Intergenerational Wealth Formation

Over the Life-Cycle:

Evidence from Danish Wealth Records 1984-2013

Simon Halphen Boserup
University of Copenhagen
Wojciech Kopczuk
Columbia University
Claus Thustrup Kreiner
University of Copenhagen

Wealth and income mobility in Denmark...

Our data: Danish administrative wealth records, linking generations, observed for the full population from 1984-2013

Wealth and income mobility in Denmark...

Our data: Danish administrative wealth records, linking generations, observed for the full population from 1984-2013

- ...in cross-section
- Robust, nearly linear relationship. Wealth rank correlation of 0.27
- Larger than permanent income correlation of $\mathbf{0 . 2 0}$
- Similar findings using other transformations of income and wealth

Wealth and income mobility in Denmark...

Our data: Danish administrative wealth records, linking generations, observed for the full population from 1984-2013

- ...in cross-section
- Robust, nearly linear relationship. Wealth rank correlation of 0.27
- Larger than permanent income correlation of $\mathbf{0 . 2 0}$
- Similar findings using other transformations of income and wealth
- ...over the life-cycle
- U-shaped pattern of wealth correlation
- Large (0.35) at age 20
- Declining (to 0.17) until early 30s
- Then increasing (to 0.27) in the 40s

Wealth and income mobility in Denmark...

Our data: Danish administrative wealth records, linking generations, observed for the full population from 1984-2013

- ...in cross-section
- Robust, nearly linear relationship. Wealth rank correlation of 0.27
- Larger than permanent income correlation of $\mathbf{0 . 2 0}$
- Similar findings using other transformations of income and wealth
- ...over the life-cycle
- U-shaped pattern of wealth correlation
- Large (0.35) at age 20
- Declining (to 0.17) until early 30s
- Then increasing (to 0.27) in the 40s
- ...after bequests
- Bequests quantitatively important ($1 / 3$ of average wealth on impact)
- Wealth correlation increases on impact to $\mathbf{0 . 3 7}$

Correlation of wealth rank of parents and children

Mean child wealth rank • P25 and P75 -- $\quad 95 \%$ conf. interval $\longmapsto \quad$ OLS fit -

Wealth and income correlation over life-cycle

What is the "right" number?

Wealth at a point time is a fraction of lifetime resources: not all income and transfers yet received, some consumption has already happened.

Income is one component of lifetime resources, transfers are another.

We propose a simple theoretical framework that clarifies the relationship between measures of mobility in terms of wealth, income and lifetime-resources

Lifetime resources

Why lifetime resources: measure of consumption opportunities
Correlation of lifetime resources may be inferred by (appropriately) estimating wealth correlation when parents and children are at the same stage of their life-cycles
We can estimate it in a way consistent with theory when both parents and children are in their 40s and majority (80%) before bequests: our preferred estimate is $\mathbf{0 . 2 5}$
We can also estimate this relationship at other ages, though with more empirical issues, and obtain similar results

Wealth correlation holding parents' and children's age the same

Lifetime resources: the role of bequests

Why not measure it after bequests? Data limitation: we can't observe wealth after bequests for both parents and children (we don't know when grandparents die).

Lifetime resources: the role of bequests

Why not measure it after bequests? Data limitation: we can't observe wealth after bequests for both parents and children (we don't know when grandparents die).

Theory: Correlation of wealth when both parents and children are at the same stage of their life-cycles should be the same at any stage including pre- and post-bequests.

Lifetime resources: the role of bequests

Why not measure it after bequests? Data limitation: we can't observe wealth after bequests for both parents and children (we don't know when grandparents die).

Theory: Correlation of wealth when both parents and children are at the same stage of their life-cycles should be the same at any stage including pre- and post-bequests.

How can correlation of 0.25 be reconciled with large post- bequest increase in correlation: bequests are large relative to wealth at a point time but they are a much smaller share of total lifetime resources

Lifetime resources: the role of bequests

Why not measure it after bequests? Data limitation: we can't observe wealth after bequests for both parents and children (we don't know when grandparents die).

Theory: Correlation of wealth when both parents and children are at the same stage of their life-cycles should be the same at any stage including pre- and post-bequests.

