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Generalities

I propose an excursion through few mathematical notions arising in inequality measure-

ment and related matters like for instance welfare or poverty measurement, horizontal equity

and progressivity in taxation. Inequality measurement is an important branch of applied

welfare economics. This area of public/welfare economics is devoted to the development

of analytical tools to evaluate the level of inequality attached to the distribution of one or

several resources (like for instance, income, wealth, health,...) and the application of these

notions to real data.

In this lecture notes, I will mostly devote my attention to the simplest setting. The ingre-

dients of this setting will consist of a �nite population N of n units (individuals, households,

groups,...) and the distribution of a single divisible and transferable resource say income. An

income distribution will be then a vector x = (x1; x2; ::::; xn) 2 <n+. In this simple framework,
each unit is identi�ed by a number (say its social security number). In a more complicated

setting, where the population would display some heterogeneity, relevant for the problem

under consideration, we would have to describe explicitely the characteristics of the units.

Any comparison of two income distributions rests on interpersonal comparisons of utility

and therefore on a speci�c measurement of social welfare. Any such theory should guide us

in answering questions like : Is it "good" from a social perspective to tranfer this amount of

resources from this group of units to this other one? We will spend the second section on the

key mathematical result establishing the bridge between the statistical practice in inequality

measurement and the modern approach of welfare economics. Then, in section 3, I will

elaborate on some aspects of the theory of inequality measurement built upon that theorem.

In section 4, I will examine the relationships between this area and the theory of stochastic

orders developed in the area of decision analysis under uncertainty. Then in section 5, I
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will show how the theory extends to the case of a population described by a continuum.

Sections 6 and 7 overview some recent developments of the theory which ambition to cover

more complicated distributional environments.

Many of the developments are extracted from the �rst 4 chapters of my 20 years old

thesis (Le Breton (1986)). I have added few major recent contributions like for instance

those of Koshevoy on multivariate extensions. The books of Marshall and Olkin (1979) and

Sen (1973) contain most of economic foundations and mathematical results used in standard

inequality measurement. Besides, the survey, I plan to spend a signi�cant portion of my

talk on the application of a particular stochastic order (third degree stochastic dominance)

to inequality measurement. This is based on a recent work coauthored with E. Peluso.

The Hardy, Littlewood and Polya's Theorem.

The Hardy, Littlewood and Polya's theorem is the key mathematical result in the area

of inequality measurement. Kolm (1969) was the very �rst one, followed by Dasgupta, Sen

and Starrett (1973), to point out the relevance of this result in establishing the foundations

of inequality measurement. This theorem states that that three di�erent partial orders are

equivalent. To proceed with the statement, we need to introduce few notions.

A square matrix of order n, B = (bij)1�i;j�n is bistochastic (or doubly stochastic) if bij � 0
8j; i ;

Pn
i=1 bij = 1 8j and

Pn
j=1 bij = 1 8i:A square matrix of order n is a permutation

matrix if it is bistochastic and has exactly one positive entry in each row and each column.

In what follows, we shall denote Bn (resp. Pn) the set of bistochastic (resp. permutations)
matrices of order n: Consider the following three partial preorders. Let x and y be two

vectors in <n be such that : xi � xi+1 and yi � yi+1 for all i = 1; :::; n� 1:
(1) There is a bistochastic matrix B 2 Bn such that : y = Bx.

(2)
Pn

i=1 � (xi) �
Pn

i=1 � (yi) for all convex functions � : < ! <.
(3)
Pk

i=1 xi �
Pk

i=1 yi for all k = 1; :::::; n� 1 and
Pn

i=1 xi =
Pn

i=1 yi

It is immediate to see that the binary relations de�ned by (2) and (3) are preorders. The

fact that the �rst one is also a preorder follows from the properties of the set of bistochatic

matrices Bn. This set is stable under multiplication and convex addition.
� The Hardy, Littlewood and Polya 's theorem asserts that the three partial orders are

equivalent. I will o�er a proof during the talk which is based on the notion of angles

introduced by Hardy, Littlewood and Polya (1929) and rediscovered many times since then.

Through the proof, we will see that we can make more precise some statements. For instance,

an extensive use of the following type of bistochastic matrix will be made. Let i; j 2 f1; :::; ng
and � 2 [0; 1] and de�ne as follows the n� n matrix T �i;j :
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T �i;j = �I + (1� �)Pi;j

where Pi;j is the permutation matrix attached to the permutation of the indices i and

j. Under the action of such linear operator, a vector x is transformed into a vector z where

zk = xk for all k 6= i; j, zi = xi + (1 � �) (xj � xi) and zi = xj � (1 � �) (xj � xi). If the

vectors are income distributions and j > i, then the change from x to z simply describes

a single transfer (1� �) (xj � xi) from individual j to individual i who is poorer than him.

The transfer preserves the rank of i and j i� � < 1
2
. We can show that the matrix in (1)

can be taken to be a product of matrices T �i;j where the � can be selected in such a way that

the ranking 1 � 2 � :::: � n is preserved (not all bistochastic matrices can be expressed like

that). With that quali�cation, condition (1) appears to be a principe of transfers : inequality

decreases when such transfers are implemented ( This sensitivity condition is known as the

Pigou-Dalton 's principle of transfers).

� Condition (2) can be interpreted as a social welfare ranking where �� would stand
for the individual utilitry function of every individual in the population. The social welfare

function which is considered is the utilitarian one. Note however that if we impose �� to
to be non decreasing, then condition (2) is no longer equivalent to (1) and (3). In (3), the

equality
Pn

i=1 xi =
Pn

i=1 yi must be replaced by the inequality
Pn

i=1 xi �
Pn

i=1 yi.

� The last condition is the classical Lorenz dominance condition. It consists in a simple
algorithmic test described by a �nite list of linear inequalities. The inequalities have also an

immediate interpretation. We �rst compare the income of the poorest individual in the two

distributions. Then we move to the aggregate income of the poorest and second poorest in

the two distributions and so on. It is important to point out that the theorem above extends

to any two vectors x and y as soon as in condition (1) and (3), x and y are replaced by x�

and y� where x� and y� are the vectors x and y where the coordinates have been rearranged

from the lowest to the highest.

� The Lorenz criterion is a well established notion in the statistics. To any vector x, we
can attach a curve Lx : [0; 1]! [0; 1] where

Lx(t) =

�
t� k

n

� �Pk
i=1 x

�
i

�
+
�
k+1
n
� t
� �Pk+1

i=1 x
�
i

�
Pn

i=1 xi
for all t 2

�
k

n
;
k + 1

n

�
and all k = 0; ::::::; n�1

The function Lx is the Lorenz curve of x. Condition (3) can then be expressed as :

Lx(t) � Ly(t) for all t 2 [0; 1]
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i.e. the Lorenz curve of y is pointwise above the Lorenz curve of x.

