = ci
[
uαv1−α − αu− [1− α] v

]
, (8)

or by
φi (u, v) = ai [biv − u] , (9)

where α, aibi, ci ∈ R.

The interpretation of Axiom 5 is that the ordering of pro�les remains unchanged by
a scale change to status in either or both periods. As we will see in section 4 it will
also allow one to introduce the idea of translation irrelevance, where the ordering of
pro�les does not change under the across-the-board addition of some constant to status.
Theorem 2 shows that the evaluation function φi in (7) has to take one of the two
particularly convenient forms (8) and (9).

8This is a slight generalisation of Theorem 1 in Cowell and Flachaire (2018).
9Again, the proof is in the Appendix.
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3.4 Aggregate mobility index

Theorem 2 means that the mobility ordering � implied by the �ve axioms in sections
3.2 and 3.3 can be represented by the expression

∑n
i=1 φi (u, v), with the φi given by

equation (8) or (9). Since � is an ordering it is also representable by some continuous
increasing transformation of this expression. We now examine what normalisation is
appropriate in order to construct an aggregate inequality index, for each of the two
cases in Theorem 2.

3.4.1 Class 1: φi given by equation (8)

First, let us require that mobility should be blind as to individual identity. If the de�-
nition of status incorporates all relevant information about an individual, the labelling
i = 1, ..., n is irrelevant and anonymity is an innocuous assumption. It simply means
that mobility depends only on individual status histories; switching the personal labels
from one history to another within a movement pro�le has no e�ect on mobility rankings:
if a pro�le z′ can be obtained as a permutation of the components of another pro�le z,
then they should be treated as equally mobile. If so, then all the ci should be equal and
mobility can be represented as a transform of

c
n∑
i=1

[
uαi v

1−α
i − αui − [1− α] vi

]
. (10)

Now consider the e�ect of population size. A simple replication of pro�les z does
not change the essential facts of mobility. Clearly α cannot depend on the size of the
population, but the constant c may depend on n. If any pro�le is replicated r times and
the index remains unchanged under replication we have

c (n)
n∑
i=1

[
uαi v

1−α
i − αui − [1− α] vi

]
= c (nr) r

n∑
i=1

[
uαi v

1−α
i − αui − [1− α] vi

]
.

So, to ensure that the representation of � is in a form that is constant under replica-
tion, we need to have c proportional to 1/n. Choosing for convenience the constant of
proportionality as 1

α[α−1]we may write the index as some transform of this �basic-form�
mobility index:

1

α [α− 1]

[
1

n

n∑
i=1

uαi v
1−α
i − αµu − [1− α]µv

]
, (11)

where

µu :=
1

n

n∑
i=1

ui, (12)

µv :=
1

n

n∑
i=1

vi. (13)

Notice that (11) is strictly increasing (decreasing) in ui if ui > vi (ui < vi ) and (11)
is strictly decreasing (increasing) in vi if ui < vi (ui > vi ); this behaviour is natural in
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view of monotonicity (Axiom 2). Furthermore it is clear that the basic form (11) has the
property that mobility is zero if vi = ui for all i. In general, if the normalised mobility
index is to have the appropriate �zero� property, it must take the form

ψ

(
1

n

n∑
i=1

uαi v
1−α
i − θ (µu, µv) , µu, µv

)
(14)

where ψ is monotonic in its �rst argument and has the property that ψ (0, µu, µv) = 0,
and where θ is a function that is homogeneous of degree 1 with the property that
θ (µ, µ) = µ.

