
Winter School IT4 January 2009
From Unidimensional to Multidimensional
Measurement of Welfare, Inequality and

Well-Being

Claudio Zoli University of Verona, claudio.zoli@univr.it

January 13, 2009

C. Zoli () Measuring.... January 13, 2009 1 / 69



Aims of the talk

Overview of selected issues underlying the theory of
measurement of inequality, welfare, poverty and well being.

Two broad perspectives:

1 Unidimensional: Individuals/households are homogeneous in all
ethically relevant characteristics except consumption or income.

2 Multidimensional: heterogeneous individuals exhibiting
di¤erences in a number of "characteristics" (transferable and not
transferable) e.g. income, health, housing, bundles of goods,
education, household size, level of needs.....
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Aims of the talk 2

A number of interrelated perspectives of evaluation:

1 Inequality (focus on dispersions across agents),
2 Welfare (taking into account also the size of the cake)
3 Poverty (focussing on deprived agents, size and dispersion
matters but only focussing on those deprived)

4 Well being: multidimensional perspective focussing on size and
dispersion.

Evaluations: complete rankings (i.e. indices) or partial rankings?
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Our Concern

To provide some intuitions on the interrelations between the
various concepts in the unidimensional case and then move to
the MORE INTERESTING Multidimensional case.........
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Unidimensional/Multidimensional set up.

n homogeneous individuals i = 1, 2, ..., n � 2
d � 1 characteristics, goods, attributes, attainments (e.g.
income) j = 1, 2, 3, ..., d

Distribution X 2 Rn�d
+

X =

26664
x11 ... ... x1(d�1) x1d
x21 x22 ... ... x2d
... � xij

...
xn1 xn2 ... ... xnd

37775
x.j 2 Rn

+ distribution of attribute j across all individuals,
(column)

xi . 2 Rd
+ distribution of all the attributes for individual i , (row)
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Set up.

FX (x) or F (x) c.d.f.
µ(x.j ) = ∑n

i=1 xij/n average of distribution x.j of attribute j
(e.g. income)

x̂.j ordered distribution of attribute j :
x̂(1)j � x̂(2)j � ..x̂(i)j . � x̂(n)j
I (X ) : Rn�d

+ ! R Inequality index,

W (X ) : Rn�d
+ ! R Social Evaluation Function (SEF)
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The Unidimensional case

De�nition (Cumulative Distribution Function)
F : R+ ! [0, 1] Function F (x) plotting the proportion of income
units within the population with income at most x.

Figure: C.d.f. Fx(x) for x = (10, 20, 30, 30, 60)
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De�nition (Inverse Distribution Function)
F�1 : [0, 1]! R+. Function F�1(p) = inffx 2 R+ : F (x) � pg.
plotting the income level corresponding to the pth quantile of the
population once incomes are ranked in ascending order:

Figure: Inv.d.f. F�1x (p) for x = (10, 20, 30, 30, 60)
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How to rank distributions?
Stochastic orders

De�nition
Additively decomposable order >U

X > UY

,
Wu(X ) =

Z
R
u(x)dFX (x) �

Z
R
u(x)dFY (x) = Wu(Y ) 8u 2 U

1
n ∑n

i=1 u(xi ) � 1
n ∑n

i=1 u(yi ) 8u 2 U

The key property is Independence:

De�nition (Independence)
Wu(X ,Z) � Wu(Y ,Z) if and only if Wu(X ) � Wu(Y ).
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De�nition
Rank dependent (dual) order >V

X > VY

,
Wv (X ) =

Z 1

0
v(p) � F�1X (p)dp

�
Z 1

0
v(p) � F�1Y (p)dp = Wv (Y ) 8v 2 V

1
n ∑n

i=1 vi � x̂(i) � 1
n ∑n

i=1 vi � ŷ(i) 8v 2 V where vi � 0; x̂(i) � x̂(i+1)

The key property is Comonotonic Independence:

De�nition (Comonotonic Independence)
Wv (X + Z) � Wv (Y + Z) if and only if Wv (X ) � Wv (Y ).