� In statistics, the Lorenz curve of any probability distribution on < is well de�ned. Let
F be the cumulative distribution function of any such distribution and for any t 2 [0; 1], let
:

F�1R (t) = Sup
F (u)�t

u

This is the right inverse of F . We could instead, as for instance Gastwirth (1971), consider

the left inverse F�1L de�ned as follows :

F�1R (t) = Inf
F (u)�t

u

The two inverses di�er only on a set with Lebesgue measure equal to 0. We denote by

F�1 this "common" inverse. The Lorenz curve LF of the probability distribution F is de�ned

as follows :

LF (t) =

R t
0
F�1(u)duR
< uF (du)

A probability distribution is identi�ed by its Lorenz curve. We will see in section 4 that

the equivalence betwwen (2) and (3) extends to the all class of probability distributions via

the Lorenz curves.

� The importance of the Hardy, Littlewood and Polya 's theorem comes from the fact

that it is establishes this full equivalence between three di�erent perspectives on inequality

measurement : an approach rooted in the social choice and welfare economics tradition,

a second one bases on sensitivity to some special types of transfers between units and a

third one constructed upon a useful and insightful statistical measure. To some extent, the

following literature will often tries to achieve the same goal.

3. Schur Convexity and Inequality Measurement

� A real-valued function f de�ned on a set A � Rn is said to be Schur-convex on A if :

8x 2 A; 8B 2 Bn such that Bx 2 A we have f(Bx) � f(x):

� It is strictly Schur-convex on A if

8x 2 A; 8B 2 Bn such that Bx 2 A we have f(Bx) < f(x)

if Bx is not a permutation of x:
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� f is Schur-convave (resp. strictly Schur-concave) on A if -f is Schur-convex (resp.

strictly Schur-convex) on A.

� A real-valued function f de�ned on a set A 2 Rn is symmetric on A if :

8x 2 A; 8P 2 Pn such that Px 2 A we have f(Px) = f(x):

In inequality measurement theory, di�erent sets A can be considered, depending upon

the range of income distributions that we want to cover. When we compare distributions

with di�erent aggregate incomes, we must introduce considerations which mix inequality

matters with some other principles. In what follows, unless otherwise speci�ed, we will

not pay attention to these issues. and focus on the case where A = Sn = fx = (x1;...,

xn) 2 Rn : x1 � 0 8i = 1;..., n and
Pn

i=1 xi = 1g; the unitary simplex of Rn: An element
will be interpreted as a distribution of a single divisible good (whose available quantity is

normalized to one) between n individuals.

� A real-valued function f de�ned on Sn is called an inquality index on Sn if f is continuous
and strictly schur-convex.

� It can be veri�ed that any inequality index is symmetric (see Le Breton-Trannoy-Uriarte
(1985)).

� Schur-convexity is the key notion in inequality theory. From the Hardy-Littlewood

and Polya's theorem, we know that it is equivalent to require monotonicity with respect

to the Lorenz order or the Pigou-Dalton principle of transfers. It should be emphasized

that Lorenz dominance is equivalent to a �nite sequence of Pigou-Dalton transfers. The

fact that a function behaves quite well with respect to a single Pigou-Dalton transfer may

be a poor indicator of its reaction with respect to a composition of such transfers. This

point is well illustrated by Foster and Ok (1999) in the case of the variance of logarithms.

This function is not Schur convex and therefore is not an inequality index. However, when

we consider a single Pigou-dalton transfer, it behaves badly, exclusively in the case where

the highest income is e times greater than the geometric mean of the distribution. With

composite transfers this function may conclude that the distribution x is more unequal than

the distribution y while x is arbitrarily close to the diagonal and y is arbitrarily close to

complete inequality.

The rest of this paragraph, based on Le Breton (2006a) elaborates on this notion and its

relations with the usual notion of convexity.

� If is a symmetric and quasi-convex function on Sn, then (Dasgupta-Sen-Starrett (1973)
f is Schur-convex.
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� A set A � Rn will be Schur-convex if 8x 2 A; 8B 2 B`; Bx 2 A:
� If A is a symmetric and convex set of Rn then A is Schur-convex. Under symmetry,

Schur-convexity is a (strictly) weaker notion than convexity.

� f is Schur-convex on A i� level sets fx 2 A f(x) � cg are Schur-convex 8c 2 R: In
particular if A is a Schur-convex set, the indicator function 1A of the set A is Schur-convex.

� If A and B are Schur-convex sets of Rn, then A [B is a Schur-convex set.

� If A is a Schur-convex set of Sn then A is a symmetric and star-shaped set centered on
the point E = ( 1

n
; 1
n
; ::: 1

n
).

Proof: Let x 2 A and � 2 [0; 1] :
We have to show �x+ (1� �)� 2 A:
But �x+ (1� �)E may be written (�In + (1� �)M)x

where In is the identity matrix of order and M is the matrix 1
n

0BBBB@
1 1:::1
::::::::::::
::::::::::::
1 1:::1
1 1:::1

1CCCCA :

As M and In 2 Bn �In + (1� �)M 2 Bn; �x+ (1� �)E 2 A by Schur-convexity of
A.

It is easy to see that there exist symmetric and star-shaped sets centered on E which are

not schur-convex. So we can say under symmetric schur-convexity is intermediate between

convexity and star-shapedness.

� The Hardy-Littlewood-Polya's theorem leads also to a nice geometric description of

the implications of Schur-convexity and emphasizes the fact that the property is truly a

monotonicity property (with respect to a partial order) instead of a convexity property.

� There is a vast literature on inequality indices among which an axiomatic literature
which aims to provide fondations in order to select some speci�c index (or family of indices)

within the all family. Some indices, like for instance those due to Atkinson, Gini or Theil or

properties like for instance decomposability have attracted a lot of attention.

We now move to the study of di�erentiable inequality indices on A = Sn. f is de-

�ned to be di�erentiable if it is di�erentiable on ri Sn (the relative interior of Sn ) in

the following sense : Sn is a manifold with boundary, which is homeomorphic to ~Sn�1 =�
(x1;:::; x`�1) 2 R`�1+ :

`=1P
i=1

xi � 1
�
: The homeomorphism is simply the projection map (x1; :::; x`) �!

(x1; x`�1) denoted by �: f is di�erentiable on r i S` if f o �
�1 is di�erentiable on

o

~S�1: Os-

trowski's theorem (1952) provides a di�erential test for Schur-convexity. The regularity

condition introduced below is a su�cient condition for strict-Schur convexity.
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� A di�erentiable inequality index f is regular if: 8x 2 Sn :

xi 6= xj ) (xi � xj)

�
@f

@xi
� @f

@xj

�
> 0

� An inequality index f is smooth if f 2 C1(Sn;R) and f is regular.
The rest of this section is devoted to the proof of an approximation theorem : the set of

smooth inequality indices is dense in the set of inequality indices. The proof of the theorem

will be deduced from the following sequence of lemmata.

