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Abstract

This paper is an investigation of the third-degree stochastic dominance order which has

been introduced in the context of risk analysis and is now receiving an increased attention in

the area of inequality measurement. After observing that this partial order fails to satisfy

the von Neumann-Morgenstern property in the space of random variables, we introduce

strong and local third-degree stochastic dominance. We motivate these two new binary

relations and offer a complete and simple characterizations in the spirit of the Lorenz

characterization of the second-degree stochastic order. The paper compares our results

with the closest literature.
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1 Introduction

Stochastic orders lie at the crossroads of several fields ranging from portfolio analysis to in-

equality measurement. Given an underlying space of choices X, they are defined as the in-

tersection of a family F of complete orders over X. Any particular complete order % in the

family F represents the preference of an individual or social decision-maker over X and the

stochastic order therefore identifies the pairs of choices on which all the decision makers in

the class F unanimously agree. The most common application is the case where X is the set

of probability distributions on the real numbers: each member of is interpreted either as a

lottery over monetary gains or losses or as an income distribution. In all the family consists

of a subclass of complete orderings satisfying von Neumann-Morgenstern independence prop-

erty and therefore expected utility maximizers:1 the first stochastic order %1 asks for the von

Neumann-Morgenstern utility to be increasing, the second stochastic order %2 asks in addition

to the first property for the von Neumann Morgenstern utility function to be concave, the

third stochastic order %3 asks in addition to these two properties for the marginal utility to

be convex. The main task is of course to sort out a simple characterization of these various

nested stochastic orders but a first thing must be noted: since the von Neumann-Morgenstern

independence property is preserved by intersection, all these stochastic orders will satisfy the

von Neumann-Morgenstern property too.

The set X of probability distributions over the real numbers is in a one to one relationship

with the set Xt of nondecreasing and right-continuous real valued random variables over the

unit interval [0, 1]. To each such random variable let P be its probability law and to each

probability distribution over <, let X(t) = Sup
F (x)≤t

x where F (x) = P (]−∞, x]). Given this one

to one relationship, we can therefore transpose any complete or partial order % over X into an

1A remarkable characterization of the class of preorders satisfying the von Neumann-Morgenstern indepen-

dence axiom (together with some regularity axioms) but not necessarily complete has been derived by Baucells

and Shapley (1998) and Dubra, Maccheroni and Ok (2004). They show that any such preorder can be represented

as the intersection of a finite family of von Neumann-Morgenstern utility functions.
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order %t over Xt and vice versa. Therefore we can define along these lines %t
1, %t

2 and %t
3 .

Note also that Xt is a convex cone in a linear vector space and therefore the von Neumann-

Morgenstern independence property is mathematically well defined on Xt as well. We have

pointed out that %1, %2 and %3 both satisfy the von Neumann-Morgenstern independence

property. There is not reason to think a priori that %t
1, %t

2 and %t
3 will satisfy this property

as well. Following well know characterizations, we have surprisingly that %t
1 and %t

2 satisfy

the independence property as well. The point of departure of this paper is the recognition

that this is not true anymore for %t
3 and to take this as the mean reason why many things

discontinuously change when we reach the third order.

In the first section we gather the main definitions used in this paper without being very

explicit about the partial orderings that we are considering. In section 2, we introduce some

general notions on partial preorders defined on a convex subset of real vector spaces. In section

3, we introduce the three first stochastic orders over the subset of nondecreasing random

variables taking discrete values. We ask the following question in relation to the von Neumann-

Morgenstern independence property. Take two such random variables x and y. When is it the

case that for any third option z and any λ in [0, 1], λx+ (1− λ)z %t
3 λy+ (1− λ)z ? Our first

main results states that this will happen if and only if x %t
2 y i.e. there is no subrelation of

%t
3 other than %t

2 satisfying the von Neumann-Morgenstern independence property. We then

turn to examine a weakened version of the von Neumann-Morgenstern ’s test. Precisely we ask:

When is it the case that for any λ in [0, 1], x %t
3 λx+(1−λ)y %t

3 y ? We call strong third-degree

stochastic dominance this binary relation and we offer a complete characterization of strong

third-degree stochastic dominance. The main point in the characterization is its simplicity:

it consists of a simple finite list of inequalities very much in the spirit of the classical Lorenz

inequalities. Turning to inequality measurement, we then compare our result to some results

on inequality measurement with third degree dominance and show exactly why our test is a

covariance test strictly more demanding than the classical variance test.

In section 4, we introduce the notion of local stochastic dominance. We say that x %i y
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locally, denoted x %L
i y if any move from x in the direction y − x leads to an improvement in

the sense of %i as long as the intensity of the move is small enough. After noting that local and

”global” stochastic dominance coincide for the first and second stochastic preorders, we show

that ”global” third-degree stochastic dominance implies local stochastic dominance but that

the reverse implication does not hold in general. We offer an almost full simple characterization

"à la Lorenz" of local third-degree stochastic dominance and we illustrate how this can be used

in the evaluation of policy reforms.

Finally in section 5, we indicate how our results for discrete distributions extend to any

distribution and we show why inverse third-degree stochastic dominance implies strong third-

degree stochastic dominance when we restrict to some specific smaller cones of random variables.