3.4.2 Class 2: φi given by equation (9)

Again consider the issue of anonymity. If the constant bi is the same for all i, then (9)
means that individual mobility for each person i is captured simply by aidi, where di is
the weighted di�erence in status between periods 0 and 1:

di := bvi − ui. (15)

The overall mobility index will preserve anonymity if it is written as
∑n

i=1 aid(i) where
d(i) denotes the ith component of the vector (d1, ..., dn) when rearranged in ascending
order: so, except in the case where there is zero individual mobility, d(1) < 0 refers to the
greatest downward mobility and d(n) > 0 to the greatest upward mobility. The principle
of monotonicity is preserved if ai < 0 whenever d(i) < 0 and ai > 0 whenever d(i) > 0.
The independence of population size means that the term ai should be normalised by
1/n; so up to a change in scale we have the mobility measure

1

n

n∑
i=1

aid(i). (16)

3.5 Mean-Normalisation

The mobility indices derived in section 3.4 are consistent with the version (1) of the
�More movement, more mobility� principle discussed in section 2. We now consider a
modi�cation that will enable us to handle version (2) of that principle.

This can be done by replacing Axiom 2 with the following Axiom 6:

Axiom 6 [Monotonicity-2] If z, z′ ∈ Zn di�er only in their ith and jth components
and u′i = ui, u

′
j = uj, v

′
i − vi = vj − v′j then, if vi > v′i ≥ ui and if vj < v′j ≤ uj, z � z′.

Clearly the type of status variation considered in the statement of Axiom 2 will
change the mean of u and/or the mean of v; the type of status variation considered in
Axiom 6 will leaves these means unaltered. The modi�ed version of monotonicity in
Axiom 6 will again ensure that minimal-mobility property is satis�ed. Also Axiom 6 is
clearly satis�ed by the normalised index.
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One consequence of using version (2) of the �More movement, more mobility� prin-
ciple is that it allows for a further step in normalisation of the mobility indices. It may
be appropriate that the mobility index remain unchanged under a scale change λ0 > 0
in the 0-distribution and under a scale change λ1 > 0 in the 1-distribution. This streng-
thens the scale-irrelevance property (Axiom 5) that we imposed on mobility orderings
to scale-independence of the resulting mobility index.

Let us examine this development for each of the two classes aggregate mobility indices
derived in section 3.4.

Class 1 mobility indices. Setting λ0 = 1/µu and λ1 = 1/µv it is clear that (14)
becomes

ψ

(
1

n

n∑
i=1

[
ui
µu

]α [
vi
µv

]1−α
− θ (1, 1) , 1, 1

)
= ψ

(
1

n

n∑
i=1

[[
ui
µu

]α [
vi
µv

]1−α
− 1

])
, (17)

where ψ (t) := ψ (t, 1, 1).

Class 2 mobility indices. Clearly we may obtain a mean-normalised version of (16)
by dividing ai by 1/µu and setting b = µu/µv to give

1

n

n∑
i=1

ai

[
v(i)
µv
−
u(i)
µu

]
. (18)

Speci�c examples of these mean-normalised indices are given in section 4

4 Discussion and examples

Expressions (8) and (9) characterise the bases for two classes of mobility indices. Here
we consider the derivation of practical indices from these two bases.

4.1 Class-1 mobility indices

To ensure that the mobility measureMα is well-de�ned and non-negative for all values of
α and that, for any pro�le z,Mα is continuous in α, we adopt the following cardinalisation
of (17):

Mα :=
1

α [α− 1]n

n∑
i=1

[[
ui
µu

]α [
vi
µv

]1−α
− 1

]
, α ∈ R, α 6= 0, 1, (19)

where we have the following limiting forms for the cases α = 0 and α = 1, respectively

M0 = − 1

n

n∑
i=1

vi
µv

log

(
ui
µu

/
vi
µv

)
, (20)

M1 =
1

n

n∑
i=1

ui
µu

log

(
ui
µu

/
vi
µv

)
. (21)
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Expressions (19)-(21) satisfy the second version of the movement principle (formalised
in the monotonicity-2 Axiom 6) and constitute a class of aggregate mobility measures
that are independent of population size and independent of the scale of status.

Choice of α.

An individual member of the class is characterised by the choice of α: a high positive α
produces an index that is particularly sensitive to downward movements and a negative
α yields an index that is sensitive to upward movements.