How can correlation of $\mathbf{0 . 2 5}$ be reconciled with large post- bequest increase in correlation: bequests are large relative to wealth at a point time but they are a much smaller share of total lifetime resources

What lifetime resources potentially miss: flow of non-consumption benefits from wealth (control, economic power, political influence)

Wealth information

- Denmark had a wealth tax until 1996
- Since then, asset information used for tax enforcement (cross-checking of wealth changes and income)
- Major categories of assets third party reported by banks, financial institutions, government agencies - deposits, stocks, bonds, value of property, debts and liabilities of many different kinds
- Property value assessed based on detailed information about property and also used for taxation of imputed rent on property
- Assets and debts of non-corporate firms
- Major categories not included: pensions throughout; after 1996: corporate non-publicly traded assets, cars, cash. Anything else that is concealed from tax authorities
- Data break in 1996 (more categories self-reported up until that point, third party reporting increased) but overlap allows to check for consistency

Sample and timing

- Parents and children can be linked for children born after 1960 (before 1960 the link is incomplete)
- Wealth observed for 1984-2013
- Main analysis:
- children who are $45-50$ in 2010
- both parents alive in 1986
- children's wealth and income measured as average over 2009-2011, parental wealth and income as average over 1984-1986.
- Life-cycle patterns and sensitivity analysis using measurement in other years,
- For bequest analysis: children with one living parent in 2009, compare those with parent who did vs did not die in 2010.
- Wealth ranking: Ranks from 0-100 within each age cohort

Summary statistics - baseline sample

	Children		Parents	
	Mean	SD	Mean	SD
Age	47.2	1.7	47.9	5.1
Income	372,700	344,491	365,804	343,859
Value of assets	$1,468,104$	$4,222,321$	$1,399,431$	$3,397,146$
Value of liabilities	960,840	$2,793,953$	757,098	$2,325,781$
Net wealth	507,264	$2,510,350$	642,333	$2,267,429$
Percentiles of wealth				
\quad 20th	$-132,788$		0	
\quad 40th	32,386		21,114	
\quad 60th	330,869		351,527	
\quad 80th	849,631	$1,212,174$		
Share men	0.51	0.49		
Share married	0.63		0.88	
Share self-employed	0.07		0.17	
Observations	363,857		727,714	

Correlation of wealth rank of parents and children

Mean child wealth rank • P25 and P75 -- $\quad 95 \%$ conf. interval $\longmapsto \quad$ OLS fit -

Wealth rank correlation - no self-employed

Mean child wealth rank • P25 and P75 -- $\quad 95 \%$ conf. interval $\longmapsto \quad$ OLS fit -

Wealth rank correlation - parents in 2009-2011

Mean child wealth rank • P25 and P75 -- $\quad 95 \%$ conf. interval $\longmapsto \quad$ OLS fit -

Correlation of income rank of parents and children

Mean child income rank • P25 and P75 -- $\quad 95 \%$ conf. interval $\longmapsto \quad$ OLS fit -

Wealth mobility — estimates

Child wealth

	(1)	(2) Parents alive in 2011	(3) Parental wealth 1997-1999	(4) Age controls	(5) Par. alive, 1997-1999, age controls
A. Rank transformation					
Parental wealth	$\begin{gathered} 0.272 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.250 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.305 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.260 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.269 \\ (0.003) \end{gathered}$
Observations	363,857	157,314	271,600	363,857	156,297
B. Log transformation					
Parental wealth	0.238	0.236	0.256	0.231	0.248
	(0.003)	(0.004)	(0.003)	(0.003)	(0.004)
Observations	207,266	92,054	162,444	207,266	94,750
C. IHS transformation					
Parental wealth	0.215	0.191	0.284	0.194	0.230
	(0.002)	(0.004)	(0.003)	(0.002)	(0.004)
Observations	363,857	157,314	271,600	363,857	156,297

What is the "right" number? Framework.

Lifetime resources R_{g}

$$
R_{g}=Q_{g-1}+Y_{g}
$$

where Q_{g-1} are lifetime transfers from parents and Y_{g} is lifetime income

$$
Q_{g-1}=q_{g-1}+b_{g-1}
$$

where q_{g-1} are inter-vivos gifts and b_{g-1} are bequests.
Lifetime income

$$
Y_{g}=e_{g-1}+u_{g}
$$

where e_{g-1} is parental investment in human capital of a child

Intergenerational linkages

Two general channels: transfers and human capital investment

$$
Q_{g-1}=\alpha_{Q} \cdot R_{g-1} \quad e_{g-1}=\alpha_{e} \cdot R_{g-1}
$$

α_{e} and α_{Q} reduced form, but can micro-founded using Cobb-Douglas preferences with joy-of-giving motive $\frac{1-\alpha_{e}-\alpha_{Q}}{T} \sum_{i=1}^{T} \ln (C)+\alpha_{e} \ln (e)+\alpha_{Q} \ln (Q)$