The proofs of all lemmas and propositions are relegated to the appendix.

The results of this paper lead to a better understanding of the first three stochastic pre-

orders. For the first two stochastic orders strong, global, local and inverse are all the same.

When we reach the third order these equivalences do not hold anymore: strong implies global

which implies local but the reverse implications are false in general; further global and inverse

are logically unrelated. Our claim is that the root of this brutal change is the fact that the

third-degree stochastic preorder does not satisfy the von Neumann-Morgenstern independence

property.

Some Related Literature

Before proceeding with the body of our analysis, let us briefly discuss the relationship of this

work to the most closely related literature. Third degree stochastic dominance was introduced

in the context of deciding between uncertain prospects and characterized by Whitmore (1970).

The property that the third derivative of the von Neumann-Morgenstern utility function has

a positive sign has been investigated by Menezes, Geiss and Tressler (1980). Is is strictly less

demanding than the classical property asking for the Arrow-Pratt ’s measure of risk aversion to

decrease with the level of wealth. We could therefore define a new stochastic order for the class

of utility functions exhibiting declining risk aversion; Bawa (1975) demonstrates that this new
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stochastic order coincides with third-degree stochastic dominance as long as the distributions

have the same first moment. Bawa produces also a finite algorithm to test for third-degree

stochastic dominance. Fishburn (1982, 1985) derive some nice mathematical results on third-

degree stochastic dominance.

In the area of inequality measurement, third-degree stochastic dominance has received in the

last decade an increased attention because it offers the obvious advantage of leading sometimes

to conclusive judgments2 about the evolution of inequality in income distribution in situations

where the Lorenz curves intersect; it prevents the practitioner from deriving conclusions which

would be too sensitive to the choice of a particular inequality index. Early contributions by

Atkinson (1973) and Kolm (1976) points out the necessity of supplementing the Lorenz criterion

by considerations echoing third-degree stochastic dominance; Kolm’s principle of diminishing

transfers asks that an inequality index decreases more under the effect of a progressive transfer

when the transfer takes place at the bottom part of the income distribution, as opposed to

the top part. The more important contributions on this topic are due to Shorrocks and Foster

(1987) and Davies and Hoy (1995). The main result in Shorrocks and Foster states that if x

and y are two income distributions with the same first moment, then x %3 y if and only if we

can move from y to x by a finite sequence of transfers which are either progressive or variance

preserving composite transfers of the following type: some individual i transfers money to

some individual j poorer than him and some individual k with an income at least equal to the

income of i transfers money to some individual l richer than him. They also show that if the

Lorenz curves of x and y intersect only once, then x %3 y if and only if xi > yi where i is

the first index for which xi 6= yi and the variance of x is less or equal to the variance of y; in

words in the case of single crossing of the Lorenz curves, third-degree stochastic dominance is

equivalent to the combination of the Rawls’s principle and the variance principle. Davies and

2See Davis and Hoy (1995) and Shorrocks and Foster (1987) for some evidence on real data that third-degree

is useful to supplement the Lorenz order. Trannoy and Lugand (1992) make use of third-degree stochastic

dominance in their analysis of some French data.

5



Hoy (1995) consider the more general case of Lorenz curves with multiple intersections and show

that third-degree stochastic dominance amounts to the comparison of variances for truncated

income distributions; the truncation points are the intersection points where x intersects y from

below.

The main merit of these two contributions is the identification of the key role of the variance

in third-degree stochastic dominance. The variance principle is far from being an incontrovert-

ible principle and it is not difficult to come out with examples where the variance principle

is not conclusive but where some other principles are conclusive. Take for example the case

where x = (21, 80, 999980, 100000020) and y = (1, 100, 1000000, 100000000). The Lorenz curve

of x intersects the Lorenz curve of y once from above but the variance of x is greater than

the variance of y. In that case however, inverse third-degree stochastic dominance leads to the

conclusion that inequality has been reduced when moving from y to x since the Gini index for

x is equal to the Gini index for y; the principle of minimal inequality aversion in Le Breton

(1994) leads also to the same conclusion for low values of the minimal degree of inequality

aversion. This example shows that it is not the case that all excentric inequality conclusions

are excluded by third-degree stochastic dominance.

Finally, it should be pointed out that even if the two contributions discussed above improve

substantially our understanding of third-degree stochastic dominance, they do not contain a

characterization of third-degree stochastic dominance which would have the transparency of

Lorenz inequalities; as noted by Shorrocks and Foster ”No analogue of Lorenz dominance is

known to be equivalent to the third-order stochastic dominance”. In our opinion the search of

such inequalities is not motivated by the necessity of having a finite algorithm (such algorithms

exist) but by the interest of expressing third-degree stochastic dominance x %3 y by a finite list

of inequalities only involving the Lorenz vectors attached to x and y. Our paper provides such

characterizations for local third-degree stochastic dominance and strong third degree stochastic

dominance but not for third-degree stochastic dominance.
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2 Preliminaries

In this section we introduce some general notions on partial preorders defined on real vector

spaces. Let K be a convex subset of a real vector space X and % be a preorder over K. We

denote respectively by Â the strict relation induced by % and by ∼ the indifference relation

induced by %. Let %∗ and %∗∗ be the two subrelations of % defined as follows. Let x, y ∈ K

x %∗ y iff x Â λx+ (1− λ)y % y for all λ ∈ ]0, 1[

and

x %∗∗ y iff λx+ (1− λ)z % λy + (1− λ)z for all λ ∈ ]0, 1] and all z ∈ K.

