Measuring Segregation

AN INTRODUCTION TO THE TOPIC

I) Measuring Segregation when there are only two groups:

1

A) The Concept of Segregation CurveB) Indices of segregation:

1) The Duncan and Duncan Index $\rm I_{\rm D}$

2) The Gini Segregation Index I_G

females in various occupations.

Occupation i	Fi	M _i	F _i /M _i	Rank of (F _i /M _i)
1	100	400	.25	1
2	200	100	2	3
3	200	500	.4	2
Total	500	1000		

A Simple Illustration of the Segregation Curve

Data for Segregation Curve

Occupation i	$(\mathbf{F}_i / \boldsymbol{\Sigma}_i \mathbf{F}_i)$	$(\mathbf{M}_i / \boldsymbol{\Sigma}_i \mathbf{M}_i)$	Cumulative Values of	Cumulative Values of
			$(\mathbf{F}_i / \boldsymbol{\Sigma}_i \mathbf{F}_i)$	$(M_i / \Sigma_i M_i)$
1	.2	.4	.2	.4
3	.4	.5	.6	.9
2	.4	.1	1	1
Total	1	1		

3

The corresponding Segregation Curve

Segregation Curve

Indices

- a) The case of income inequality measurement:
- b) On the Concept of Normative Segregation Indices

5

A comparative view of the values of the Gini-Segregation index.

Country and year	Self Employed	Employees only	Difference between self- employed and employees	Employees working full time	Employees working part time	Difference between full and part time employees
Switzerland (1997)	0.70 (1)	0.69 (1)	0.01	0.69 (1)	0.64 (2.5)	0.05
Finland (1990)	0.46 (8)	0.66 (5)	-0.20	n.a.	n.a.	n.a.
Norway (1990)	0.58 (3)	0.68 (3)	-0.10	0.66 (3)	0.51 (5)	0.15
Sweden (1990)	0.55 (4)	0.66 (6.5)	-0.11	0.65 (4.5)	0.47 (7)	0.18
France (1997)	0.49 (7)	0.63 (9)	-0.14	0.62 (8)	0.54 (4)	0.08
Hungary (1993)	0.53 (5)	0.64 (8)	-0.11	0.64 (6.5)	0.64 (2.5)	0
Luxembourg (1992)	0.35 (9)	0.68 (3)	-0.33	0.65 (4.5)	0.42 (9)	0.23
Poland (1994)	0.27 (10)	0.67 (5)	-0.40	0.68 (2)	0.46 (8)	0.22
Spain (1993)	0.50 (6)	0.59 (10)	-0.09	0.57 (9)	0.66 (1)	-0.09
The United Kingdom (1989)	0.67 (2)	0.68 (3)	-0.01	0.64 (6.5)	0.48 (6)	0.16

Country and	Self	Employees	Difference	Employees	Employees	Difference
year	Employed	only	between	working	working	between
,			self-	full time	part time	full and
			employed		-	part time
			and			employees
			employees			
Switzerland (1997)	0.54 (1)	0.55 (1)	-0.01	0.56 (1)	0.56 (1)	0.00
Finland	0.31 (8)	0.54 2)	-0.23	n.a.	n.a.	n.a.
(1990)		ŕ				
Norway	0.51 (2)	0.51 (7)	0.00	0.51 (5)	0.34 (8)	0.17
(1990)						
Sweden (1990)	0.40 ((5)	0.52 (4)	-0.12	0.52 (3)	0.36 (6)	0.16
France (1997)	0.32 (7)	0.52 (4)	-0.20	0.50 (7)	0.44 (5)	0.14
Hungary (1993)	0.41 (4)	0.51 (7)	-0.10	0.51 (5)	0.51 (3)	0.00
Luxembourg (1992)	0.25 (9)	0.52 (4)	-0.27	0.52 (3)	0.55 (2)	-0.03
Poland (1994)	0.22 ((10)	0.54 (2)	-0.32	0.54 (2)	0.35 (7)	0.19
Spain (1993)	0.34 (6)	0.44 (10)	-0.10	0.44 (9)	0.51 (3)	-0.07
The United	0.51 (2)	0.48 (9)	0.03	0.48 (8)	0.34 (8)	0.14
Kingdom						
(1989)						

A comparative view of the values of the Duncan index.