� Lemma 31: There exists a sequence of functions ("k)k�1 Rn ! R+ such that

(i) "k 2 C1 (Rn;R)

(ii) "k is schur-concave

(iii) Supp "k � B
�
0; 1

k

�
\Rn�

(iv
R
Rn "k(x) dx = 1

Proof: We shall make an extensive use of the function 	 : R! R de�ned as follows (see
�gure 31)

h(x) = g(x)�
nP
i=1

(xi � g(x))2 where g(x) =
�Pn

i=1 xi
n

�2
Figure 31

It is easy to verify h is Schur-concave and h 2 C1(Rn;R). Then, 	 � h is also Schur-
convave and 	 � h 2 C1(Rn;R).
Finally, de�ne ~"k : R! R by :

"k(x) = 	

 
1

k
+

nX
i=1

xi

!
	

 
�

nX
i=1

xi

!
(	 � h(x))

and

"k : Rn ! R by
"k(x) =

1
Ck
~"k(x) where Ck =

R
Rn "k(x) dx

It is easy to check that "k satis�es properties (i), (ii), (iii) and (iv) (see �gure 32 : she

shaded area represents supp "k when n = 2).
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� Lemma 32: Let f 2 C1c (Rn;R) and g 2 L1`oc (Rn;R) 1. Then the convolution product
of f and g denotes f � g and de�ned by

(f � g)(x) =
Z
R`
f(x� y) g(y) dy

is well de�ned and moreover f � g 2 C1
�
R`;R

�
.

Figure 32

� Lemma 33: Let f and g be Schur-concave functions de�ned onRn. Then f �g (whenever
it is de�ned) is Schur-concave.

Proof: See Eaton and Perlman (1977) or Marshall and Olkin (1974).

Theorem 31: Let f be an inequality index: Then there exists a sequence (fk)k>1 where

fk is a smooth inequality index 8k � 1 and such that fk ! f when k !1 uniformly on Sn:

Proof: Let g = �f ; g is Schur-concave on Sn: We extend g on Rn+ as follows:

8x 2 Rn+ ~g(x) = g
�

xP`
i=1 xi

� P̀
i=1

xi if x 6= 0

and ~g(0) = 0

It is easy to check that ~g is continuous and Schur-concave on Rn+: Finally, we extend ~g
on Rn in the following way:

�
g(x) = min

y2S(x)
~g(y) if

nP
i=1

xi � 0

where S(x) = fy 2 Rn+
nP
i=1

yi =
nP
i=1

xig

and
�
g(x) = 0 if

nP
i=1

xi < 0

�
g is Schur-concave and belongs to L1`oc(Rn;R). Now we show that g � "k ! g uniformly

when k !1 on any compact of Rn+: From (iv), we deduce :

g � "k(x)� g(x) =
R
Rn(

�
g(x� y)� ~g(x))"k(y)dy 8x 2 Rn+

=
R
B(o; 1

k
)\Rn(

�
g(x� y)� ~g(x))"k(y)dy (by (iii))

=
R
B(o; 1

k
)\Rn(~g(x� y)� ~g(x))"k(y)dy

As ~g is uniformly continuous on K +B (0; 1); 8" > 0; 9 �(") > 0 such that :

For all x; y 2 K +B(0; 1) : kx� yk � �(") =) j~g(x)� ~g(y)j 5 "

1C1c (Rn;R) denotes the set of functions in C1 (Rn;R) with compact support and L1`oc (Rn;R) denotes
the set of functions which are locally integrable.
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Thus if n � 1
�(")
, we deduce :

sup
x2K

j�g � "k(x)� ~g(x)j � "

Z
B(0; 1

k
)\Rn

"k(y)dy = "

From lemma 32,
�
g � "k 2 C1(Rn;R) and is Schur-concave by lemma 33. Let fn : S` ! R

be de�ned by

fk(x) = �(
�
g � "k) +

1

k

 
nX
i=1

(xi �
1

n

nX
i=1

xi)
2

!

From what precedes, it is easy to verify that fk is a smooth inequality index and fk ! f

when k !1 uniformly on Sn:

4. Stochastic Dominance

Stochastic dominance orders are partial orders de�ned on subsets of probability distrib-

utions over the real numbers. Consider �rst the case of discrete probability distributions i.e

probablity distribution P of the following type2 :

P =
nX
j=1

pj�xj where x1 � x2 � ::::::: � xn, pj � 0 8j = 1; ::::n and
nX
j=1

pj = 1

In risk analysis, P can be interpretated as an uncertain prospect or lottery where the

worst outcome is x1 and occurs with probability p1, the next worst outcome is x2 and occurs

with probability p2 and so on. From the point of view of inequality measurement, P can be

interpreted as an income distribution in a society. The society is divided into n groups from

the poorest group denoted by 1 to the richest group denoted by n. In that interpretation,

xi and pi denotes respectively the mean outcome and the percentage of the population in

group i. The setting considered until now was assuming p1 = p2 = ::: = pn =
1
n
. We denote

by P the set of discrete probability distributions.
To de�ne the �rst three stochastic orders over P , we need the following family of utility

functions. U1 denotes the set of non decreasing real valued functions over <+; U2 denotes
the set of non decreasing and concave real valued functions over <+ and U3 denotes the set
of di�erentiable real valued functions over <+ whose �rst derivative is non negative, non
increasing and convex. Then for all P =

Pn
j=1 pj�xj and Q =

Pm
j=1 qj�yj and all i = 1; 2; 3 :

2For all t 2 <, �t denotes the Dirac mass in t.
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P %i Q i�
nX
j=1

pju(xj) �
mX
j=1

qju(yj) for all u 2 Ui

The classical results on stochastic dominance are summarized in the result below. Let EP

and FP denote respectively the �rst moment of P and the distribution function of probability

P i.e. for all t 2 <, FP (t) = P (]�1; t]

� Let P , Q 2 P . Then P %1 Q i� FP (t) � FQ(t) for all t 2 <; P %2 Q i�
R t
�1 FP (u)du �R t

�1 FQ(u)du for all t 2 <, and P %3 Q i�
R t
�1
R r
�1 FP (u)dudr �

R t
�1
R r
�1 FQ(u)dudr for

all t 2 < and EP � EQ.

The conditions in the above result turn out to be extremely simple when P andQ have the

same support and therefore di�er exclusively from the point of view of probability weights.

For instance, when P =
Pn

i=1 pi�xi and Q =
Pn

i=1 qi�xi, P %2 Q i� :

p1 � q1; p1 (x3 � x1) + p2 (x3 � x2) � q1 (x3 � x1) + q2 (x3 � x2) , ....

However, when the two supports di�er the inequalities of the proposition become more

intricate. What is the relationship with the Hardy, Littlewood and Polya 's theorem and

Lorenz dominance ? If instead of comparing distributions with a common support, we com-

pare distributions with common probability weights, say P =
Pn

i=1 pi�xi and Q =
Pn

i=1 pi�yi,

then P %2 Q i� :

x1 � y1; p1x1 + p2x2 � p1y1 + p2y2,....