Furthermore, let us consider a sample where every individual's upward mobility is
matched by a symmetric downward mobility of someone else (∀i,∃j such that uj =
vi, vj = ui). In this particular case of (perfect) symmetry between downward and upward
status movements, we have µu = µv. Then, it is clear from (19) that a high positive
α produces an index that is particularly sensitive to downward movements (where u
exceeds v) and a negative α yields an index that is sensitive to upward movements
(where v exceeds u).10

4.2 Class-2 mobility indices

This class focuses on the the aggregation of weighted status di�erences di de�ned in
(15). Consider their behaviour in respect of the two interpretations of the movement
principle (Axioms 2 and 6).

4.2.1 Non-normalised status

Using (16) de�ne i∗ as the largest i such that d(i) < 0. In order to conform to Axiom 2
ai must satisfy ai < 0 for i ≤ i∗ and ai ≥ 0 otherwise. Consider the simple speci�cation

ai =

{
−1 if i ≤ i∗

+1 if i > i∗
(22)

Then (16) becomes

Γ0 :=
1

n

n∑
i=1

∣∣d(i)∣∣ . (23)

Suppose equal weight is placed on period-0 and period 1 status (parameter b = 1); then,
if status is income (23) becomes the FO1 index discussed in section 2.2 and if status is
log-income (23) becomes the FO2 index.

However, (23) does not ful�l the second interpretation of the movement principle.
Take the case where for persons i and j, the distances are di ≥ 0 and dj ≤ 0. Now suppose
that a change occurs to these distances such that ∆di > 0 and ∆dj = −∆di < 0: if
a mobility index satis�es Axiom 6 then mobility must increase with this change (an
increase in movement). But the index (23) remains unchanged. Clearly this problem
could be avoided if (22) were replaced by φ (i− i∗ − ε)11 where φ is an increasing function

10With symmetric downward/upward mobility, Mα = 1
α[α−1]n

∑n
i=1

(
vi
µv

[
ui

vi

]α
− 1
)
.

11Monotonicity requires ai < 0 if i ≤ i∗. From (25) it is clear that if i∗ = 0 we have ai > 0 for
i = 1, ..., n; if i∗ = n we have ai < 0 for i = 1, ..., n.
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with φ (0) = 0 and ε is a number between 0 and 1. Setting ε = 1/2 and normalising φ so
that it is independent of population size we have

ai = φ

(
i

n
− p− 1

2n

)
, (24)

where p := i∗/n is the proportion of the population with downward-moving histories. If
di increases for any i > i∗ then measured mobility would increase (in accordance with
the �rst interpretation of the movement principle); if, for any i, j where i > i∗ > j
the individual distances change such that ∆di > 0 and ∆dj = −∆di < 0,then again
measured mobility would increase (in accordance with the second interpretation of the
movement principle).

A particularly interesting special case of (24) is where φ is linear so that

ai =
i

n
− p− 1

2n
, (25)

which again satis�es Axiom 6 (monotonicity) for all mobility pro�les. The associated
mobility measure is given by

Γ1 :=
1

n

n∑
i=1

i

n
d(i) −

[
p+

1

2n

]
µd, (26)

where µd is the mean of the status di�erences di. Notice that

Γ1 = 1/2G+ µd

[
1

2
− p
]

(27)

where G is the absolute Gini coe�cient of the status di�erences di:

G :=
2

n

n∑
i=1

i

n
d(i) − µd

n+ 1

n
=

1

2n2

n∑
i=1

n∑
j=1

|di − dj| , (28)

and that, for the case of symmetric mobility Γ = 1/2G. This has a particularly nice
interpretation as half the absolute Gini12 applied to the status di�erences di.

Other types of mobility index based on (25) are discussed in section 4.4 below.

4.2.2 Mean-normalised status

(23) and (26) can be modi�ed to scale-independent versions by replacing the di in (15)
with13

di =
vi
µv
− ui
µu
.