The latter subrelation %∗∗ refines % by asking not only that x % y but also that for any

third option z, the mixture λx+(1−λ)z is preferred to λy+(1−λ)z. The former subrelation

%∗ only asks for a sort of intermediateness property: the mixture λx + (1 − λ)y must always

be between x and y. It is trivial to see that %∗∗⊆ %∗.

Of some interest are of course the preorders for which either %∗∗= % or %∗= %. Note first

that %∗∗= % is equivalent to:

x % y ⇒ λx+ (1− λ)z % λy + (1− λ)z for all λ ∈ ]0, 1] and all z ∈ K.

This property on % is exactly the independence property of von-Neumann-Morgenstern

expected utility theory. Therefore if the preorder is complete and continuous, then it is well

known that % satisfies the independence property if and only if there is a continuous linear

functional over X which is a utility representation of % over K.

Here we do not assume that % is complete. For each subset A ⊆ X, consider the binary

relation %A, defined over K as follows:

x %A y iff x = y + z for some z ∈ A.

It is immediate to show that %A is a preorder if and only if 0 ∈ A and A is stable under

addition. Note that if A ∩ (−A) = {0}, then x ∼A y if and only if x = y. In that case it
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follows easily that %∗∗A = %A if and only if A is a convex cone pointed on 0. Therefore we can

generate a large class of partial preorders % for which %∗∗ = %. Of course if we insist on %A

to be complete, then the cone A must be a half space.

Similarly, %∗ = % is equivalent to:

x % y ⇒ x Â λx+ (1− λ)y % y for all λ ∈ ]0, 1[ .

It is simple to see that %∗A = %A if and only if A is convex. Therefore within the class %A,

%∗A = %A if and only if %∗∗A = %A . This does not hold for an arbitrary partial order %.

To conclude note that %∗∗ is an order but %∗ is not transitive in general (however %∗ is

of course acyclic) as simply illustrated by the two indifference curves of a complete preorder

depicted on figure 1 below

Insert Figure1 here

3 Stochastic Orders: A Characterization of Ât∗
3 and Ât∗∗

3

From now on, we focus on the family of stochastic dominance orders. These partial orders

are defined on subsets of probability distributions over the real numbers. We limit our attention

to discrete probability distributions i.e. to probability distribution P of the following type:3

P =
nX

j=1

pjδxj , where x1 ≤ x2 ≤ ....... ≤ xn, pj ≥ 0 ∀j = 1, ....n and
nX

j=1

pj = 1,

P can be interpreted as the uncertain prospect or lottery where the worst outcome is x1

and has probability p1, the next worst outcome is x2 and has probability p2 and so on. P can

also be interpreted as an income distribution in a society. The society is divided into n groups

from the poorest group denoted by 1 to the richest group denoted by n. In that interpretation,

3 for all t ∈ <, δt denotes the Dirac mass in t.
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xi and pi denotes respectively the mean outcome and the percentage of the population in group

i. We denote by P the set of discrete probability distributions.

To define the first three stochastic orders over P, we need the following family of utility

functions. U1 denotes the set of non decreasing real valued functions over <+; U2 denotes

the set of non decreasing and concave real valued functions over <+ and U3 denotes the set of

differentiable real valued functions over <+ whose first derivative is non negative, non increasing

and convex. Then for all P =
Pn

j=1 pjδxj and Q =
Pm

j=1 qjδyj and all s = 1, 2, 3 :

P %s Q iff
nX

j=1

pju(xj) ≥
mX
j=1

qju(yj) for all u ∈ Us.

The classical results on stochastic dominance are summarized in the following proposition.

Let EP and FP denote respectively the first moment of P and the distribution function of

probability P, i.e. for all t ∈ <, FP (t) = P (]−∞, t] .

Proposition 1 Let P , Q ∈ P. Then:

P %1 Q iff FP (t) ≤ FQ(t) for all t ∈ <,

P %2 Q iff
R t
−∞ FP (u)du ≤

R t
−∞ FQ(u)du for all t ∈ <,

P %3 Q iff
R t
−∞

R r
−∞ FP (u)dudr ≤

R t
−∞

R r
−∞ FQ(u)dudr for all t ∈ < and EP ≥ EQ.

Any discrete probability distribution can be approximated by a distribution where the

probabilities pi are all equal. We limit our attention to those with support in <+ and we

denote by Pn the subset of such probabilities whose support consist of at most n points. The

set Pn is in a one to one relationship with the cone Kn defined as follows.

Kn =
©
x ∈ <n

+ : x1 ≤ x2 ≤ ....... ≤ xn
ª
.

The stochastic orders on Pn are transported as follows on Kn. For all x, y ∈ Kn and all

s = 1, 2, 3 let:

x %t
s y if and only if

1

n

nX
j=1

δxj %s
1

n

nX
j=1

δyj
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i.e.

x %t
s y iff

nX
j=1

u(xj) ≥
nX

j=1

u(yj) for all u ∈ Us.