When the probabilities pi are all equal, we recognize the Lorenz order. This subset Pn of
probabilities whose support consist of at most n points is in a one to one relationship with

the cone Kn :

Kn =
�
x 2 <n+ : x1 � x2 � ::::::: � xn

	
The stochastic orders on Pn can be formally de�ned as follows on Kn. For all x; y 2 Kn

and all i = 1; 2; 3 let :

x %ti y if and only if
1

n

nX
j=1

�xj %i
1

n

nX
j=1

�yj

i.e.
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x %ti y i�
nX
j=1

u(xj) �
nX
j=1

u(yj) for all u 2 Ui

For all x 2 Kn and all j = 1; :::; n, let Xj =
Pj

k=1 xk. In what follows, we will refer

to X as being the Lorenz vector attached to x.The following result can be deduced from

the previous one or demonstrated directly. The second part is one of the equivalence in

Hardy,Littlewood and Polya.

� Let x; y 2 Kn . Then : x %t1 y i� xj � yj for all j = 1; :::n and x %t2 y i� Xj � Yj for

all j = 1; :::n

� In the case of continuous distributions, the relationship between stochastic and Lorenz
dominance remains valid via the de�nition of the Lorenz curve introduced in section 2. We

can show (Atkinson (1970, Le Breton (1986)) that :

P %2 Q i� LF (t) � LG(t) for all t 2 [0; 1]

Unfortunately, there is no result characterizing third degree stochastic dominance in terms

of Lorenz curves. We will devote most of the talk to this question. The rest of this section is

based on Le Breton and Peluso (2006). Its main purpose is to examine the properties of the

orderings %ti : It follows from the �rst result above that both %1; %2and %3satisfy the von
Neumann-Morgenstern independence property and therefore %1=%�1=%��1 ;%2=%�2=%��2 and
%3=%�3=%��3 . It follows also from the second result that both %t1 and %t2 are cone preorders.
Precisely, %t1=%A1and %t2=%A2where A1 = fx 2 <n : xi � 0 8i = 1; ::::; ng and A2 =

fx 2 <n : Xi � 0 8i = 1; ::::; ng. Therefore, they also satisfy the von Neumann-Morgenstern
independence property and then %t1=%t�1 =%t��1 and %t2=%t�2 =%t��2 .

5. A Continuous Version of Hardy, Littlewood and Polya

This section builds on Le Breton (2006b). Its main purpose is to extend the �nite

framework to cover the case of continous distributions.To formalize the continuum assump-

tion, we shall assume in the all section that the set of agents is represented by the probability

space ([0; 1];B; �) where B is the � algebra of Borelian subsets of [0; 1] and � is the Lebesgue
measure on [0; 1].

An income distribution is any measurable functionX from [0; 1] to IR+ which is integrable

with respect to �. An income distribution X is bounded if there exists a constant C such

that X(t) � C for � almost every t in [0; 1].
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Thus formally the set of income distributions (resp. bounded income distributions) is

the positive cone of L1[0; 1] (resp. L1[0; 1]). We shall denote by L1+[0; 1] and L
1
+ [0; 1] these

two sets.

As emphasized in the �nite case, the two major properties of inequality measurement are

symmetry and strict Schur convexity. Let us �rst introduce, the continuous counterparts of

these two properties.

Let X be an arbitrary measurable real-valued function de�ned on [0; 1]. It is straightfor-

ward to show that the function mX de�ned on IR by mX(x) = �ft 2 [0; 1] : X(t) > xg is
nonincreasing, right continuous and with values in [0; 1]. As such, the function mX admits a

right inverse which will be denoted by X�. To �x ideas and remove certain ambiguities it is

convenient to de�ne X�(t) = sup:X
mX(x)>t

for t 2]0; 1[. It is nonincreasing and right continuous.

The function X� is called the decreasing rearrangement of X. Indeed it is straightforward to

show that two measurable functions X and Y on [0; 1] satisfy X� = Y � � a.e on [0; 1] if and

only if their respective probability distributions on IR denote by �X and �Y are identical.

Thus in particular the probability distributions of X and X� on IR are identical. It follows

from this observation that if X belongs to L1+[0; 1] (resp. L
1
+ [0; 1]) then X

� belongs also to

L1+[0; 1] (resp. L
1
+ [0; 1]).

A real-valued function I de�ned on L1+[0; 1] is symmetric if 8X 2 L1+[0; 1] : I(X) = I(X�).

It is natural to wonder whether this concept of symmetry is totally analogous to the con-

cept of symmetry used in the �nite case. With a �nite set of agents say f1; 2 : : : ; ng, two
income distributions X = (x1; : : : ; xn) and Y = (y1; : : : ; yn) are symmetric if there exists a

permutation � on f1; 2 : : : ; ng such that yi = x�(i); i = 1; : : : ; n. The continuous analogue

of a permutation is a measure preserving transformation on [0; 1] i.e. a measurable function

� : [0; 1] ! [0; 1] such that �(A) = �(��1(A));8A 2 B. It is easy to show that if two

real-valued measurable functions X and Y on [0; 1] are such that X = Y on � for a measure

preserving transformation � on [0; 1], then X� = Y �. Unfortunately the conserve is false in

general: a counterexample is given by the functions X and Y de�ned by X(t) = 1 � t and

Y (t) = 2t (mod 1), t 2 [0; 1]. Nevertheless it must be noted that Ry� (1970) has proved
that for any real-valued measurable function X on [0; 1] there exists a measure preserving

transformation � on [0; 1] such that X = X� on �.

In order to de�ne a continuous version of the property of Schur convexity, we �rst provide

13



a continuous version of the familiar Lorenz preorder.

Let X and Y be two functions in L1[0; 1]. We shall say that X Lorenz dominates Y if :Z s

0

X�(t)dt �
Z s

0

Y �(t)dt 8s 2 [0; 1[

and Z 1

0

X�(t)dy =

Z 1

0

Y �(t)dt

If the integral inequalities de�ning Lorenz domination are satis�ed by X and Y in L1+[0; 1]

we shall write X %L Y . It is easy to show that for any X and Y in L1[0; 1]X �L Y if and

only if X� = Y �.

We now move to our examination of the right extension of Hardy, Littlewood and Polya's

theorem in this context

A linear transformation B from L1[0; 1] is a bistochastic operator if BX %L X 8X 2
L1[0; 1]. The use of the term operator is intended to imply these linear transformations are

bounded. Indeed it is easy to verify [see. e.g. Ry� (1963)] that if a linear transformation

B from L1[0; 1] to L1[0; 1] is such that BX %L X 8X 2 L1[0; 1] then it is a contraction

for the L1 norm3. Moreover if we consider B in restriction to L1[0; 1], it is easy to show

that B has its values in L1[0; 1] and is a contraction for the L1 norm. A representation of

bistochastic operators in terms of kernels has been given by Ry� (1963).

The following theorem provides a �rst characterization of the partial preorder %.

Theorem 5.1. [Ry� (1965)]

Let X and Y be two functions in L1[0; 1]. Then X %L Y if and only if there exists a

bistochastic operator B on L1[0; 1] such that X = BY .