12Clearly the absolute Gini satis�es Axiom 2 in the case of symmetric mobility and satis�es Axiom
6 for all mobility pro�les.

13Note that the mean-normalised version of (26) is not proportional to the conventional Gini evaluated
over the weighted status di�erences.
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In the case of class-1 mobility measures (in section 4.1 above), a similar modi�cation
immediately gives a class of measures that satisfy the second interpretation of the mo-
vement principle (Axiom 6). However, in the case of these class-2 mobility measures,
mean-normalisation does not change their behaviour in this respect. To see this take, as
before, i and j such that di ≥ 0 ≥ dj and consider ∆vi > 0 and ∆vj = −∆vi < 0; this
will ensure that ∆dj = −∆di < 0 and it is clear that once again this leads to no change
in the mobility measure if the weights ai are given by (22) and an increase in mobility
if the weights ai are given by (25).

4.3 Translation-independent and �intermediate� indices

We can generate a di�erent class of mobility indices just by replacing the status concept.
We do this �rst for a class of indices that are �intermediate� between scale-independent
and translation independent indices, using the terminology of Bossert and P�ngsten
1990, Eichhorn 1988. From these we can get translation independent-indices as a limiting
case.

4.3.1 �Intermediate� Class-1 mobility indices

If we replace the u and v by u+ c and v+ c where c is a non-negative constant then (19)
will be replaced by

θ (c)

n

n∑
i=1

[[
ui + c

µu + c

]α(c) [
vi + c

µv + c

]1−α(c)
− 1

]
, α(c) ∈ R, α(c) 6= 0, 1 (29)

where γ ∈ R, β ∈ R+, the term α(c) indicates that the sensitivity parameter may depend
upon the location parameter c and θ (c) is a normalisation term given by

θ (c) :=
1 + c2

α(c)2 − α(c)
; (30)

α(c) = 0 and α(c) = 1 there are obvious special cases of (29) corresponding to (20) and
(21). For any given value of c then we have an �intermediate� version of the mobility
index.

4.3.2 Translation-independent Class-1 mobility indices

By writing
α(c) := γ + βc (31)

and analysing the behaviour as c→∞ we may say more. Consider the main expression
inside the summation in (29); taking logs we may write this as

log

(
1 + v

c

1 + µv
c

)
+ α(c)

[
log
(

1 +
u

c

)
+ log

(
1 +

µv
c

)
− log

(
1 +

v

c

)
− log

(
1 +

µu
c

)]
.

(32)
Using the standard expansion

log (1 + t) = t− t2

2
+
t3

3
− ... (33)

14



and (31) we �nd that (32) becomes

log

(
1 + v

c

1 + µv
c

)
+
[
β +

γ

c

] [
u+ µv − v − µu −

u2

2c
− µ2

v

2c
+
v2

2c
+
µ2
u

2c
...

]
. (34)

For �nite γ, β, u, v, µu, µv we �nd that (34) becomes

β [u− µu − v + µv] (35)

and

lim
c→∞

θ (c) = lim
c→∞

1 + 1
c2[

β + γ
c

]2 − 1
c

[
β + γ

c

] =
1

β2
. (36)

From (35) and (36) we can see that in the limit (29) becomes

M ′
β :=

1

nβ2

n∑
i=1

[
eβ[ui−µu−vi+µv ] − 1

]
, (37)

for any β 6= 0. Let qi := ui − µu − vi + µv so that (37) can be written

1

nβ2

n∑
i=1

[
eβqi − 1

]
=

1

nβ2

n∑
i=1

[
1 + βqi +

1

2!
β2q2i +

1

3!
β3q3i +

1

4!
β4q4i + ...− 1

]
, (38)

using a standard expansion. Noting that 1
n

∑n
i=1 qi = 0, the right-hand side of (38)

becomes
1

n

n∑
i=1

[
1

2!
q2i +

1

3!
βq3i +

1

4!
β2q4i + ...