For all x ∈ Kn and all j = 1, ..., n, let Xj =
Pj

i=1 xi. In what follows, we will refer to

X as being the Lorenz vector4 attached to x. The following proposition can be deduced from

Proposition 1 or demonstrated directly. The second part is due to Hardy, Littlewood and Polya

(1934).5

Proposition 2 Let x, y ∈ Kn. Then:

x %t
1 y iff xj ≥ yj for all j = 1, ...n and x %t

2 y iff Xj ≥ Yj for all j = 1, ...n.

It follows from Proposition 1 that both%1,%2 and%3 satisfy the von Neumann-Morgenstern

independence property and therefore Â1 = Â∗1 = Â∗∗1 , Â2 = Â∗2 = Â∗∗2 and Â3 = Â∗3 = Â∗∗3 . It

follows from Proposition 2 that both %t
1 and %t

2 are cone preorders. Precisely, %t
1 = %A1 and %t

2

= %A2 where A1 = {x ∈ <n : xi ≥ 0 ∀i = 1, ...., n} and A2 = {x ∈ <n : Xj ≥ 0 ∀j = 1, ...., n}.

Therefore, from section 2, they satisfy the von Neumann-Morgenstern independence property

and then Ât
1 = Ât∗

1 = Ât∗∗
1 and Ât

2 = Ât∗
2 = Ât∗∗

2 . Note that Pn is not convex in P and

that for x, y ∈ Kn and λ ∈ ]0, 1[, λ( 1n
Pn

j=1 δxj ) + (1 − λ) 1n
Pn

j=1 δyj is not the same as

1
n

Pn
j=1 δλxj+(1−λ)yj and the meaning of convex addition differs in the two spaces.

6 The follow-

ing simple example shows that the third-degree dominance stochastic order %t
3 fails to satisfy

even the weak form of the von Neumann-Morgenstern independence property.

Example 1 Let n = 4, x = (4, 6, 11, 14) and y = (2, 10, 11, 12). We can verify that x Ât
3 y.

Consider now the utility function u defined as follows:

4Strictly speaking it should be called the generalized Lorenz vector (Shorrocks (1983)) since the Lorenz vector

refers to the normalized vector where each of the Xi is divided by Xn.
5See Marshall and Olkin (1979).
6 In fact Pn is not convex in P ; λP + (1 − λ)Q simply denotes the composite lottery where the lotteries P

and Q are drawn with probabilities λ and 1− λ. When P and Q stand for the income distributions x and y, I

dont see any immediate interpretation of the convex addition λP + (1 − λ)Q in terms of income distribution

while the convex addition λx+ (1− λ)y is easy to interpret.
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u(t) =

 10t− t2

2 if t ≤ 10

50 if t > 10.

It is easy to verify that u ∈ U3. For all λ ∈ [0, 1], let W (λ) =
Pn

j=1 u(λxj + (1 − λ)yj).

We obtain:

W (λ) = 168 + 16λ− 10λ2.

Since W (0.8) > W (1), we don’t have x Ât∗
3 y.

We now turn to the characterization of %t∗∗
3 and %t∗

3 .

Proposition 3 %t∗∗
3 = %t

2 .

Proposition 3 is rather intriguing.

Proposition 4 Let x, y ∈ Kn. Then x %t∗
3 y if and only if

Pk
j=1(xj+1 − xj)(Xj − Yj) ≥ 0 for

all k = 1, ...., n− 1 and Xn ≥ Yn.

Proposition 4 provides a simple full characterization of strong third-degree stochastic dom-

inance. The finite list of inequalities in Proposition 4 is very much in the spirit of the Lorenz

inequalities. They consist in comparing weighted partial sums of the Lorenz coordinates of

the two distributions under scrutiny, where the Lorenz coordinate of rank j is weighted by the

nonnegative coefficient (xj+1 − xj). Since %t∗
3 is a subrelation of %t

3, we deduce:

Corollary 1 If
Pk

j=1(xj+1−xj)(Xj−Yj) ≥ 0 for all k = 1, ...., n−1 and Xn ≥ Yn then x %t
3 y.

Corollary 1 provides a simple sufficiency test for third-degree stochastic dominance to hold.

We now contrast this simple condition with was has been obtained in the literature. To this

end, consider two distributions x and y in Kn and define an intersection index as any value

of j for which either Xj−1 > Yj−1 and Xj ≤ Yj or Xj−1 < Yj−1 and Xj ≥ Yj .7 Label the

intersection indices by order of appearance. It is a trivial exercise to observe that the inequalities

7With the convention X0 = Y0 = 0.
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in Corollary 1 hold if and only if
Pk

j=1(xj+1 − xj)(Xj − Yj) ≥ 0 for the first intersection label

and all intersection indices k with an even label. For all x and y in Kn, denote by kxk and

kyk their respective Euclidean norms, by x and y their respective means and by < x, y > their

Euclidean scalar product. In the case where there is a single crossing i.e. two intersection

indices, we obtain the following corollary.