If X is an income distribution and s 2 [0; 1];
Z s

0

X�(t) dt represents the amount of income

received by the richest s share of the population. Thus if we intend to use a real-valued func-

tion I de�ned on L1[0; 1] in order to perform inequality measurement it appears reasonable

to this function to be decreasing with respect to %L i.e. if X and Y in L1[0; 1] are such

that X %L Y then I(X) 5 I(Y ). We may even impose that I be strictly decreasing with

respect to %L i.e. X �L Y implies I(X) < I(Y ). From theorem 1, it comes that these two

3More precisely it is a positive contraction operator on L1[0; 1].
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monotonicity requirements are captured by the following de�nition.

A real-valued function I de�ned on L1[0; 1] is:

1. Schur-convex if 8X 2 L1[0; 1]I(BX) 5 I(X) for every bistochastic operator B on

L1[0; 1].

2. strictly Schur-convex if 8X 2 L1[0; 1]I(BX) < I(X) for every bistochastic operator B

on L1[0; 1] such (BX)� 6= X�.

This de�nition of Schur-convexity which is aligned on the de�nition which is traditionnaly

provided in the �nite case represents a departure from the de�nition given for instance by

Chong and Rice (1971) and Luxembourg (1967).

From now on, we shall restrict our attention to bounded income distribution. To intro-

duce a continuity requirement we must endow L1[0; 1] with a topology. In contrast with

the �nite case there is no natural topology on L1[0; 1]. We are going compare three usual

topologies on L1[0; 1] such that this space is a locally convex linear topological space and

motivate the choice of the Mackey topology4.

The �rst topology is the topology associated to the norm k � k15. It can be shown that

this metric leads to an "excessive" sensibility of inequality measurement to an additional

income for an arbitrary small group of agents). In looking for weaker topologies, we will

focus on those which are locally convex and such that the topological dual be L1[0; 1]. More

precisely, we are going to examine the weaker one which is the weak �(L1; L1) topology,

and the �ner one which is the Mackey �(L1; L1) topology.

The weak �(L1; L1) is too restrictive for our context. Indeed there does not exist real-

valued functions on L1[0; 1] which are simultaneously symmetric, strictly Schur-convex

and �(L1; L1) continuous. This may seen by considering the following sequence of func-

tions. Let (Xk)k2IN� be de�ned by Xk(t) =
1

2
if t 2

�
2j � 1
2k

;
2j

2k

�
for j = 1; : : : ; k and

Xk(t) =
3

2
if t 2

�
2j

2k
;
2j + 1

2k

�
for j = 0; :::::; k � 1 It is straightforward to show that

(Xk)k2IN� converges (in the �(L1; L1) topology) to the function Y � 1I[0;1]. Furthermore

X�
k =

3

2
1I[0;1[+

1

2
1I[ 1

2
;1] 8k � 1. Thus if I is �(U1; U1) continuous and symmetric on L1[0; 1],

4For all the relevant material concerning linear topological space, weak and Mackey topologies, we refer
to dunford-Schwartz (1966) and Kelley-Namioka (1963).

5kXk1 � inffc > 0 : jX(t)� 5 c for � a.e. t 2 [0; 1]g
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we deduce that I(Y ) = I(X�) which contradicts Schur-convexity since Y �L X�
1 . This situ-

ation is far from being exceptional ; a complete characterization of the functions which are

symmetric and �(L1; L1) continuous is given in Le Breton (2006).

All these considerations suggest to endow L1[0; 1] with the Mackey topology �(L1; L1)

leading to the following continuous counterpart of the de�nition provided in the �nite case.

An inequality index for bounded income distributions is a real-valued function I de�ned

on L1+ [0; 1] such that I is mackey continuous ans strictly Schur-convex.

We shall prove later that any inequality index is symmetric. The remainder of this sec-

tion is devoted to the proof of some properties of the Mackey topology which will be useful

in proving our continuous extension of Hardy, Littlewood and Polya.

Lemma 5.2. The Mackey topology �(L1; L1) is �ner that the topology of convergence in

probability6.

Proof

Assume at the contrary that there exists a generalized sequence (X
)
2� in L
1[0; 1] con-

verging to X in the Mackey �(L1; L1) topology and such that (X
)
2� does not converge

to X probability.

Then there exists " > 0 and a generalized subsequence (X
)
2 ~� such that �ft 2 [0; 1] :
jX
(t)�X(t)j > "g > "; 8
 2 ~�.

Consider:

f
(t) = 1IfX
�X>"g � 1IfX
�X>"g; 
 2 ~�; t 2 [0; 1]

We denote by F the circled convex hull of the set ff
g
2 ~�. By Dunford-Pettis's theorem
[see e.g. Neveu (1970) proposition IV 2.3], it comes F is �(L1; L1) relatively compact since

it is equi-integrable. Thus F is a circled, convex [Dunford-Schwartz (1966) th. 1, p. 413],

and �(L1; L1) compact subset of L1.

6For a de�nition and some properties of this topology see Kelley-Namioka (1983) p. 55. With this L1[0; 1]
is a metrizable linear topological space.
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From the de�nition of f
; it comesZ 1

0

f
(t)(X
(t)�X(t))dt =

Z
fX
�X>"g

�X(t)dt+
Z
fX
�X<�"g

�X
(t)dt

� "2; 8
 2 ~�

Thus sup
f2F
j
Z 1

0

f(t)(X
(t)�X(t)dtj � "2 8
 2 ~�

From the characterization of convergence for the Mackey topology [Kelley-Namioka (1963)

th. 18.8] it comes that (X
)
2 ~� does not converge to X in the Mackey topology contradicting

our assumption.

The following result states a weak converse of lemma 5.2.

Lemma 5.3. Let K be a strongly bounded subset of L1[0; 1]. In restriction to K the

topology of convergence in probability is �ner that the Mackey topology �(L1; L1).

Proof

Since the topology of convergence in probability is metrizable and thus �rst countable it

su�ces to prove that if (Xn)n>0 is a sequence in K converging to X in this topology, then it

converges also to X in the Mackey topology �(L1; L1).

Let C > 0 be such that kY k1 � C 8Y 2 K and F an arbitrary circled, convex and

�(L1; L1) compact subset of L1[0; 1].

For any f 2 F and � > 0 we haveZ 1

0

f(t)(Xn(t)�X(t)dt =
Z
fjXn�Xj>�g

f(t)(Xn(t)�X(t))dt+
Z
fjXn�Xj��g

f(t)(Xn(t))�X(t)dt

It comes

j
Z 1

0

f(t)(Xn(t)�X(t)dt)j � 2C
Z
fjXn�Xj>�g

jf(t)dt+ �

Z 1

0

jf(t)jdt

Since F is �(L1; L1) compact it is (applying again Dunford-Pettis's theorem) equi-

integrable i.e.
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8" > 0;9 �(") > 0 such that �(E) � �(") implies

Z
E

jf(t)jdt � " 89 2 B and 8f 2 F
and 9c0 > 0 such that kfk1 � C 0 8f 2 F .

Let � > 0. Since (Xn)n=0 converges to X in probability, for any � > 0 there exists N(�; �)

such that n = N(�; �) implies �ft 2 [0; 1] : jXn(t)�X(t)j > �g 5 �.