]
. (39)

As β → 0 it is clear that (39) tends to 1
2n

∑n
i=1 q

2
i . So the limiting form of (37) for β = 0

is

M ′
0 :=

1

2
var (vi − ui) . (40)

Expressions (37) and (40) give the class of translation-independent mobility measures -
where mobility is independent of uniform absolute additions to/subtractions from ever-
yone's income.

4.3.3 Translation-independent Class-2 mobility indices

Since Class-2 mobility indices are based on weighted di�erences (15) it is easy to see that
in the case of non-normalised indices where the parameter b = 1 all Class-2 mobility
measures are translation-independent: they than take the form 1

n

∑n
i=1 aid(i) where di =

vi − ui.
However, the mean-normalised versions of the Class-2 mobility indices are not translation-

independent, except in the special case where µu = µv.
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4.4 Decomposability

4.4.1 Class-1 mobility indices

Our axioms induce an additive structure for the mobility index, so that that the Class-1
mobility measures in (19)-(21) are clearly decomposable by arbitrary population sub-
groups.

Let there be K groups and let the proportion of population falling in group k be pk,
the class of scale-independent mobility measures (19) can be expressed as:

Mα =
K∑
k=1

pk

[
µu,k
µu

]α [
µv,k
µv

]1−α
Mα,k +

1

α2 − α

(
K∑
k=1

pk

[
µu,k
µu

]α [
µv,k
µv

]1−α
− 1

)
(41)

for α 6= 0, 1, where µu,k (µv,k) is the mean status in period-0 (period-1) in group k,
and µu, µv are the corresponding population means de�ned in (12), (13) (so that µu =
K−1

∑K
k=1 pkµu,k, µv = K−1

∑K
k=1 pkµv,k). In particular, notice that in the case where

u = x and v = µx, we obtain the standard formula of decomposability for the class of
GE inequality indices (Cowell 2011). We have the following limiting forms for the cases
α = 0 and α = 1, respectively

M0 =
K∑
k=1

pk

[
µv,k
µv

]
M0,k −

K∑
k=1

pk

[
µv,k
µv

]
log

(
µu,k
µu

/
µv,k
µv

)
(42)

M1 =
K∑
k=1

pk

[
µu,k
µu

]
M1,k +

K∑
k=1

pk

[
µu,k
µu

]
log

(
µu,k
µu

/
µv,k
µv

)
(43)

This means, for example, that we may partition the population unambiguously into
an upward status group U (for ui ≤ vi) and a downward status group D (for ui > vi)
and, using an obvious notation, express overall mobility as

Mα = wUMU
α + wDMD

α +Mbtw
α , (44)

where the weights wU, wD and the between-group mobility componentMbtw
α are functions

of the status-means for each of the two groups and overall; comparing MU
α and MD

α

enables one to say precisely where mobility has taken place.
We may use this analysis to extend the discussion of the choice of α in section4.1.

Consider the upward status group U (for ui ≤ vi) and the downward status group D (for
ui > vi), as de�ned in (44). From (19) we have14

MU
α = MD

1−α (45)

It suggests that mobility measurement of upward movements and of symmetric down-
ward movements would be identical with α = 0.5 (MU

0.5 = MD
0.5). Furthermore, mobility

measurement of upward movements with α = 1 would be identical to mobility measure-
ment of symmetric downward movements with α = 0 (MU

1 = MD
0 ).

14More generally, if we generate a �reverse pro�le� z′ (z) := {z′i = (vi, ui) | zi = (ui, vi) , i = 1, ..., n}
by reversing each person's history � swapping the us and vs in (19) � we have Mα(z′ (z)) = M1−α(z).
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In the mobility index Mα, the weights given to upward mobility and to downward
mobility can be studied through its decomposability property. With symmetric up-
ward/downward status movements, from (41) and (44), we can see that15

1. for α = 0.5, we have wU = wD,

2. for α < 0.5, we have wU > wD,

3. for α > 0.5, we have wU < wD.