Intergenerational linkages

Two general channels: transfers and human capital investment

$$
Q_{g-1}=\alpha_{Q} \cdot R_{g-1} \quad e_{g-1}=\alpha_{e} \cdot R_{g-1}
$$

α_{e} and α_{Q} reduced form, but can micro-founded using Cobb-Douglas preferences with joy-of-giving motive $\frac{1-\alpha_{e}-\alpha_{Q}}{T} \sum_{i=1}^{T} \ln (C)+\alpha_{e} \ln (e)+\alpha_{Q} \ln (Q)$

Then,

$$
R_{g}=Y_{g}+Q_{g-1}=e_{g-1}+Q_{g-1}+u_{g}=\left(\alpha_{e}+\alpha_{Q}\right) \cdot R_{g-1}+u_{g}
$$

Intergenerational relationship of lifetime resources is measured by

$$
\beta_{R}=\alpha_{e}+\alpha_{Q}
$$

This is our parameter of interest

Income mobility

$$
\begin{aligned}
Y_{g} & =\alpha_{e} \cdot R_{g-1}+u_{g} \\
Y_{g-1} & =\alpha_{e} \cdot R_{g-2}+u_{g-1} \\
R_{g-1} & =\left(\alpha_{e}+\alpha_{Q}\right) \cdot R_{g-2}+u_{g-1}
\end{aligned}
$$

implies that

$$
Y_{g}=\left(\alpha_{e}+\alpha_{Q}\right) \cdot Y_{g-1}-\alpha_{Q} \cdot u_{g-1}+u_{g}
$$

In the presence of transfers $\left(\alpha_{Q} \neq 0\right)$, permanent income mobility underestimates lifetime resources mobility $\left(\alpha_{e}+\alpha_{Q}\right)$.

Wealth mobility

One needs to specify when wealth is measured.

Wealth mobility

One needs to specify when wealth is measured.
Notation: by age t, the person will have

- received fraction ρ^{t} of lifetime income
- received fraction γ^{t} of lifetime transfers (both inter-vivo and beqests)
- spent fraction ζ^{t} of lifetime resources (on consumption, human capital investments, gifts and bequests)

Wealth at time t :

$$
w_{g}^{t}=\rho^{t} Y_{g}+\gamma^{t} Q_{g-1}-\zeta^{t} R_{g}
$$

so that

$$
w_{g}^{t}=\left(\left(\gamma^{t}-\zeta^{t}\right) \alpha_{Q}+\left(\rho^{t}-\zeta^{t}\right) \alpha_{e}\right) \cdot R_{g-1}+\left(\rho^{t}-\zeta^{t}\right) u_{g}
$$

Wealth mobility (continued)

Analogous to the case of income except for age dynamics
Relationship between child's wealth at t and parental wealth at s :

$$
w_{g}^{t}=\left(\alpha_{e}+\alpha_{Q}\right) \cdot \zeta_{t}^{s} \cdot w_{g-1}^{s}-v_{t}^{s} \cdot u_{g-1}+\left(\rho^{t}-\zeta^{t}\right) \cdot u_{g}
$$

where

$$
\xi_{t}^{s} \equiv \frac{\left(\gamma^{t}-\zeta^{t}\right) \alpha_{Q}+\left(\rho^{t}-\zeta^{t}\right) \alpha_{e}}{\left(\gamma^{s}-\zeta^{s}\right) \alpha_{Q}+\left(\rho^{s}-\zeta^{s}\right) \alpha_{e}}
$$

and

$$
v_{t}^{s} \equiv \gamma^{t} \alpha_{Q}+\rho^{t} \alpha_{e}-\zeta^{t}\left(\alpha_{e}+\alpha_{Q}\right)\left(\rho^{s}-\zeta^{s}\right)
$$

Wealth mobility (continued)