Thus if n = N
�
�
� "

4C

�
;
� "

2C

��
it comes:����Z 1

0

f(t)(Xn(t)�X(t)dt

���� � "

2
+
"

2
= " 8f 2 F

In combining lemmas 5.2 and 5.3., it follows that the topology of convergence in proba-

bility and the Mackey topology coincide on the strongly bounded subsets of L1[0; 1]7.

We shall denote B1 the set of bistochastic operators on L1[0; 1]. It is easy to show that
B1 is convex. Furthermore if B;B0 2 B1 then B �B0 2 B1 and if B 2 B1 then the adjoint
of B is a bistochastic operator on L1[0; 1]. Thus B1 is a selfadjoint semi-group of operators

on L1[0; 1].

For every X in L1[0; 1] we shall denote by 
(X) the orbit of X under the section of B1

i.e. 
(X) = fBX;B 2 B1g. From theorem 5.1, we know that 
(X) is the set of income

distributions that Lorenz dominates the income distribution X.

Lemma 5.4. For every X in L1[0; 1]; 
(X) is convex and Mackey closed in L1[0; 1].

Proof

1. 
(X) is convex: obvious since B1 is convex ;

2. 
(X) is Mackey closed.

Since the operators in B1 are contractions we deduce that 
(x) is strongly bounded.

Since the Mackey topology �(L1; L1) is metrizable in restriction to strongly bounded sub-

sets, we have to show that if (Yn)n�1 is a sequence in 
(X) converging for the Mackey

7The coincidence does not hold on whole space. Consider for instance the sequence (X�)��1 with X� �
� 1[0;

1

�
]
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topology to Y , then Y 2 
(X).

Claim 1: (Y �
n )n�1 converges to Y

� for the Mackey topology.

From lemma 5.2 it comes that (Yn)n=1 converges in probability to y, and thus in distrib-

ution. Then, it is straightforward to show that (Y �
n )n=1converges � almost surely to Y

�. We

deduce from lemma 5.3. that (Y �
n )n=1 converges for the Mackey topology to Y

�.

Claim 2: Y � 2 
(X)

Assume at the contrary Y � 62 
(X). Then there exists s 2 [0; 1] such that
Z s

0

Y �(t)dt >Z s

0

X�(t)dt. Consider f � 1I[0;s]. Since from claim 1 (Y �
n )n=1 converges to Y

� for the

Mackey topology, it converges for the �(L1; L1) topology and thus

Z 1

0

f(t)Y �
0 f(t)Y

�
n (t)dt

tends to

Z 1

0

f(t)Y �(t)dt. when n goes to in�nity. This implies that for n su�ciently large

we have

Z s

0

Y �
n (t)dt >

Z s

0

X�(t)dt. this contradicts the assumption that Yn 2 
(X). Thus
Y � 2 
(X). Since Y �L Y � we deduce from claim 2 that Y 2 
(X).

The following result gives a deep information on the geometrical structure of 
(X).

Theorem 5.6. [Ry� (1967)]

For every X in L1[0; 1], the set of extremal points of 
(X) is the set fY 2 L1[0; 1] :

Y �L Xg8.

Lemma 5.7. For every X in L1[0; 1]
(X) is the Mackey closed convex hull of the set

fY 2 L1[0; 1] : Y �L Xg.

Proof

From lemma 5.4. we know that 
(X) is convex and Mackey closed. Since the topological

duals of L1[0; 1] for the Mackey topology and the �(L1; L1) topology are the same, we

8Strictly speaking Ry�'s theorem is stronger: it is stated for L1[0; 1].
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deduce [Dunford-Schwartz (1966) Cor. 14 p. 418] that the closed convex sets are the same

for these two topologies. Thus 
(X) is �(L1; L1) closed. Since we have already noticed that

it is strongly bounded we deduce from Alaoglu's theorem [Dunford-Schwartz (1966) p. 424]

that it is �(L1L1) compact.

From theorem 5.6 and Krein-Milman's theorem [Dunford-Schwartz (1966) p. 440] we deduce

that 
(X) is the �(L1; L1) closed convex hull of the set fY 2 L1[0; 1] : Y �L Xg. By using
again the argument above, it comes that 
(X) is the Mackey closed convex hull of the set

fY 2 L1[0; 1] : Y �L Xg.

The following result has already been announced.

Lemma 5.8 Every inequality index I on L1+ [0; 1] is symmetric.

Proof

Let X; Y belonging to L1+ [0; 1] be such that X �L Y . Since 
(X) = 
(Y ) is convex it
comes �X + (1� �)Y 2 
(X) 8� 2 [0; 1]. For every � in ]0; 1[�X + (1� �)Y is not an ex-

treme point of 
(X) and thus from theorem 5.6., it comes (�X+(1��)Y � 6= X�. Since I is

strictly Schur-convex we deduce that I(�X+(1��)Y ) is strictly smaller than I(X) and I(Y ).

On the other hand k�X+(1��)Y �Xk1 = (1��)kX�Y k1 and k�X+(1��)Y �Y k1 =
�kX�Y k1. Thus when � tends to 0 (resp. to 1) �X+(1��)Y converges for the k 1 norm
and consequently for the Mackey topology to Y (resp. to X). Since I is Mackey continuous

we deduce that I(X) 5 I(Y ) and I(Y ) 5 I(X) i.e. I(X) = I(Y ).

The following result describes an important family of inequality indices.

Lemma 5.9. For every real valued function ' continuous and convex on IR+ the function

I de�ned o L1+ [0; 1] by U(X) =

Z 1

0

'(X(t))dt is an inequality index.

Proof

1. I is Mackey continuous on L1+ [0; 1].

Consider a generalized sequence (X
)
2� in L
1
+ [0; 1] converging for the Mackey topol-
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ogy to X. Since this implies that it converges for the �(L1; L1) topology ; thus we

deduce from the Banack-Steinhaus's theorem [Kelley-Namioka -1963) th. 12.2] that it

is strongly bounded i.e. kX
k1 5 C and kXk1 5 C for a constant C > 0. We made

a troncation of ' in C by setting 'C(X) � '(X) if x 5 C and 'C(x) = '(C) if x > C.

Since (X
)
2� converges to X for the Mackey topology it comes from proposition 2

that it converges to X in distribution. It is clear that I(X
) =

Z 1

0

'C(X(t)dt) ; thus

since 'C is continuous and bounded we deduce that (I(X
))
2� converges to I(X).

2. I is strictly Schur-convex on L1+ [0; 1].

Since I is convex, symmetric and Mackey continuous on L1+ [0; 1]; it is Schur-convex

on L1+ [0; 1]. It remains to prove that it is strictly schur-convex. Let X 2 L1+ [0; 1]

and Y 2 
(X) with Y � 6= X�. From theorem 5.6, Y is not an extremal point of


(X). i.e. 9Z1; Z2 2 
(X); Z1 6= Z2 such that Y =
1

2
(Z1 + Z2). Since ' is strictly

convex we deduce immediately that I(Y ) <
1

2
(I(Z1)+ I(Z2)). Since I is Schur-convex

I(Z1) 5 I(X) and I(Z2) 5 I(X). Thus I(Y ) < I(X).