Notes: n.a. means data "not available"

The ranking of the countries is given in parenthesis. When two countries have the same rank i, the rank given to them is (i + 0.5). If three countries have the same rank j, the rank given to them is j+1.

7

A comparison of the values taken by the normative segregation index when $\delta = 3$

A) Self-Em	ploved	and	Emp	lovees
4 m .	, Sen-Lin	proyeu	and	- Sinp	io y ces

Country and year	Self Employed. The "prior distribution is that of males.	Self Employed. The prior distribution is that of females.	Employees only. The prior distribution is that of males	Employees only. The prior distribution is that of females
(1)	(2)	(3)	(5)	(6)
Switzerland (1997)	0.85 (1)	0.81 (1)	0.86 (1)	0.76 (4.5)
Finland (1990)	0.62 (8)	0.58 (8)	0.83 (6)	0.74 (7)
Norway (1990)	0.68 (5.5)	0.75 (3)	0.85 (2)	0.77 (2.5)
Sweden (1990)	0.70 (4)	0.68 (4)	0.82 (7.5)	0.76 (4.5)
France (1997)	0.64 (7)	0.63 (5)	0.81 (9)	0.70 (9)
Hungary (1993)	0.73 (3)	0.61 (6)	0.82 (7.5)	0.73 (8)
Luxembourg (1992)	0.44 (9.5)	0.50 (9)	0.84 (4)	0.78 (1)
Poland (1994)	0.44 (9.5)	0.32 (10)	0.84 (4)	0.75 (6)
Spain (1993)	0.68 (5.5)	0.60 (7)	0.78 10)	0.67 (10)
The United Kingdom (1989)	0.84 (2)	0.76 (2)	0.84 (4)	0.77 (2.5)

Notes: n.a. means data "not available"

The ranking of the countries is given in parenthesis. When two countries have the same rank i, the rank given to them is (i + 0.5). If three countries have the same rank j, the rank given to them is j+1.

Country and year	Employees working full time. The "prior distribution is that of	Employees working full time. The prior distribution is that of	Employees working part time. The prior distribution is that of males	Employees working part time. The prior distribution is that of females
	males.	females.		
(1)	(2)	(3)	(5)	(6)
Switzerland (1997)	0.86 (1)	0.76 (2)	0.83 (1)	0.72 (3)
Finland (1990)	n.a.	n.a.	n.a.	n.a.
Norway (1990)	0.83 (3.5)	0.76 (2)	0.67 (5)	0.63 (4)
Sweden (1990)	0.80 (7.5)	0.75 (4.5)	0.65 (8)	0.55 (7)
France (1997)	0.81 (6)	0.70 (8)	0.74 (4)	0.62 (5)
Hungary (1993)	0.82 (5)	0.73 (7)	0.82 (2)	0.73 (2)
Luxembourg (1992)	0.83 (3.5)	0.75 (4.5)	0.59 (9)	0.52 (9)
Poland (1994)	0.85 (2)	0.76 (2)	0.66 (6.5)	0.54 (8)
Spain (1993)	0.77 (9)	0.64 (9)	0.80 (3)	0.78 (1)
The United Kingdom	0.80 (7.5)	0.74 (6)	0.66 (6.5)	0.58 (6)

Notes: n.a. means data "not available"

The ranking of the countries is given in parenthesis. When two countries have the same rank i, the rank given to them is (i + 0.5). If three countries have the same rank j, the rank given to them is j+1. A similar principle is applied when more than 3 countries have the same rank.

4) <u>The Desirable Properties of</u> <u>Segregation index</u>:

Axiom 1: Size Invariance

Axiom 2: Complete Integration

Axiom 3: Complete Segregation

Axiom 4: Symmetry in Groups

Axiom 5: Symmetry in Types

Axiom 6: Weak Principle of Transfers

Axiom 7: Movement between Groups

Axiom 9: This axiom has also been introduced by Kakwani (1994).