Corollary 2 Let x, y ∈ Kn with x = y and assume that the Lorenz curve of x intersects that

of y once from above. Then x Ât∗
3 y if and only if k x k2≤< x, y >.

The proof follows from the fact that under single crossing, the unique intersection index i

with an even label satisfies xj = yj for all j = i + 1, ....n and can therefore, without loss of

generality be assumed to be equal to n. Since x = y, it is easy to verify that
Pn

j=1(xj+1 −

xj)(Xj − Yj) ≥ 0 if and only if
Pn

j=1 x
2
i ≥

Pn
j=1 xiyi. Corollary 2 can be contrasted with

Theorem 3 in Shorrocks and Foster (1987). Under the assumptions of Corollary 2, they show

that x Ât
3 y if and only if k x k2 ≤ k y k2. Since from the Cauchy-Schwarz’s inequality,

< x, y > ≤ k x kk y k we see immediately why x Ât∗
3 y is strictly more demanding than x Ât

3 y.

Third-degree stochastic dominance is a variance test whereas strong third-degree stochastic

dominance is a covariance test. In fact in the particular case where k x k=k y k, we cannot

have x Ât∗
3 y. Indeed from Corollary 2, if x Â∗3 y, then k x k2≤ < x, y >. From Cauchy-

Schwarz’s inequality we deduce k x k2 ≤ < x, y > ≤ k x kk y k= k x k2and therefore < x, y >

= k x kk y k. But Cauchy-Schwarz ’s inequality is an equality if and only if x = λy for some

λ ∈ <. Since x = y, we obtain x = y. Therefore if x results from y by variance preserving

transfers, then we cannot obtain x Â∗3 y. This suggests that transfers will lead to a reduction of

inequality in the sense of strong third-degree stochastic dominance only if they strictly reduce

the variance. In Figure 2

Insert Figure 2 here

we represent all the feasible distributions of a given total income among three agents as points

of a Kolm’s triangle (such that the height of the triangle is equal to the total income). For
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an income distribution B, the irregular hexagon with vertex B contains all the vectors that

dominate B according to Ât
2. Under the single crossing condition of Corollary 2, the circle

passing through B contains all the points that dominate B according to Ât
3 . Then, A Ât∗

3 B is

equivalent to kAk2 < hABi. This condition leads to °°A− Ā
°°2 < (A− Ā)(B − Ā), which gives

°°A− Ā
°° < °°B − Ā

°° cosβ, (1)

where β is the angle generated by the vectors A− Ā and B − B̄.

Condition (1) can be geometrically expressed as OA < OC, where C is the projection of B

on the half-line starting from O and passing through A. The higher part of Box 1 in Figure 2

illustrates that Ât∗
3 satisfies the independence property: for any point G of the segment between

A and B, we get OG < OC 0. This evidence can be opposed to the violation of the independence

property that occurs to Ât
3 in the lower part of the box 1, where L Ât

3 H and both vectors are

strictly dominated by D in the sense of third-degree stochastic dominance.

3.1 Discussion

The different policy implications of strong third-degree stochastic dominance and TSD are

clarified in the following example.

Example 2 Let n =3 to model the case where the society is divided into three classes of equal

size: the poor class indexed by 1, the middle class indexed by 2 and the rich class indexed

by 3. This should be considered as an interpolation of the true ”continuous” income

distribution obtained by linear interpolation of the Lorenz curve in 1
3 and

2
3 . Let y =

(y1, y2, y3) denotes the current income distribution and consider a public policy leading

to the income distribution x = (y1 + δ, y2 − δ −∆, y3 +∆) where δ and ∆ are positive

numbers and such that 2δ + ∆ < y2 − y1 i.e. a policy improving the situation of the

poor and rich classes at the expense of the middle class. We use Shorrocks and Foster’s

Theorem 3 and Corollary 2 to obtain:

x Ât
3 y if and only if δ(y2 − y1)−∆(y3 − y2) ≥ δ2 +∆2 + δ∆
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and

x Ât∗
3 y if and only if δ(y2−y1)−∆(y3−y2) ≥ 2δ2+2 δ∆+ 2∆2.

Let r(y) ≡ 1−
y3+y1
2
y2

be a relative measure of the gap between the middle class mean income

and the average of the extreme classes mean incomes in the original distribution y. In the case

where δ = ∆, the two conditions above simplify to:

x Ât
3y if and only if r(y) ≥

3∆

2y2

and

x Ât∗
3 y if and only if r(y) ≥

3∆

y2
.

These two conditions illustrate the differences between third-degree stochastic dominance and

strong third-degree stochastic dominance. We see that not only r(y) must be strictly positive

for both to hold but also that the total relative burden of the transfer program on the middle

class should not exceed 4r(y)
3 for third-degree stochastic dominance and should not exceed 2r(y)

3

for strong third-degree stochastic dominance.

This example is also useful to illustrate a peculiar fact of strong third-degree stochastic

dominance. Indeed let i be the first index for which Xi < Yi. Then if xk = x1 for all

k = 1, ....., i, we deduce from Proposition 4 that x Â∗3 y does not hold. This means that a

transfer policy leading to a perfect equalization among the first i groups with a reduction of the

total share of the first i groups cannot pass the test of strong third-degree stochastic dominance.