We are now in position to state a suitable continuous version of the theorem of Hardy,

Littlewood et Polya.

Theorem 5.10

Let X and Y belonging to L1[0; 1]. The following properties are equivalent.

1. Y %L X

2. There exists B 2 B such that Y = BX

3. Y belongs to the Mackey closed convex hull of the set fZ 2 L1[0; 1] : Z� = X�g

4. For every convex, symmetric and Mackey continuous real-valued function I on L1[0; 1]

we have : I(Y ) 5 I(X).

Proof

1. , 2. : theorem 5.1.

2. , 3. : lemma 5.7.
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3. ) 4.

Let I be a convex, symmetric and Mackey continuous real-valued function on L1[0; 1].

Since Y 2 COfZ 2 L1[0; 1] : Z� = X�g, there exists9 a generalized sequence (Z
)
2�

converging to Y and such that 8
 2 �; Z
)
k(
)X
i=1

�i;
 ~Xi;� with

k(
)X
i=1

�i;� = 1 0 5 �i;5 1 and

~Xi;
� = X�; 8i = 1; : : : ; k(
). Since I is convex it comes I(z
) 5
k(
)X
i=1

�i;
I( ~Xi;�); 8
 2 �,

and since it is also symmetric we have I(Z
) 5 I(X) 8
 2 �. By using the Mackey

continuity of I we deduce I(Y ) 5 I(X).

4. ) 1:For every t 2 [0; 1], we consider the function It : L
1[0; 1] ! IR de�ned by

It(Z) =

Z 1

0

't(Z(s)ds) with 't : IR ! IR de�ned by 't(X) = max(0; x �X�(t)). It is easy

to show that I is symmetric and Mackey continuous. Furthermore since 't is convex it is

also convex.

By applying 4. to It, we deduce :

It(Y
�) = It(Y ) 5 It(X) = It(X

�)

Since 't is positive we have :

It(X
�) =

Z t

0

't(Y
�(s)ds) =

Z t

0

(Y �(s)�X�(t))ds

But by construction :

It(X
�) =

Z t

0

(X�(s)�X�(t))ds

Thus : Z t

0

Y �(s)ds 5
Z t

0

X�(s)ds�

The equality for t = 1 follows by considering the linear function I de�ned by I(Z) =

�
Z 1

0

Z(s)ds.

9Since for every subset A of a topological linear space COA = CO A (see e.g. Dunford-Schwartz (1966)
lemma 4 p; 415).
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By using arguments totally di�erent from ours, Grothendieck (1955) has proved that

condition (4) above is equivalent to the condition :

For every convex,symmetric and �(L1; L1) lower semi-continuous real or f+1g valued
function I on L1[0; 1] : I(Y ) 5 I(X):

A careful reading of the proofs indicates how this result can be easily deduced from ours.

In the case of L1[0; 1], Chong and Rice (1971) and Luxembourg (1967) have established re-

sults of the same nature for the weak �(L1; L1) topology and lower semi-continuity instead

of continuity.

Multivariate majorizations : The Koshevoy's Zonotope

The theory of inequality measurement has been developed in the case where individuals

or groups di�er along a single dimension, say income. Further, it has always been implicitely

assumed that individuals were not di�erent among themselves and therefore no speci�c at-

tention should be paid to the identity and caracteristics of the donor or recipient of a transfer

besides their levels of income. The extension of the theory to population of individuals which

di�er according to many variables is di�cult and is far from being achieved despite some

recent promising developments.

One line of investigation consists in considering stochastic orders, like those considered in

the one dimensional case. These orders are orders on the set (or subsets) of probability distri-

butions over <m where m denotes the number of attributes (characteristics, commodities,...)

which are considered. Let F be the distribution function of any such joint distribution on

<m and U be a function from <m into <. Integrating by parts to rearrange the expressionZ
<

Z
<
:::::

Z
<| {z }

m times

U(x1; x2; ::xm)F (dx1; dx2; ::dxm)

leads to several stochastic orders (Atkinson and Bourguignon (1982) and Levy and

Paroush (1974) are two representive contributions following that line of investigation). For

instance, if m = 2, F is absolutely continuous with respect to the Lebesgue measure on <2

with density f and support in the unit square and U has high order derivatives as much as

needed, then :
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Z 1

0

Z 1

0

U(x1; x2)f(x1; x2)dx1dx2 = U(1; 1)

Z 1

0

Z 1

0

f(x1; x2)dx1dx2 �
Z 1

0

@U

@x1
(x1; 1)F1(x1)dx1

�
Z 1

0

@U

@x2
(1; x2)F2(x2)dx2

+

Z 1

0

Z 1

0

@2U

@x1@x2
(x1; x2)F (x1; x2)dx1dx2

where Fi is the marginal distribution on the i
th component. The �rst term will not play

any role. The second and third terms bring us back in the one dimensional case and we can

apply what we know separately on the two marginals. The last term is really attached to

the two dimensional setting. Indeed, take another distribution G with density g such that

F1 = G1 and F2 = F2. Then :

Z 1

0

Z 1

0

U(x1; x2)f(x1; x2)dx1dx2 �
Z 1

0

Z 1

0

U(x1; x2)g(x1; x2)dx1dx2

=

Z 1

0

Z 1

0

@2U

@x1@x2
(x1; x2) (F (x1; x2)�G(x1; x2)) dx1dx2

The sign of this expression will depend on the respective intensities of correlation of F

and G. Under the constraint that the marginals are the same, the condition :

F (x1; x2)�G(x1; x2) � 0

can be shown to represent indeed the property that F exhibits less correlation than

G. Under this condition and the the condition that the sign of the second cross derivative
@2U

@x1@x2
(x1; x2) is negative, we deduce that the above integral is positive. This condition

on U known as supermodularity leads to several stochastic orders depending upon which

assumptions we consider on the class of functions U . For instance, if we assume @U
@x1
(x1; x2) �

0; @U
@x2
(x1; x2) � 0; @2U

@x1@x2
(x1; x2) � 0, we obtain :Z

<2
U(x1; x2)F (dx1; dx2) �

Z
<2
U(x1; x2)G(dx1; dx2) for all u 2 U

i�

F (x1; x2)�G(x1; x2) � 0 for all (x1; x2) 2 [0; 1]2

If instead, U consists of all utility functions satisfying, in addition to the above conditions,
the extra conditions @

2U
@x21
(x1; x2) � 0 and @2U

@x21
(x1; x2) � 0 (these functions are called functions

with nondecreasing increments), then :
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Z
<m

U(x1; x2)F (dx1; dx2) �
Z
<m

U(x1; x2)G(dx1; dx2) for all u 2 U i� :

F (x1; x2)�G(x1; x2) � 0 for all (x1; x2) 2 [0; 1]2Z x1

0

(F1(u1)�G1(u1)) du1 � 0 for all x1 2 [0; 1]

and

Z x2

0

(F2(u2)�G2(u2)) du2 � 0 for all x2 2 [0; 1]

� As soon as we recognize that the integral
R 1
0

R 1
0

@2U
@x1@x2

(x1; x2)F (x1; x2)dx1dx2 has a

structure analogous to
R 1
0

R 1
0
U(x1; x2)f(x1; x2)dx1dx2, we can perform one more round of

integration by parts to obtain some more selective stochastic orders. This routine leads how-

ever to families U of functions entailing sign conditions on their third and fourth partial cross
derivatives which are not immediate to interpret. Further, the stochastic orders resulting

from these families are not themselves immediate to analyse like Lorenz dominance. Note

that the above conditions become much more intricate when we move to more than two

attributes.