Axiom 10: Increasing Returns to a Movement Between Groups (see, Zoloth 1976)

Axiom 11: Zero Member Independence

Axiom 12: It has been called *Organizational Equivalence* by James and Taeuber (1985) and *Insensitivity to Proportional Divisions by* Hutchens (2001).

Axiom 13: Additivity

Axiom 14: Additive Decomposability

11

5) Entropy based Indices of Segregation:

a) Measuring local segregation:

In information theory, the expression $I_j = w_j \log(w_j/W) + (1 - w_j) \log((1 - w_j)/(1 - W))$

is known as the expected information of the message that transforms the proportions
 (W, (1 - W)) into proportions (w_i, (1 - w_i)).

$\mathbf{I}_{\mathsf{E}} = \sum_{j} s_{tj} \mathbf{I}_{j}.$

In other words I_E is the weighted average of the information expectations, with weights proportional to the number of people in the occupations.

13

One can prove that I_E satisfies the axioms of

- Size Invariance
- Complete Integration
- Symmetry in Groups
- Symmetry in Types
- Additivity
- Complete Segregation
- Weak Principle of Transfers
- Movement between Groups
- Increasing Returns to Movement Between Groups
- Zaro Mambar Independence

Analysis of Segregation:

A)Deriving a multidimensional formulation of segregation measurement:

15

Moir and Selby Smith (1979) suggested measuring segregation via the index

$$I_{MSS} = (1/2) \sum_{i=1}^{m} |(T_i / T) - (F_i / F)|$$

Lewis (1982) suggested using the following segregation measure:

$$I_{L} = (1/2) \sum_{i=1}^{m} |(M_{i} / M) - (T_{i} / T)|$$

17

Karmel and Maclachlan (1988) proposed a third extension of the Duncan index by defining the following segregation index:

$$I_{KM} = (1/T) \sum_{i=1}^{m} |(F/T)M_i - (M/T)F_i|$$

The Karmel and Maclachlan index may be expressed as

$$I_{KM} = \sum_{i=1}^{m} \sum_{j=1}^{K} \left| (T_{ij} / T) - (T_{i.} / T) (T_{.j} / T) \right|$$

19

We may interpret segregation as the comparison of "a priori" shares (T_{i.}/T)(T_{.i}/T)

with "a posteriori" shares (T_{ij}/T) .

But we are not limited to using an extension of the Duncan index.

Using the G-matrix we may define a "generalized Gini segregation index" as

 $I_{GG} = [...((T_{i} / T)(T_{j} / T))...]'G[...(T_{ij} / T)..]$

2002)

1) <u>Segregation as Disproportionality in</u> <u>Group Proportions</u>:

21

Example 1: An index derived from the mean relative deviation.

Assume that

$$f(r_{ij}) = (1/2) |r_{ij} - 1|.$$

Then
$$W = (1/2) \sum_{i=1}^{I} m_{i} \sum_{i=1}^{J} m_{i} |r_{ii} - 1|.$$

Assume that

 $f(r_{ij}) = |r_i - r_j|.$

Then

 $W = (1/2) \sum_{i=1}^{J} m_{i} \sum_{j=1}^{J} \sum_{j=1}^{J} (m_{j} m_{k}) |r_{ih} - r_{ik}|$ h=1 k=1

23

Example 3: An index derived from the concept of entropy (from the Theil index).