In other words, α = 0.5 puts the same weight on both upward and downward mobility
components in (41), while α < 0.5 (α > 0.5) puts more weights on upward (downward)
mobility component. The sensitivity parameter α enables us to capture directional
sensitivity in the mobility context:16 high positive values result in a mobility index that
is more sensitive to downward movements from period 0 to period 1; negative α is more
sensitive to upward movements. Picking a value for this parameter is a normative choice.

4.4.2 Class-2 mobility indices

As with inequality indices such as the Gini coe�cient, exact decomposition of by popu-
lation subgroups is not usually possible. But for Upward/Downward decompositions of
the non-normalised mobility indices in section 4.2 we have easily interpretable results.
Clearly (23) can be rewritten as

Γ0 = p
1

np

np∑
i=1

[−]d(i) + [1− p] 1

n− np

n−np∑
i=1

[+]d(i+np)

= −pdD + [1− p] dU,

where dD, dU are the average weighted distance of downward and upward moves, re-
spectively. Now consider the general class of indices that come from using the weights
(24) in (15):

Γ =
1

n

n∑
i=1

φ

(
i

n
− p− 1

2n

)
d(i) (46)

If the function φ has the property that φ (λθ) = ψ (λ)φ (θ) for all real numbers λ, θ and
some function ψ then (46) can be written as17

Γ = pψ (p) ΓD + [1− p]ψ (1− p) ΓU (47)

15From (41) and (44), we have wU = p1(µu,1/µu)α(µv,1/µv)
1−α and wD = p2(µu,2/µu)α(µv,2/µv)

1−α.
With symmetric downward/upward mobility, we also have p1 = p2, µu,1 = µv,2 < µv,1 = µu,2 and
µu = µv. Then, w

U/wD = (µu,2/µv,2)1−2α, which is greater (less) than one if 1− 2α > (<)0.
16See also : Bhattacharya and Mazumder (2011), Corak et al. (2014), Demuynck and Van de gaer

(2010) and Schluter and Van de gaer (2011).
17To see this note that Γ = pψ (p) 1

np

∑np
i=1 φ

(
1
p

[
i
n − p−

1
2n

])
d(i) +

[1− p]ψ (1− p) 1
n−np

∑n
i=np+1 φ

(
1

1−p
[
i
n − p−

1
2n

])
d(i), ΓD = 1

np

∑np
i=1 φ

(
1
p

[
i
n − p−

1
2n

])
d(i)

and ΓU = 1
n−np

∑n
i=np+1 φ

(
1

1−p
[
i
n − p−

1
2n

])
d(i).
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Figure 1: The weights ai for di�erent values of γ
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where ΓD is mobility measured over the set of downward movers

ΓD =
1

np

np∑
i=1

φ

(
i

np
− 1− 1

2np

)
d(i)

and ΓU is mobility computed over the rest of the population:

ΓU =
1

n− np

n−np∑
i=1

φ

(
i

n− np
− 1

2 [n− np]

)
d(i+np).

The property (47) requires that φ take the form φ (θ) = Aθγ where A and γ are constants.
This means that the mobility measure becomes

Γγ =
1

n

n∑
i=1

[
i

n
− p− 1

2n

]γ
d(i), (48)

where γ is any odd number greater than or equal to 1, which gives the decomposition
formula

Γγ = pγ+1ΓD
γ + [1− p] γ+1ΓU

γ . (49)

Figure 1 shows the system of weights that emerge in a population of 100 where 40
persons experience downward movement. It is clear that the higher value of γ puts more
weight toward the extremes of the distribution of distances d.