Let y = (1, 81, 100), δ = 39 and ∆ = 2 in the above specification. Here r(y) ≈ 0, 376 i.e. we

are in a situation where the middle class is on the rich side.8 By applying the condition above,

we can verify that x Ât
3 y but not x Ât∗

3 y. A careful reader will check that for the following

utility function in U3

8Note that r(y) ≤ 1
2
for all income distributions y.
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u(t) =

 100t− t2

2 if t ≤ 100

5000 if t > 100

the income distribution λx+ (1− λ)y where λ = 3082
3202 is superior to x. It should be noted

however that λ is very close to 1 i.e. x is not far from being the best outcome for this utility

function.

Let us still use the Figure 2 to stress this important difference among Ât∗
3 and Ât

3. Starting

from the income distribution B, according to third-degree stochastic dominance, the regressive

transfer from the median class to the richest one which can be "compensated" by a progressive

transfer from the median class to the poor one reaches its maximum when the incomes of the

two less endowed classes are equalized (A = D). On the contrary, under Ât∗
3 , the regressive

transfer in favour of the rich class CH that can be balanced (in terms of social welfare) by a

progressive transfer from the median class to the poor one first increases and then decreases

with β, becoming 0 when β = π
2 . Furthermore, CH reaches its max when α = β.9 What is

really important is to reduce to a half the gap between the median and the poor class, rather

than totally fill such a gap.

4 Local Stochastic Dominance

Stochastic dominance orders have a global character: we can compare any pair of lotteries or

income distributions possibly very far apart from each other. In this section, we introduce the

concept of local stochastic dominance to address questions of the following type. Suppose that

at some point in time the income distribution of a society is described by y ∈ Kn and we ask

ourselves whether the situation would improve if we move locally in the direction ξ ≡ x − y

where x ∈ Kn. By locally, we mean that there exists some λ > 0 such that y + λξ is an

improvement for all λ ≤ λ. Improvement can be defined in several ways and here we will limit

9 In fact, CH = OB sinβ sinα, that is equal to OB 1
2 cos (β − α)− 1

2 cos (β + α) . Since β and α belong to the

interval [0, π
2
] and (β + α) is fixed, CH is maximized for β = α.
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ourselves to the stochastic orders %t
s for s = 1, 2, 3. Precisely we will say that the direction

ξ ∈ <n is a %t
s direction of improvement at y ∈ Kn if there exists λ > 0 such that:

y + λξ %t
s y for all λ ∈ [0, λ] .

This leads to the following definition of local stochastic dominance:

x %tl
s y iff there exists λ > 0 such that: y + λ(x− y) %t

s y for all λ ∈
£
0, λ

¤
.

The difference between ”global” and local stochastic dominance appears clearly in the above

definition since we only ask for improving local changes in the direction x− y instead of asking

of moving all the way from y to x. Local and ”global” stochastic dominance coincide for the

first and second degrees.10

Proposition 5 Let x, y ∈ Kn. Then x %t
s y if and only if x %tl

s y for s = 1, 2.

This equivalence does not hold at the third degree and we deduce therefore from Proposition

4 that local third-degree stochastic dominance is strictly less demanding than third-degree

stochastic dominance. The following proposition states a necessary condition11 for local third-

degree stochastic dominance.

Proposition 6 Let x, y ∈ Kn. If x %tl
3 y thenXn ≥ Yn and for all k = 1, ...., n−1,

Pk
j=1(yj+1−

yj)(Xj − Yj) ≥ 0.

The condition is simple and also very much in the spirit of the Lorenz inequalities. They

consist in comparing weighted partial sums of the Lorenz coordinates of the two distributions

under scrutiny where the Lorenz coordinate of rank j is now weighted by the nonnegative

coefficient (yj+1 − yj) instead of the coefficient (xj+1 − xj). The cone of improving directions

at y is the set of vectors ξ in <n such that:

10The proof of this proposition follows closely the standard arguments in stochastic dominance and is omitted.
11These conditions are in fact almost sufficient. We have just to be careful in the case where some of the

inequalities
Pk

j=1(yj+1 − yj)(Xj − Yj) = 0 as in such a case we need to move to an higher order.
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nX
i=1

ξi ≥ 0 and
kX

j=1

jX
i=1

(yj+1 − yj)ξi > 0 for all k = 1, ...n− 1.

Since %t
3 is a subrelation of %tl

3 , we deduce the following necessity test for third-degree

stochastic dominance:

Corollary 3 If x %tl
3 y then,

Pk
j=1(yj+1−yj)(Xj−Yj) ≥ 0 for all k = 1, ...., n−1 and Xn ≥ Yn.

As we did in Section 3, we can always see how this results specializes in the case where the

Lorenz curves display a specific pattern.

Corollary 4 Let x, y ∈ Kn with x = y and assume that the Lorenz curve of x intersects that

of y once from above. Then if x Ât∗
3 y then < x, y > ≤ k y k2.