� Le Breton (1986) point out the relevance of Brunk (1964) and Fan and Lorentz (1954)
to show that as soon as the two distributions exhibit perfect positive correlation, then, the

stochastic order attached to the class of functions having negative cross and direct second

order partial derivatives is simply the intersection of the two Lorenz orders.

� The above orders can be examined in restriction to the class of discrete distributions.
We can even restrict our attention, as we did in our examination of the unidimensional

Lorenz order, to the class of distributions 1
n

Pn
i=1 �xi where xi 2 <m for all i = 1; :::; n: A

distribution can be identi�ed to a n � m matrix X = (xik) 1 � i � n; 1 � k � m where

xik denotes the amount of attribute k received by individual i. There are several ways to

approach the problem. The Hardy, Littlewood and Polya 's theorem suggests to look at the

problem either from the perspective of linear stochastic operators (describing composition of

transfers), or from the perspective of dominance, or �nally from the perspective of the class

of individual utility functions which is considered. Among the many contributions to this

line of research, those of Koshevoy (1995,1998) (see also Mosler and Koshevoy (1997)) are

quite central.

� Consider an arbitratry multivariate probability distribution F over <m+with �nite and
strictly positive �rst moments.Let �k �

R
<m+

xkF (dx) for all k = 1; :::;m and  F (x) =�
x1
�1
; ::::; xm

�m

�
. The Lorenz zonoid of F is the set :
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LZ(F ) �
�
z 2 <m+1+ : z = (z0; z1; :::; zm) = �(h) with h : <m+1+ ! [0; 1] measurable

	
where :

�(h) �
 Z

<m+
h(x)F (dx);

Z
<m+

h(x) F (x)F (dx)

!

The Lorenz zonoid has the following interpretation. Every unit of the population is

assigned a vector x in <m+ and holds therefore a portion  F (x) of the mean endowment. A
given measurable function h : <m+1+ ! [0; 1] may be considered to be a selection of some

part of the population : of all those units that have endowment vector x (or portion vector

 F (x)), the percentage h(x) is selected. Thus,
R
<m+

h(x)F (dx) is the size of the population

selected by h, and
R
<m+

h(x) F (x)F (dx) amounts to be the total portion vector held by this

population.

� The nature of the Lorenz zonoid is quite easy to vizualize in the one dimensional case.
The dual Lorenz function LF de�ned by :

LF (t) = 1� LF (1� t) for all t 2 [0; 1]

describes the respective portions of the endowment held by the individuals ordered from

the richest to the poorest; for instance t=0.1 corresponds now to the highest decile. The

Lorenz zonoid is the convex set whose frontiers are the standard and dual Lorenz functions.

The vertical section through t corresponds to the set of feasible shares held by subpopulations

representing a fraction t of the total population.

� When the distribution is of the discrete type discussed above i.e. described through a
matrix X, then :

LZ(FX) =

(
z 2 <m+1+ : z =

nX
i=1

h(i)exi, 0 � h(i) � 1 for all i = 1; :::; n
)

where :

exi =  1
n
;

xi1Pn
j=1 xj1

; ::::;
ximPn
j=1 xjm

!
for all i = 1; :::; n

or equivalently, is the sum of the line segments
Pn

i=1 h(i) [0; exi]. LZ(FX) is a zonotope
contained in the unit cube of <m+1.
� As already explained, for a given (z1; :::; zm) 2 Z(F ) where :
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Z(F ) =

(
y 2 <m+ : y = (y1; :::; ym) =

Z
<m+

h(x) F (x)F (dx) with h : <m+1+ ! [0; 1] measurable

)
z = (z0; z1; :::; zm) 2 LZ(F ) if and only if z0 is in the closed interval between the smallest

and the largest percentage of the population by which the portion vector (z1; :::; zm) is held.

This leads to the de�nition of an inverse Lorenz function LF :

LF : Z(F )! [0; 1] , LF (y) =Max ft 2 [0; 1] : (t; y) 2 LZ(F )g

Its graph is the Lorenz surface of F . The following de�nition is due to Koshevoy.

� The distribution G is not less than the distribution F in the Lorenz zonoid (or multi-

variate Lorenz) order if LZ(F ) � LZ(G) holds. It is equivalent to ask that Z(F ) � Z(G)

and LF (x) � LG(x) for all x 2 Z(F ). For a given p in <m, let Fp be the random variable

x � p. Koshevoy has demonstrated the following important equivalence :
� LZ(F ) � LZ(G) i� for all p in <m, the Lorenz curve of Fp is above the Lorenz curve

of Gp.

� This theorem can be interpreted in terms of prices and expenditures. Given a price

vector p, and two distributions F and G of m commodities, Fp and Gp are the corresponding

distributions of expenditures. Koshevoy's theorem just says that F has less multivariate

inequality than G i� Fp has less univariate inequality than Gp in the sense of Lorenz domi-

nance.

� A shorter proof of Koshevoy's theorem is provided by Dall'Aglio and Scarsini (2001).

Note that the price vectors are not restricted to belong to the positive orthant. When p is

restricted to belong to <m+ , we obtain an order introduced by Kolm (1977) which has not yet
been characterized adequately but which is more selective than the Lorenz multivariate order.

Koshevoy has also developed e�cient algorithms to compare two zonotopes and compared

his order to some previous multivariate orders like for instance the one proposed by Taguchi

(1972a,b).

� To the best of my knowledge, the geometric approach has not been widely explored.
We could consider for instance say that a nxm matrix X exhibits less inequality than a

n �m matrix Y i� : For all k = 1; ::::;m, there exists a bistochastic matrix Bk such that:

x:k = Bky:k where x:k = (x1k; :::::; xnk) :

This order is quite controversial as it allows to disconnect the transfers across components

: it is easy to produce examples where we increase the aggregate inequality. We could then

impose the same bistochastic matrix to all attributes. This order has been investigated by

Rinott (1973)
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Bivariate Income Distributions : Horizontal Equity and Taxation

This question is related in some of its dimensions to the question examined in the pre-

vious section. In particular, the question of horizontal equity is formally related to the

question of correlation between two distributions. Ordering of taxation schemes according

to progressivity is the subject of a seminal contribution by Jakobsson (1976).
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