5 Conclusion

Mobility measurement deserves careful consideration in the way that the measurement of
social welfare, inequality or poverty deserves careful consideration. This consideration
should involve principles, formal reasoning and empirical applicability. However, the
bulk of empirical studies of mobility analysis apply ready-made techniques that, in this
application, are seriously �awed. The �aws matter because, in certain circumstances,
the ready-made techniques give exactly the wrong guidance on basic questions such as
�does scenario A exhibit more movement of individuals than scenario B?�

Our approach is to show that a consistent theory of mobility measurement can be
founded on three basic principles of mobility comparisons. We do this using the met-
hodology of Cowell and Flachaire (2017, 2018) to provide a natural interpretation of
these principles in terms of formal axioms. These axioms are used in theorems that
characterise two classes of mobility measures that can be easily implemented in terms
of income (wealth) mobility or rank mobility.
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Appendix: Proofs

Proof. [Theorem 1].In both the case where Z is a connected subset of R×R and the
case where Z is Q+ ×Q+ Theorem 5.3 of Fishburn (1970) can be invoked to show that
axioms 1 to 3 imply that � can be represented as

n∑
i=1

φi (zi) , ∀z ∈ Zn, (50)

where φi is continuous, de�ned up to an a�ne transformation and, by Axiom 2 is incre-
asing in vi if vi > ui and vice versa. Using Axiom 4 in (50) we have

φi (ui, ui) = φi (ui + δ, ui + δ) , (51)

where δ := u′i−ui. Equation (51) implies that φi must take the form φi (u, u) = ai+ biu.
Since φi is de�ned up to an a�ne transformation we may choose ai = 0 and so we have

φi (u, u) = biu. (52)

Proof. [Theorem 2]. The proof proceeds by considering two cases of (λ0, λ1) .

Case 1: λ0 = λ1 = λ > 0.

Theorem 1 implies that if z ∼ z′ then

n∑
i=1

φi (zi) =
n∑
i=1

φi (z
′
i) . (53)

Axiom 5 further implies that

n∑
i=1

φi (λzi) =
n∑
i=1

φi (λz
′
i) .

These two equations imply that the function (7) is homothetic so that we may write

n∑
i=1

φi (λzi) = θ

(
λ,

n∑
i=1

φi (zi)

)
, (54)

n∑
i=1

ψi (λvi) = θ

(
λ,

n∑
i=1

ψi (vi)

)
, (55)

where θ : R→ R is increasing in its second argument. Consider the case where, for
arbitrary distinct values j and k, we have vi = ui = 0 for all i 6= j, k. This implies that
φi (ui, vi) = 0 for all i 6= j, k and so, for given values of vj, vk, λ, (54) can be written as
the functional equation:

fj (uj) + fk (uk) = h (gj (uj) + gk (uk)) , (56)
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where fi (u) := φi (λu, λvi) , gi (u) := φi (u, vi) , i = j, k and h (x) := θ (λ, x). Alternati-
vely, for given values of uj, uk, λ, (54) can be written as the functional equation

fj (vj) + fk (vk) = h (gj (vj) + gk (vk)) , (57)

with fi (v) := φi (λui, λv) , gi (v) := φi (ui, v) , i = j, k and h (x) := θ (λ, x). Take �rst
the functional equation (56): it has the solution

fi (u) = a0gi (u) + ai, i = j, k,

h (x) = a0x+ aj + ak,

where a0, aj, ak, are constants that may depend on λ, vj, vk (Polyanin and Zaitsev 2004,
Supplement S.5.5). Therefore:

φj (λuj, λvj) = a0 (λ, vj, vk)φj (uj, vj) + aj (λ, vj, vk) (58)

φk (λuk, λvk) = a0 (λ, vj, vk)φk (uk, vk) + ak (λ, vj, vk) . (59)

Since j and k are arbitrary, we could repeat the analysis for arbitrary distinct values j
and ` and vi = ui = 0 for all i 6= j, `, where ` 6= k; then we would have

φj (λuj, λvj) = a′0 (λ, vj, vk)φj (uj, vj) + a′j (λ, vj, v`) (60)