The proof is identical to the proof of Corollary 2. Corollary 4 can be contrasted with

Theorem 3 in Shorrocks and Foster (1987). We already know that under the assumptions of

Corollary 4, third-degree stochastic dominance is the variance test k x k2 ≤ k y k2, whereas

local third-degree stochastic dominance is again a covariance test. From the Cauchy-Schwarz’s

inequality, we see immediately that this covariance test is indeed less demanding than the

variance test. Therefore local third-degree stochastic dominance may be conclusive in situations

where the variance of x is strictly greater than the variance of y. To see by how much the two

criteria differ, let us consider Example 2 examined in the previous section.

Example 3 Let n =3 and as in Example 2 let y = (y1, y2, y3) denotes the current income

distribution and consider a public policy leading to the income distribution x = (y1 +

δ, y2−δ−∆, y3+∆) where δ and ∆ are positive numbers and such that 2δ+∆ < y2−y1
i.e. a policy improving the situation of the poor and rich classes at the expense of the

middle class. We already know that:

x Ât
3y if and only if δ(y2−y1)−∆(y3−y2) ≥ δ2+∆2+δ∆.
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Instead, Corollary 3 leads to:

x Âtl
3 y if and only if δ(y2−y1)−∆(y3−y2) ≥ 0

In the case where δ = ∆, the two conditions above simplify to:

x Ât
3y if and only if r(y) ≥

3∆

2y2

and

x Ât∗
3 y if and only if r(y) ≥ 0 .

For y = (1, 81, 100), the cone of improving directions is the set of vectors ξ ∈ <3 such that:

ξ1 ≥ 0

99ξ1 + 19ξ2 ≥ 0

and ξ1 + ξ2 + ξ3 ≥ 0.

Picture 2 can also be used to illustrate Âtl
3 . Since A Âtl

3 L implies hALi < kLk2 , we get

°°A− Ā
°° cosϑ <

°°L− Ā
°° . (2)

Then, it is easy to see that Âtl
3 refines Ât

3. When the income of the poorest class approaches

that of the median one, the regressive transfers from the median to the rich class which are

consistent with Âtl
3 (as points near to KD in Figure 2) exceed the regressive transfers allowed

by third-degree stochastic dominance.

We would like to argue that the local stochastic dominance point of view seems very much

appropriate to examine public policy reforms along the lines pioneered by Feldstein (1976),

Guesnerie (1977), Weymark (1981) and others in their analysis of Pareto improving commodity

taxation reforms. A Pareto improving direction of reform is exactly defined as a direction

18



leading to a welfare improvement for everybody in the neighborhood of the original policy. To

see, how it applies here, let y(θ) = ( y1(θ), ...., yn(θ)) be the current income distribution of an

economy where θ denotes the vector of policy decisions by the public sector. Then Proposition

6 gives a practical criterion to decide whether moving from θ to θ + dθ leads to a third-degree

stochastic dominance improvement. Suppose for instance that θ is one dimensional. Then

moving from θ to θ + dθ leads to an improvement if and only if:

kX
j=1

(yj+1(θ)− yj(θ))(

jX
i=1

dxi(θ)

dθ
) ≥ 0 for all k = 1, ...., n− 1 and

nX
i=1

dxi(θ)

dθ
≥ 0.

5 Extensions

In the preceding sections, we limited our attention to probability distributions with a dis-

crete support but the notion of stochastic orders can be extended easily to the broader family

of bounded (i.e.; with compact support) probability distributions over <+. Given two such

distributions P and Q, define for all s = 1, 2, 3.

P %s Q iff
Z
<+

u(x)P (dx) ≥
Z
<+

u(x)Q(dx) for all u ∈ Us.

A probability distribution P over <+ is entirely characterized by its distribution function F

defined as F (x) = P ([0, x]). Characterizations of the stochastic orders %ihave been provided in

terms of distribution functions but these characterizations are not very meaningful in the area

of inequality measurement where alternative characterizations in terms of "inverse distribution

functions" are usually privileged. Recall that given a probability distribution P over <+,

there exists a unique random variable x over [0, 1] increasing, right continuous and with P as

probability law when [0, 1] is endowed with the Lebesgue measure.12 Like in the preceding

sections, we can now investigate characterizations over the cone D of increasing and right

continuous random variables in L∞ ([0, 1]). The following characterizations of %1 and %2 are
12This random variable is often designated under the name right inverse of P or F and denoted accordingly

F−1.
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well known. Given x and y in the cone D:

x %1 y iff x(t) ≥ y(t) for all t ∈ [0, 1]

x %2 y iff X(t) ≥ Y (t) for all t ∈ [0, 1] ,

where X(t) ≡ R t0 x(s)ds and Y (t) ≡ R t0 y(s)ds. Muliere and Scarsini (1989) have considered
the stochastic order %0

3 defined as follows:

x %0
3 y iff bX(t) ≥ bY (t) for all t ∈ [0, 1]

where bX(t) ≡ R t0 X(s)ds and bY (t) ≡ R t0 Y (s)ds. The stochastic order %3 is different from
the stochastic order %3 and we don’t have a simple characterization of %3 over D. It is

straightforward to extend the preceding propositions concerning %∗3 and %∗∗3 to the cone D.13

We would like to conclude by a simple proposition which helps to understand why the

stochastic orders %3 and %
0
3 differ in general.