Analogous to the case of income except for age dynamics Relationship between child's wealth at t and parental wealth at s :

$$
w_{g}^{t}=\left(\alpha_{e}+\alpha_{Q}\right) \cdot \zeta_{t}^{s} \cdot w_{g-1}^{s}-v_{t}^{s} \cdot u_{g-1}+\left(\rho^{t}-\zeta^{t}\right) \cdot u_{g}
$$

where

$$
\xi_{t}^{s} \equiv \frac{\left(\gamma^{t}-\zeta^{t}\right) \alpha_{Q}+\left(\rho^{t}-\zeta^{t}\right) \alpha_{e}}{\left(\gamma^{s}-\zeta^{s}\right) \alpha_{Q}+\left(\rho^{s}-\zeta^{s}\right) \alpha_{e}}
$$

and

$$
v_{t}^{s} \equiv \gamma^{t} \alpha_{Q}+\rho^{t} \alpha_{e}-\zeta^{t}\left(\alpha_{e}+\alpha_{Q}\right)\left(\rho^{s}-\zeta^{s}\right)
$$

Wealth mobility measured at child's age t and parent's age s is:

- Different than $\alpha_{e}+\alpha_{Q}$ because of the ξ_{t}^{s} term
- Biased if $v_{t}^{s} \cdot u_{g-1}$ not dealt with

Addressing the bias

In order to obtain estimate the coefficient on w_{g-1} (i.e. $\left.\left(\alpha_{e}+\alpha_{Q}\right) \xi_{t}^{s}\right)$ we need to deal with the presence of $v_{t}^{s} u_{g-1}$
Recall that $Y_{g}=\left(\alpha_{e}+\alpha_{Q}\right) Y_{g-1}-\alpha_{Q} u_{g-1}+u_{g}$, solve for u_{g-1}, substitute for it in terms of Y_{g}, Y_{g-1} and u_{g} to obtain

$$
\begin{aligned}
& w_{g}^{t}=\left(\alpha_{e}+\alpha_{Q}\right) \cdot \zeta_{t}^{s} \cdot w_{g-1}^{s}-\frac{v_{t}^{s}}{\alpha_{Q}} \cdot Y_{g-1}-v_{t}^{s} \frac{\alpha_{Q}+\alpha_{e}}{\alpha_{Q}} \cdot Y_{g} \\
&+\left(\rho^{t}-\zeta^{t}-\frac{v_{t}^{s}}{\alpha_{Q}}\right) \cdot u_{g}
\end{aligned}
$$

Addressing the bias

In order to obtain estimate the coefficient on w_{g-1} (i.e. $\left.\left(\alpha_{e}+\alpha_{Q}\right) \xi_{t}^{s}\right)$ we need to deal with the presence of $v_{t}^{s} u_{g-1}$
Recall that $Y_{g}=\left(\alpha_{e}+\alpha_{Q}\right) Y_{g-1}-\alpha_{Q} u_{g-1}+u_{g}$, solve for u_{g-1}, substitute for it in terms of Y_{g}, Y_{g-1} and u_{g} to obtain

$$
\begin{array}{r}
w_{g}^{t}=\left(\alpha_{e}+\alpha_{Q}\right) \cdot \xi_{t}^{s} \cdot w_{g-1}^{s}-\frac{v_{t}^{s}}{\alpha_{Q}} \cdot Y_{g-1}-v_{t}^{s} \frac{\alpha_{Q}+\alpha_{e}}{\alpha_{Q}} \cdot Y_{g} \\
\\
+\left(\rho^{t}-\zeta^{t}-\frac{v_{t}^{s}}{\alpha_{Q}}\right) \cdot u_{g}
\end{array}
$$

Addressing the bias: estimate intergenerational mobility while controlling for permanent income of parents and children

Life-cycle dynamics of wealth mobility

$$
\xi_{t}^{s}=\frac{\left(\gamma^{t}-\zeta^{t}\right) \alpha_{Q}+\left(\rho^{t}-\zeta^{t}\right) \alpha_{e}}{\left(\gamma^{s}-\zeta^{s}\right) \alpha_{Q}+\left(\rho^{s}-\zeta^{s}\right) \alpha_{e}}
$$

Intuition: the exact relationship to parental resources varies over the life-cycle

Life-cycle dynamics of wealth mobility

$$
\xi_{t}^{s}=\frac{\left(\gamma^{t}-\zeta^{t}\right) \alpha_{Q}+\left(\rho^{t}-\zeta^{t}\right) \alpha_{e}}{\left(\gamma^{s}-\zeta^{s}\right) \alpha_{Q}+\left(\rho^{s}-\zeta^{s}\right) \alpha_{e}}
$$

Intuition: the exact relationship to parental resources varies over the life-cycle

Observations:

- When $\xi_{t}^{s}=1$, we will recover $\alpha_{e}+\alpha_{Q}$

Life-cycle dynamics of wealth mobility

$$
\xi_{t}^{s}=\frac{\left(\gamma^{t}-\zeta^{t}\right) \alpha_{Q}+\left(\rho^{t}-\zeta^{t}\right) \alpha_{e}}{\left(\gamma^{s}-\zeta^{s}\right) \alpha_{Q}+\left(\rho^{s}-\zeta^{s}\right) \alpha_{e}}
$$

Intuition: the exact relationship to parental resources varies over the life-cycle

Observations:

- When $\tilde{\zeta}_{t}^{s}=1$, we will recover $\alpha_{e}+\alpha_{Q}$
- $\xi_{t}^{s}=1$ when $t=s$. More generally: the same stage of life-cycle.