Assume that

$$f(r) = r \ln r$$

Then
$$W = \sum_{i=1}^{I} m_{i} \sum_{j=1}^{J} m_{j} r_{ij} \ln r_{ij}$$

Assume that

$$f(r) = (r - 1)^{2}$$
then
$$W = \sum_{i=1}^{I} m_{i} \sum_{j=1}^{J} m_{j} (r_{ij} - 1)^{2}$$

25

2) <u>Segregation as a measure of the degree of</u> <u>dependence between the lines and the columns (the</u> <u>areas and the groups)</u>

Example 1: if we use the logarithmic function, that is the concept of entropy, the index obtained will be

 $I_{S} = \sum_{i=1}^{I} \sum_{j=1}^{J} (m_{i} m_{j}) \ln \frac{(m_{i} m_{j})}{m}$ i=1 i=1

$$G_{S} = (1/2) \sum_{h=1}^{I \times J} \sum_{k=1}^{I \times J} f_{h} f_{k} \left| \frac{s_{h}}{f_{h}} - \frac{s_{k}}{f_{k}} \right|$$

where

 $f_h = (m_{i.}m_{.j})$ for h = 1 to $(I \times J)$ and similarly for f_k and

 $s_h = m_{ij}$ for h = 1 to $(I \times J)$ and similarly for s_k . Note that this formulation is the same as the one given previously in terms of the G – matrix.

27

Segregation as a measure related to the concept of diversity:

 Using the notations defined previously we could define the degree of diversity D in the whole population as

 $D = \sum_{j=1 \text{ to } J} m_{.j} (1 - m_{.j})$

D is in fact equal to the probability that two individuals, taken randomly in the population, belong to two different groups.

We can similarly define the degree of diversity in area i as

$$D_i = \sum_{i=1 \text{ to } I} (m_{ii}/m_i) (1 - (m_{ii}/m_i))$$

segregation:

1) <u>A result by Deming and Stephan (1940)</u> on the convergence of matrices

2) The Concept of Shapley Decomposition

An Empirical Illustration: Changes in Occupational Segregation in Switzerland between 1970 and 2000

 Table 1: Decomposition of the Change in Switzerland between 1970 and 2000 in the Generalized Duncan Index (Occupational Segregation by Gender, Nationality or Age)

Criterion of Comparison of Subpopulations	Value of the Index in 1970	Value of the Index in 2000	Change observed between 1970 and 2000	Component of the change due to variations in the "internal structure"	Component of the change due to variations in the "margins"	Component due to variation in the occupational structure	Component due to variations in the shares of the subpopulations
Gender	0.4787	0.4875	0.0088	-0.0216	0.0304	-0.0237	0.0542
Nationality (Swiss versus Foreigners)	0.2449	0.1446	-0.1003	-0.0524	-0.0479	-0.0224	-0.0255
Age (up to 50 and above 50)	0.1325	0.0651	-0.0673	-0.0691	0.0017	0.0036	-0.0019

Table 2 : Decomposition of the variation in Switzerland between 1970 and 2000 of the degree occupational segregation by gender, separately for Swiss and foreign workers (based on the use of the Generalized Duncan Index)

Criterion of Comparison of Subpopulations	Value of the Index in 1970	Value of the Index in 2000	Change observed between 1970 and 2000	Component of the change due to variations in the "internal structure"	Component of the change due to variations in the "margins"	Component due to variation in the occupational structure	Component due to variations in the shares of the subpopulations
Swiss	0.4683	0.4905	0.0223	-0.0224	0.0447	-0.0114	0.0561
Foreigners	0.5210	0.4705	-0.0505	-0.0269	-0.0235	-0.0617	0.0382

31

III) An Axiomatic Approach to the Ordinal Measurement of Segregation:

- 1) <u>Homogeneity</u>
- 2) <u>Symmetry</u>
- 3) <u>Transfers</u>

Definition: Hutchens (1991) calls then a "Relative Inequality Measure for Occupations" (RIMFO) any segregation measure that satisfies these three properties of homogeneity, symmetry Assume two populations A and B. Then $S_A > S_B$ for every RIMFO S if and only if the segregation curve SC_B of population B lies at no point below and at some point above the segregation curve SC_A of population A $(SC_B \text{ is said to dominate } SC_A)$.