The criteria >U >Vare partial orders
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Implementing stochastic orders:
Comparison Tests

The most common tools applied in inequality analysis to compare
income distributions are indeed the partial orders induced by the
stochastic dominance conditions (direct and inverse).

De�nition (Lorenz Dominance)
De�ne the Lorenz curve for X :

LX (p) :=
Z p

0

F�1X (t)
µ(X )

dt.

Income pro�le X Lorenz dominates income pro�le Y , X <L Y , if and
only if

LX (p) � LY (p) for all p 2 [0, 1] .
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Lx (i/n) =
∑i
j=1 x̂(j)

∑n
j=1 xj

where x̂(i) � x̂(i+1)

Figure: Lorenz curve for x = (10, 20, 30, 30, 60)
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Note that the Lorenz curve is obtained integrating the graph of the
inverse distribution function an dividing by the average income.

Figure: Lorenz curve derived from inverse distribution.
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De�nition (Generalized Lorenz Dominance)
De�ne the generalized Lorenz curve for X :

GLX (p) := µ(X ) � LX (p).

Income pro�le X generalize Lorenz dominates income pro�le Y ,
X <GL Y , if and only if

GLX (p) � GLY (p) for all p 2 [0, 1] .

Kolm (1969), Shorrocks (1983).

If µ(X ) = µ(Y ), <GL () <L;
X/µX <GL Y/µY () X <L Y .
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GLx (i/n) =
1
n

i

∑
j=1
x̂(j) where x̂(i) � x̂(i+1)

Figure: Generalized Lorenz Curves for y = (3, 7, 11, 11) , x = (4, 8, 9, 19)

no-dominance if the GL curves intersect
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Relation with more general results on
unidimensional inequality and welfare

I (x) is continuous and normalized I (µ, µ, .., µ) = 0.
[Symmetry (S)] I (x) is invariant with respect to permutation of
the incomes.
[Pigou-Dalton Principle of Transfers (PT)] A transfer from a rich
person (j) to a poor person (i) which leaves their relative
positions unchanged reduces inequality

Figure: Progressive Transfer

[Relative Inequality (Rel)] I (x) = I (λx) for λ > 0.
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Theorem (Hardy, Littlewood & Polya 1934 (HL&P) )

Consider a �xed number of individuals n, let µ(x) = µ(y), the
following statements are equivalent:

(1) For all k � n, ∑k
i=1 x̂i � ∑k

i=1 ŷi with at least one strict
inequality (>).

(2) x̂ can be obtained from ŷ through a �nite sequence of progressive
transfers.

(3) Let Wu(x) = ∑n
i=1 u(xi ) the Utilitarian Social Evaluation

Function, Wu(x) > Wu(y) for all Wu(x) such that u(.) is increasing
and strictly concave.

(4) Let Iφ(x) = ∑n
i=1 φ(xi ) the additive inequality index

Iφ(x) < Iφ(y) for all Iφ(x) such that φ(.) is strictly convex.

Theorem
(5) x = Πy where Π is a n� n bistochastic matrix.
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Links between Inequality & Welfare

We consider Social Evaluation Function (SEF) W (x) : Rn
+ ! R

[Inequality - Welfare Consistency (IWC)] If µ(x) = µ(y) then
for all x, y 2 Rn

+

I (x) � I (y), W (x) � W (y).

Theorem (Shorrocks (1983); Kolm (1969) )

Let x, y 2 Rn
+ the following statements are equivalent:

(i) x �GL y
(ii) W (x) > W (y) for all increasing SEFs W (x) satisfying
Symmetry,and Principle of Transfers.
(iii) 1n ∑n

i=1 u(xi ) >
1
n ∑n

i=1 u(yi ) for all Average Utilitarian SEFs
where u(.) is increasing and strictly concave.
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WE NOWMOVE TO THE MULTIDIMENSIONAL
CASE...