Life-cycle dynamics of wealth mobility

$$
\xi_{t}^{s}=\frac{\left(\gamma^{t}-\zeta^{t}\right) \alpha_{Q}+\left(\rho^{t}-\zeta^{t}\right) \alpha_{e}}{\left(\gamma^{s}-\zeta^{s}\right) \alpha_{Q}+\left(\rho^{s}-\zeta^{s}\right) \alpha_{e}}
$$

Intuition: the exact relationship to parental resources varies over the life-cycle

Observations:

- When $\xi_{t}^{s}=1$, we will recover $\alpha_{e}+\alpha_{Q}$
- $\tilde{\zeta}_{t}^{s}=1$ when $t=s$. More generally: the same stage of life-cycle.
- Bequests: $\gamma^{t} \uparrow$ discretely at time t. Holding parent's measurement constant, interpretation depends on whether parents themselves are observed before or after receiving bequests.

Life-cycle dynamics of wealth mobility

$$
\xi_{t}^{s}=\frac{\left(\gamma^{t}-\zeta^{t}\right) \alpha_{Q}+\left(\rho^{t}-\zeta^{t}\right) \alpha_{e}}{\left(\gamma^{s}-\zeta^{s}\right) \alpha_{Q}+\left(\rho^{s}-\zeta^{s}\right) \alpha_{e}}
$$

Intuition: the exact relationship to parental resources varies over the life-cycle

Observations:

- When $\tilde{\zeta}_{t}^{s}=1$, we will recover $\alpha_{e}+\alpha_{Q}$
- $\tilde{\zeta}_{t}^{s}=1$ when $t=s$. More generally: the same stage of life-cycle.
- Bequests: $\gamma^{t} \uparrow$ discretely at time t. Holding parent's measurement constant, interpretation depends on whether parents themselves are observed before or after receiving bequests.
- No inter-vivos gifts $\gamma^{t}=0: \zeta_{t}^{s}<0$ early on

Life-cycle dynamics of wealth mobility

$$
\xi_{t}^{s}=\frac{\left(\gamma^{t}-\zeta^{t}\right) \alpha_{Q}+\left(\rho^{t}-\zeta^{t}\right) \alpha_{e}}{\left(\gamma^{s}-\zeta^{s}\right) \alpha_{Q}+\left(\rho^{s}-\zeta^{s}\right) \alpha_{e}}
$$

Intuition: the exact relationship to parental resources varies over the life-cycle

Observations:

- When $\tilde{\zeta}_{t}^{s}=1$, we will recover $\alpha_{e}+\alpha_{Q}$
- $\xi_{t}^{s}=1$ when $t=s$. More generally: the same stage of life-cycle.
- Bequests: $\gamma^{t} \uparrow$ discretely at time t. Holding parent's measurement constant, interpretation depends on whether parents themselves are observed before or after receiving bequests.
- No inter-vivos gifts $\gamma^{t}=0: \zeta_{t}^{s}<0$ early on
- Life-cycle dynamics: hold s constant, vary t

Interenerationality mobility over life-cycle - illustration

Interenerationality mobility over life-cycle - illustration

Wealth and income correlation over life-cycle

Wealth correlation over life-cycle by parental wealth decile

Income correlation over life-cycle by parental wealth decile

Wealth correlation over life-cycle - over time

Summary statistics - bequest sample

	Children (2007-2009)		Parents (1984-1986)	
	Control group	Treatment group	Control group	Treatment group
Mean wealth	650,980	587,172	576,116	558,412
20th percentile	$-92,882$	$-95,734$	8,561	8,866
40th percentile	73,392	52,949	247,371	234,737
60th percentile	454,867	414,489	540,218	526,611
80th percentile	$1,041,054$	992,703	921,644	924,750
Mean income	346,836	335,738	297,496	251,436
20th percentile	204,846	188,503	156,135	89,420
40th percentile	294,833	289,118	243,481	193,533
60th percentile	357,507	350,909	323,777	279,595
80th percentile	450,467	440,436	411,161	378,062
Observations	135,335	5,708	135,335	5,708