33

IV) Axiomatic Approaches to the Derivation of Segregation Indices:

 A) The recently published paper by Chakravarty and Silber (2007) entitled
 A generalized index of employment segregation

- 1) Symmetry in Occupations (SYO)
- 2) Continuity (CON)
- 3) Strict Separability (SSP)
- 4) Scaling Consistency (SCC)
- 5) Movement Between Occupations (MBO)
- 6) Monotonicity (MON)
- 7) Symmetry in Types (SYT)
- 8) Scale Invariance

Theorem 1: An integration index satisfies axioms SYO, CON, SSP, SCC, MBO, MON and SYT if and only if it is ordinally equivalent to

or

aT + b
$$\sum_{j=1 \text{ to } T} \sum_{i=1 \text{ to } 2} \alpha \log (x_{ij})$$

More specific forms:

$$\kappa_{\alpha}(\mathbf{x}) = 1 - \{(1/T)\sum_{j=1 \text{ to } T} \prod_{i=1 \text{ to } 2} (x_{ij}/n_i)^{\alpha} \}^{(1/2\alpha)}$$

and

$$K(x) = 1 - \prod_{j=1 \text{ to } T} \{\prod_{i=1 \text{ to } 2} (x_{ij}/n_i)^{(1/2)} \}^{(1/T)}$$

These indices are applications of multidimensional Atkinson inequality indices to the measurement of segregation. For a given X, as α increases, the segregation index decreases. α can therefore be interpreted as a segregation aversion parameter.

37

List of occupations

Management occupations Business and financial operations occupations Computer and mathematical occupations Architecture and engineering occupations Life, physical and social science occupations Community and social services occupations Legal occupations Education, training and library occupations Arts, design, entertainment, sports and media occupations Healthcare practitioner and technical occupations Healthcare support occupations Protective service occupations Food preparation and swerving related occupations Building and ground cleaning and maintenance occupations Personal care and service occupations Sales and related occupations Office and administrative support occupations Farming, fishing and forestry occupations Construction and extraction occupations Installation, maintenance and repair occupations Production occupations Transportation and material moving occupations

Type of	Duncon	Cini	Thail	Hutchons!	\overline{V}	\overline{V}	\overline{V}	\overline{V}	\overline{V}	\overline{V}
Type of	Duncan	Gilli	Then-	nucchens	K	<i>K</i> _{0.1}	$K_{0.3}$	K _{0.5}	$K_{0.7}$	$K_{0.9}$
Segregation	Index	Segregation	Finniza	Square						
and Year		Index	Index	Root						
				Index						
Occupational	0.170	0.230	0.303	0.021	0.9679	0.965473	0.9604	0.955	0.9506	0.946
Segregation										
between										
White and										
Blacks										
Occupational	0.183	0.270	0.299	0.033	0.9678	0.965470	0.9607	0.956	0.9514	0.947
Segregation										
between										
Whites and										
Asians										
Occupational	0.248	0.360	0.343	0.057	0.969	0.967	0.9619	0.957	0.9525	0.948
Segregation										
between										
Asians and										
Blacks										
Occupational	0.414	0.560	0.425	0.149	0.972	0.970	0.9660	0.961	0.9564	0.952
Segregation										
by Gender										

B) Generalized Gini Segregation Indices (unpublished paper by Chakravarty, D'Ambrosio and Silber):

A set of four axioms constraining the form of the index I(S) are proposed.

- 1) Equality of Limits (EQL)
- 2) Equality of Weight Gaps (EWG)
- 3) Occupation-wise Symmetry in Types (OST)
- 4) Movement Between Occupations (MBO)

Theorem 1: The only integration index of the form satisfying axioms EQL, EWG, SYT and MBO is given by

$$\begin{split} \mathsf{I}(\mathsf{S}) &= \sum_{j} \sum_{i} \left[\alpha_{j} + (i\text{-}1)f_{j} \right] \mathsf{s'}_{ij} \\ \text{where for each occupation j the shares s'_{ij}} \\ \text{are the shares } \mathsf{s}_{ij} \text{ ranked by non increasing} \\ \text{values, } \alpha_{j} \text{ is the minimal value of } \mathsf{a}_{ij} (\mathsf{S}) \text{ and} \\ f_{j} &= \mathsf{a}_{i+1,j} (\mathsf{S'}) - \mathsf{a}_{i,j} (\mathsf{S'}) \end{split}$$