Proposition 7 Let x be in D and with a continuous second derivative such that x00(t) ≤ 0

for all t in [0, 1]. Then for any y in D such that x %0
3 y and X(1) ≥ Y (1), x %∗3 y and

therefore x %3 y.

Proposition 7 points out the root of the gap between %0
3 and %3. Indeed, within the cone

D, we control the sign of the first derivative but not the sign of the second. This suggests

that it could be valuable to explore the stochastic order %3 over the cone of "concave" random

variables.

6 Appendix

Proof of Proposition 3: Since %t
2⊂ %t

3 and %t∗∗
2 = %t

2, we obtain %t
2⊂ %t∗∗

3 . We now prove

that %t∗∗
3 ⊂ %t

2. Let x, y ∈ K with x %t∗∗
3 y, i.e.

13This technical exercise is left to the reader.
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Fu,z(λ) =
nX
i=1

u(λxi+(1−λ)zi)−
nX
i=1

u(λyi+(1−λ)zi) ≥ 0 for all z ∈ K,u ∈ U3 and λ ∈ [0, 1] .

(3)

Since Fu,z(0) = 0, (1) implies:

F 0u,z(0) =
nX
i=1

u0(zi)(xi − yi) ≥ 0 for all z ∈ K and u ∈ U3. (4)

Let

ut(w) =

 tw − w2

2 if w ≤ t

t2

2 if w > t

zi = t − for all i = 1, ...., k and zi = t + for all i = k + 1, ...., n for some t > 0 and

0 < < t. Since ut ∈ U3, we deduce from (2)

kX
i=1

xi ≥
kX
i=1

yi

as desired.¤

Proof of Proposition 4: Let x, y ∈ K; x %t∗
3 y is equivalently formulated as:

Fu(1) ≥ Fu(λ) ≥ Fu(0) for all u ∈ U3 and λ ∈ [0, 1] (5)

where:

Fu(λ) =
nX
i=1

u(λxi + (1− λ)yi).

To proceed, we need the following claims:14

Claim 1: (5) is equivalent to F 0u(1) ≥ 0 for all u ∈ U3.
14The proof of claim 2 appears in Le Breton (1987).
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Proof of Claim 1: Necessity follows immediately from (5). To prove sufficiency let u ∈ U3.

Since

F 00u (λ) =
nX
i=1

u00(λxi + (1− λ)yi)(xi − yi)
2

it follows that Fu is concave on [0, 1]. Therefore, if F 0u(1) ≥ 0 then F 0u(λ) ≥ 0 and (5)

follows.¤

Claim 2: Every u ∈ U3 is the uniform limit of positive linear combinations of functions ut

where ut(w) =

 tw − w2

2 if w ≤ t

t2

2 if w > t.

By combining the two claims and noting that u0t(w) = Max(t − w, 0) for all t > 0, we

deduce that x %t∗ y if and only if:

Φ(t) ≡ F 0ut(1) =
nX
i=1

Max(t− xi, 0)(xi − yi) ≥ 0 for all t > 0

Φ is linear on the intervals [0, x1] , [x1, x2] , ....., [xn−1, xn] and [xn,+∞[. Therefore Φ(t) for

all t > 0 if and only if:

Φ(xk) ≥ 0 for all k = 2, ...., n and Φ0(t) ≥ 0 on [xn,+∞[ .

Note that:

Φ(xk) =
k−1X
i=1

(xk − xi)(xi − yi).

By using the Abel’s trick, we deduce:

Φ(xk) =
k−1X
i=1

(xi+1 − xi)(Xi − Yi).
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The last inequality in Proposition 4 follows from the fact that Φ(t) = t(Xn − Yn) −Pn
i=1 xi(xi − yi) and therefore Φ0(t) = Xn − Yn.¤

Proof of Proposition 6: Let x, y ∈ K; if x %tl
3 y then we deduce:

F 0u(0) ≥ 0 for all u ∈ U3. (6)

Proceeding as in the proof of Proposition 4, we deduce that (4) holds if and only if:

Ψ(t) ≡
nX
i=1

Max(t− yi, 0)(xi − yi) ≥ 0 for all t > 0

the rest of the proof follows the last step in the proof of Proposition 4 and is omitted.¤

Proof of Proposition 7: Let x, y ∈ K. As in the proof of Proposition 4, x %t∗
3 y is

equivalent to: F 0u(1) ≥ 0 for all u ∈ U3, where:

Fu(λ) =

Z 1

0
u(λx(t) + (1− λ)y(t))dt.

Let u be three times continuously differentiable.15 Since

F 0u(1) =
Z 1

0
u0(x(t))(x(t)− y(t))dt

integrating by parts, we obtain:

F 0u(1) = u0(x(1))(X(1)− Y (1))− u00(x(1))( bX(1)− bY (1)
+

Z 1

0

³
u000(x(t))x0(t)2 + u00(t)x00(t)( bX(t)− bY (t)´ dt

Since u0 ≥ 0, u00 ≤ 0, u000 ≥ 0 and x00 ≤ 0, the conclusion follows. ¤
15This is without loss of generality since any u in U3 can be uniformly approximated with such functions

within the class U3. A proof of this fact and similar approximation statements can be found in Le Breton (1986).
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