Wealth rank correlation before bequests

Wealth rank correlation after bequests

Rank correlation before bequests - parents in 2009-11

Rank correlation after bequests - parents in 2009-11

Summary so far

- Parents and children in their late 40 s
- Nonparametric evidence of wealth correlation - almost linear rank relationship
- Rank wealth correlation of 0.27 , robust
- Much larger than ("permanent") income correlation
- Similar for logs/IHS
- U-shape over life-cycle
- Large correlation early on - evidence of inter vivos transfers
- Consistent with life-cycle wealth accumulation dynamics
- Bequests increase intergenerational correlation significantly on impact
- Relationship to lifetime resources? Recall theory:
- Measure wealth at the same stage of life-cycle
- Control for permanent income of parents and children

Rank correlation of wealth and lifetime resources

	(1) Child wealth	(2) Child income	(3) Child wealth	(4) Child wealth
Parental wealth rank (1984-1986)	$0.272^{* * *}$ (0.002)		$0.240^{* * *}$	$0.235^{* * *}$
			(0.002)	(0.002)
Parental income rank (1984-1986)		$0.200^{* * *}$	0.004^{*}	
		(0.002)	(0.002)	
Child income rank (2009-2011)			$0.191^{* * *}$	
			(0.002)	

Child and parent income percentile

Observations	363,857	363,857	363,857	363,857
Adj. R-squared	0.074	0.040	0.110	0.114

[^0]
Correlation of wealth and lifetime resources - log specification

	(1)	(2)	(3)	(4)
	Child wealth	Child income	Child wealth	Child wealth
Log parental wealth	$0.227^{* * *}$		$0.205^{* * *}$	$0.184^{* * *}$
$(1984-1986)$	(0.003)		(0.003)	(0.003)
Log parental income		$0.107^{* * *}$	$0.039^{* * *}$	
$(1984-1986)$		(0.003)	(0.004)	
Log child income			$0.342^{* * *}$	
$(2009-2011)$		(0.006)		
Child and parent income				\times
percentile dummies				
Observations	190,145	190,145	190,145	190,145
Adj. R-squared	0.043	0.010	0.084	0.117
Stand				

[^1]
Wealth correlation over life-cycle, with controls

Rank correlation of wealth before and after bequests

Child wealth rank
Before parental death (2007-2009) After parental death (2011-2013)
Control group Treatment group Control group Treatment group
A. No income controls

Intergenerational wealth
rank correlation

0.277	0.295	0.273	0.375
(0.003)	(0.013)	(0.003)	(0.012)

B. Controlling for child and parental income

Intergenerational wealth

0.231	0.256	0.238	0.342
(0.003)	(0.013)	(0.003)	(0.013)
135,335	5,708	135,335	5,708

Measuring correlation at the same stage of life-cycle

- Estimate when parents and children are about 45: 0.25
- Estimate for the same group right after parents die: 0.34
- The latter corresponds to parents and children at different stages of life-cycle (children post-bequest, parents unknown)
- Theory: we should get the same result at any stage of life-cycle
- Problems with implementation at other ages:
- Children 30 in 2010, parents 30 in 1985 - we can't observe permanent income of children
- Children 60 in 2010, parents 60 in 1985 - we can't observe permanent income of parents
- Incomplete data coverage for children born before 1960 (those over age 50 in 2010)
- With this caveat, let's do the best we can: estimate wealth rank correlation measuring children and parental wealth at the same age, while controlling for income at 45-50 or the closest current income that one we can observe

Wealth correlation holding parents' and children's age the same

Conclusions

- Baseline wealth rank correlation of 0.27 , income correlation of 0.20
- However, there is no single wealth correlation
- Wealth correlation has a U-shape pattern over the life-cycle.
- In particular, it reveals the importance of inter vivos gifts
- Bequests quantitatively large and have large impact on measured wealth correlation
- Appropriately estimated wealth correlation may be used to infer correlation of lifetime resources - that correlation is 0.25 when measured pre-bequests
- However, as far as we can estimate it, the correlation holding the stage of life-cycle constant is quite stable past the age of 35

[^0]: Standard errors in parentheses
 ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$

[^1]: Standard errors in parentheses

 * $p<0.05,{ }^{* *} p<0.01$, ${ }^{* * *} p<0.001$