Distribution X 2 Rn�d
+

X =

26664
x11 ... ... x1(d�1) x1d
x21 x22 ... ... x2d
... � xij

...
xn1 xn2 ... ... xnd

37775
x.j 2 Rn

+ distribution of attribute j across all individuals,
(column)

xi . 2 Rd
+ distribution of all the attributes for individual i , (row)
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Cross iterative aggregating procedures
Consistency in Aggregation

Rubinstein, Fishburn (JET 1986): Algebraic aggregation theory

Dutta, Pattanaik, Xu (Economica 2003): On Measuring Deprivation and the Standard of Living

in a Multidimensional Framework on the Basis of Aggregate Data.

Gajdos, Maurin (JET 2004): Unequal uncertainties of uncertain inequalities: an axiomatic

approach

Question: Is it possible to obtain consistent ranking across matrices
aggregating......

1 �rst for each attribute taking into account the distribution
across agents and then aggregating the summary Macro result
across attributes (Procedure 1) (e.g HDI )

2 for each agent obtaining an individual index of personal well
being and then aggregating the distribution of these indices for
all the population (Procedure 2) (e.g.additively decomposable
SWFs over multiattribute distributions)......
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Consistent iterative aggregation

.......... moreover one would like to apply the same aggregator in each
procedure when aggregating across individuals and another on when

aggregating across attributes.X =
�
x11 x12
x21 x22

�
Procedure 1:�

x11 x12
x21 x22

�
+
Aggr . ψ

#�
ψ(x11; x21) ψ(x12; x22)

�
=) Aggregator φ

7�! φ[ψ(x11; x21);ψ(x12; x22)]

Procedure 2:
=) φ�
x11 x12
x21 x22

�
7�!

�
φ(x11; x12)
φ(x21; x22)

�
+
ψ
7�! ψ[φ(x11; x12); φ(x21; x22)]

C. Zoli () Measuring.... January 13, 2009 21 / 69



Consistent aggregation
A result..Dutta et al. (2003): Assumptions

De�nition (Consistency)
φ � ψ(X ) � φ � ψ(Y ) i¤ ψ � φ(X ) � ψ � φ(Y )

moreover suppose that xij 2 [cmin; cmax] and
φ : [cmin; cmax]d ! [0, 1]; φ(1cmin) = 0; φ(1cmax) = 1
ψ : [cmin; cmax]n ! [0, 1] : ψ(1cmin) = 0; ψ(1cmax) = 1
φ and ψ are continuous and strictly increasing in each argument
ψ is symmetric across agents
φ exhibit non increasing increments

φ(x1, x2, ., xh, ..., xk + t, ..xd )� φ(x1, x2, ., xh..., xk , ..xd )

� φ(x1, x2, ., xh � τ, ..., xk + t, ..xd )� φ(x1, x2, ., xh � τ, ..., xk , ..xd )

for τ, t > 0
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Consistent aggregation
A result..Dutta et al. (2003):

Theorem
Given the assumptions on φ and ψ, the two procedures are consistent
i¤

φ(xi .) =
∑d
j=1 wj � xij � cmin
cmax � cmin

; where wj > 0,
d

∑
j=1
wj = 1

ψ(x.j ) =
1
n ∑n

i=1 xij � cmin
cmax � cmin

We obtain essentially HDI types of indices.

Correlation between attributes is lost Y =
�
0 1
1 0

�
and Z =

�
1 1
0 0

�
are socially indi¤erent
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Consistent aggregation.... Note that...

The assumption of non increasing increments (NII) per each agent
across attributes is crucial. For instance

Example
Check that for given increasing functions fj : [cmin; cmax]! [0, 1] :
f (cmin) = 0; f (cmax) = 1 and the increasing function
H : [0, 1]! [0, 1] the following functional forms satisfy consistency
and all other properties but not necessarily NII

φ(xi .) = H�1(
d

∑
j=1
wj �H[fj (xij )]); where wj > 0,

d

∑
j=1
wj = 1

ψ(x.j ) = H�1(
1
n

n

∑
i=1
H[fj (xij )])

Property NII imposes linearity in H and fj .
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Consistent aggregation
An example without NII..