φk (λu`, λv`) = a′0 (λ, vj, vk)φ` (u`, v`) + a′` (λ, vj, v`) . (61)

where a′0, a
′
j, a`, are constants that may depend on λ, vj, v`. The right-hand sides of (58)

and (60) are equal and so aj must be independent of vj and a0 must be independent of
vj, vk. Therefore, because j and k are arbitrary we have

φi (λui, λvi) = a0 (λ)φi (ui, vi) + ai (λ, vi) , i = 1, ..., n. (62)

In the case where vi = ui, (52) and (62) yield

biλvi = a0 (λ) bivi + ai (λ, vi)

so that
ai (λ, vi) = [λ− a0 (λ)] bivi

and (62) can be rewritten

φ′i (λui, λvi)− bivi = a0 (λ)φ′i (ui, vi) , i = 1, ..., n. (63)

where φ′i (ui, vi) := φi (λui, λvi)− bivi. From Aczél and Dhombres (1989), page 346 there
must exist β ∈ R and a function h : R+ → R such that φ′i (ui, vi) = uβi hi (vi/ui) , so
that

φi (ui, vi) = uβi hi

(
vi
ui

)
+ biui. (64)

From (52) we see that (64) implies hi (1) = 0. Now return to the alternative functional
equation (57): following the same argument this must have a solution of the form

φi (ui, vi) = uβ
′

i h
′
i

(
vi
ui

)
+ bivi (65)
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Case 2: λ0 = 1, λ1 = λ 6= 1.

Again if z ∼ z′ then (53) holds. Now Axiom 5 implies
n∑
i=1

φi (ui, λvi) =
n∑
i=1

φi (ui, λv
′
i) . (66)

Equations (53) and (66) imply that the function (7) is homothetic in v so that we may
write

n∑
i=1

ψi (λvi) = θ

(
λ,

n∑
i=1

ψi (vi)

)
, (67)

where ψi (v) := φi (ui, v) and θ : R→ R is increasing in its second argument. By the
same argument as Case 1:

ψi (λvi) = a0 (λ)ψi (vi) + ai (λ) , i = 1, ..., n. (68)

Putting vi = 0 in (68) implies ai (λ) = ψi (0) [1− a0 (λ)] and (68) becomes

ψ′i (λv) = a0 (λ)ψ′i (v) , where (69)

ψ′i (v) := ψi (v)− ψi (0) . (70)

Equation (69) can be expressed as f (x+ y) = g(y) + f(x) wheref (�) := log (ψ′i (�)),
g (�) := log (a0 (�)), x = log v, y = log λ. This Pexider equation has the solution
f (x)=bx+ c, g (y) = αy

logψ′i (v) = a+ b log v, log (a0 (λ)) = b (log λ)

where the constant a may depend on i and ui. This implies

φi (ui, vi) = Ai (ui) v
b
i + φi (ui, 0) . (71)

where Ai (ui) = exp (a). Putting vi = ui in (64) and (71) we �nd

Ai (ui)u
b
i + φi (ui, 0) = biui.

since the RHS is linear in ui we must have Ai (ui) proportional to u
1−b
i . Therefore

φi (ui, vi) = civ
b
iu

1−b
i + φi (ui, 0) (72)

Now combine the results from the two cases. Since (64), (65) and (72) are true for
arbitrary ui, vi this implies that

φi (ui, vi) = ciu
α
i v

1−α
i + c′iui + c′′ivi (73)

where α := 1− b.
From (73) we distinguish two cases

1. ci 6= 0: to ensure that Axiom 2 is satis�ed the change in φi (ui, vi) must be zero
when vi = ui: this requires c

′
i = −αci and c′′i = − [1− α] ci. This implies (8).

2. ci = 0: to ensure that Axiom 2 is satis�ed c′i and c
′′
i must be of opposite sign. This

implies (9).
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