41

- In addition the generalized Gini integration index is assumed to satisfy the following axioms:
- 5) Symmetry in Occupations (SYO)
- 6) Continuity (CON)

```
An interesting illustration of the formulation
of I(S) is given by
I(S)=1-{[\Sigma_j s'_{ej}]/J}
where s'<sub>ei</sub>= \Sigma_i((2i-1)/\Sigma_i(2i-1))s'_{ij}
```

A Comparison with other Ginirelated Segregation Indices:

- a) The "Generalized Gini Index" (that was defined previously)
- b) Reardon and Firebaugh's formulation for the multigroup Gini Index
- c) The Chakravarty-D'Ambrosio-Silber formulation

d) The weighted version of the Chakravarty-D'Ambrosio-Silber Index

Code of the	Label of the Occupation
Occupation	
1	Farming, Forestry, and Fishing Occupations
2	Managerial and Professional Specialty Occupations
3	Military Occupations
4	Operators, Fabricators, and Laborers
5	Precision Production, Craft, and Repair Occupations
6	Service Occupations
7	Technical, Sales, and Adminstrative Support Occupations
8	Unemployed since 1984

List of the States and the Symbols used to represent them

Symbol used for the State	
AK	Alaska
AL	Alabama
AR	Arkansas
AZ	Arizona
СА	California
СО	Colorado
СТ	Connecticut
DC	District of Columbia
DE	Delaware
FL	Florida
GA	Georgia
HI	Hawaii
IA	Iowa
ID	Idaho
IL	Illinois
IN	Indiana
KS	Kansas
KY	Kentucky
LA	Louisiana
MA	Massachussets
MD	Maryland
ME	Maine

MS	Mississipi	
MT	Montana	
NC	North Carolina	
ND	North Dakota	
NE	Nebraska	
NH	New Hampshire	
NJ	New Jersey	
NM	New Mexico	
NV	Nevada	
NY	New York	
OH	Ohio	
OK	Oklahoma	
OR	Oregon	
PA	Pennsylvania	
RI	Rhode Island	
SC	South Carolina	
SD	South Dakota	
TN	Tennessee	
TX	Texas	
UT	Utah	
VA	Virginia	
VT	Vermont	
WA	Washington	
WI	Wisconsin	
WV	West Virginia	
Wχ ₉	Wyoming	

 Table 1: Segregation by Race in the United States in 1990

State	Unweighted Gini	Weighted Gini	Generalized Duncan	Generalized Gini	Reardon and Firebaugh
	Index (I_{CDS}^U)	Index (I''_{CDS})	Index (I_{DG})	Index (I_{GG})	Index (I_{RF})
AK	0.83113	0.4547	0.15042	0.10944	0.093059
AL	0.83119	0.46426	0.18021	0.12289	0.10473
AR	0.82185	0.33033	0.10549	0.077123	0.061832
AZ	0.82974	0.40735	0.1188	0.088877	0.074714
CA	0.8298	0.54315	0.15412	0.11683	0.10037
CO	0.81278	0.2488	0.070421	0.055286	0.045115
СТ	0.81548	0.26615	0.080464	0.061521	0.05129
DC	0.84128	0.58819	0.34208	0.22794	0.2065
DE	0.82142	0.37764	0.1428	0.10278	0.085731
FL	0.81986	0.35891	0.12499	0.088938	0.071671
GA	0.82935	0.49544	0.1827	0.12196	0.10577
HI	0.83702	0.61272	0.13903	0.10072	0.093721
IA	0.80572	0.074965	0.016381	0.014289	0.011256
ID	0.8075	0.11548	0.048824	0.038286	0.030328
IL	0.83202	0.43192	0.10643	0.081806	0.07026
IN	0.81959	0.23942	0.044551	0.03665	0.030887
KS	0.8193	0.24637	0.057146	0.045898	0.037545
KY	0.81497	0.20384	0.049875	0.039343	0.031682
LA	0.83651	0.53329	0.21253	0.13967	0.1218
MA	0.81351	0.2195	0.050202	0.038661	0.031327
MD	0.82612	0.49226	0.1276	0.096802	0.086696

MS	0.83894	0.55059	0.26231	0.16587	0.14601
MT	0.8114	0.15597	0.044409	0.033883	0.025776
NC	0.82701	0.4487	0.16893	0.11532	0.096853
ND	0.81015	0.11682	0.029439	0.0238	0.018772
NE	0.8162	0.17981	0.03276	0.027852	0.022418
NH	0.80308	0.043708	0.0074084	0.0063287	0.0050127
NJ	0.82107	0.40442	0.11944	0.088707	0.073856
NM	0.82065	0.41956	0.11774	0.085609	0.074024
NV	0.82166	0.34425	0.12172	0.089296	0.072511
NY	0.82742	0.46715	0.11139	0.086289	0.077777
OH	0.81966	0.27095	0.05861	0.04724	0.040033
OK	0.82253	0.36643	0.091299	0.068242	0.056198
OR	0.80838	0.15205	0.041401	0.032331	0.026183
PA	0.81871	0.25984	0.051242	0.041909	0.036135
RI	0.81395	0.2006	0.064697	0.051151	0.040735
SC	0.83458	0.51958	0.23203	0.15169	0.13171
SD	0.81806	0.18224	0.044464	0.035135	0.027672
TN	0.82216	0.34201	0.099163	0.072935	0.06047
ТХ	0.82473	0.46289	0.15523	0.11343	0.096593
UT	0.80925	0.14501	0.043608	0.033461	0.026237
VA	0.82451	0.43405	0.14477	0.10479	0.089941
VT	0.80219	0.035608	0.0071787	0.006436	0.0048622
WA	0.81575	0.25768	0.06012	0.046384	0.038516
WI	0.81781	0.19069	0.046471	0.036455	0.028897
WV	0.80644	0.095537	0.018602	0.01592	0.012325
WY	0.80717	0.11345	0.035513	0.029146	0.023452

Table 3: Correlation Matrix between the various Segregation Indices

	Weighted Gini Index (I ^W _{CDS})	Generalized Duncan Index (I _{DG})	Generalized Gini Index (I _{GG})	Reardon and Firebaugh Index (I _{RF})
Unweighted	0.956	0.885	0.900	0.902
Gini				
Index				
(I_{CDS}^U)				
Weighted		0.895	0.918	0.918
Gini				
Index				
(I_{CDS}^{W})				
Generalized			0.996	0.996
Duncan				
Index				
(I_{DG})				
Generalized				0.999
Gini				
Index				
(I_{cc})				

Segregation:

- A) Basic concepts in the field of residential segregation measurement (see, Massey and Denton, 1988):
- First concept: evenness
- Second concept: exposure
- Third concept: Concentration
- Fourth concept: Centralization
- Fifth concept: Clustering

An Illustration: The Checkboard problem

53

Criteria for Evaluating Spatial segregation Measures:

- 1) Scale interpretability
- 2) Arbitrary boundary independence
- 3) Location equivalence
- 4) Population density invariance
- 5) Composition invariance
- 6) Transfers and exchanges
- 7) Additive spatial decomposability
- 8) Additive grouping decomposability

55

The spatial information theory segregation index:

- The spatial information theory index is a measure of how much less diverse individual's local environment are, on average, than is the total population of a region.
- It will be equal to 1 (maximum segregation) only when each individual's local environment is mono-racial.
- If each individual's local environment has the same racial composition as the total population, then segregation will be nil. There will be complete integration

- therefore a measure of how much less diverse individual's local environment are, on average, than is the total population of region R.
- It will be equal to 1 (maximum segregation) only when each individual's local environment is mono-racial.
- If each individual's local environment has the same racial composition as the total population, then segregation will be nil.
- ⁵⁷ There will be complete integration.