Foster et. al. (JED 2005) consider the case where H is isoelastic
H(t) = t1�ε/(1� ε) for ε � 0 and wj = 1/d .
if we let sij = fj (xij ) the index "consistent in aggregation" is
obtained for

φ(xi .) =

 
1
d

d

∑
j=1
[sij ]

1�ε

!1/(1�ε)

; ψ(x.j ) =

 
1
n

n

∑
i=1
[sij ]

1�ε

!1/(1�ε)

I (X ) =

 
1
n

n

∑
i=1

1
d

d

∑
j=1
[sij ]

1�ε

!1/(1�ε)

.

then H satis�es NII in terms of the distribution of y i¤ ε = 0.
Main positive features of the index is that it is Subgroup Consistent
I (X ,Y ) � I (X ,Z) i¤ I (Y ) � I (Z). Where (X ,Y ) denotes that the
population is partitioned into two groups of individuals.
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May be one can take an average of the results
arising from the two procedures:

This has already been suggested in the literature on the measurement
of inequality under uncertainty
Gilboa and Schmeidler (JMathE 1989), Ben Porath et al. (JET 1997) Gajdos and Maurin (JET

2004) Gajdos and Weymark (ET 2005)

suppose for simplicity that we normalize each agent realization in a
given space with sij := f (xij ) 2 [0, 1] : score function associated with
the realization of agent i on space j . Moreover

this normalization makes comparable scores of the same agent in
di¤erent characteristics (Symmetry between characteristics)

and agents are all treated equally in the �nal evaluation
(Anonymity)
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Alternative sequences.. Examples

Consider the following distributions:

X =
�
0 1
0 1

�
;X 0 =

�
1 0
1 0

�
;

if attributes carry the same weight W (X ) = W (X 0)

Z =
�
1 1
0 0

�
;Z 0 =

�
0 0
1 1

�
;

if agents are equally relevant W (Z) = W (Z 0)

Y =
�
0 1
1 0

�
;Y 0 =

�
1 0
0 1

�
;

if both previous considerations hold then W (Y ) = W (Y 0)
However linear symmetric aggregation value as indi¤erent all
distributions.
But this should not be the case in particular comparing Y ,Y 0 with all
others
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Alternative sequences..
problems with consistent additive decomposition

The previous considerations extend also to the additive
decomposition of the matrices as in Foster et al. (2005) or even in
the more general result presented earlier on consistent aggregation....
The procedure was including considerations on inequality in the
distribution across agents but what is left aside is the correlation
between the distributions of the attributes

Z =
�
1 1
0 0

�
;Y =

�
0 1
1 0

�
;X =

�
0 1
0 1

�
It is possible to regain some considerations if we give up the
issue of consistency in aggregation...specifying a given order and
in an additive framework consider di¤erent parameters ε in
aggregating across distribution w.r.t. those applied in
aggregating across individuals. (Decanq, Decoster Schokkaert World Dev
2008)
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The general issue is the increase in correlation
between attributes

From Y =
�
0 1
1 0

�
to Z =

�
1 1
0 0

�
we have transferred attribute 1

from agent 2 to agent 1 that now clearly dominates the latter.

De�nition (CIT)
In general a Correlation Increasing Transfer CIT (i , j) is a
sequence of "rearrangements" of the distribution of attributes (one
attribute per step of the sequence) involving only two individuals
(i , j) s.t. as the result of the process one individual ends up being
weakly dominated by the other in any attribute.

Epstein and Tanny (CanJEc1980), Tsui (JET 1995, SCW 1999)
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Example
A sequence of CIT241 3 2
3 2 1
2 1 3

35 =)
CIT (13)

241 1 2
3 2 1
2 3 3

35 =)
CIT (12)

241 1 1
3 2 2
2 3 3

35 =)
CIT (23)

241 1 1
2 2 2
3 3 3

35
The last matrix (Z 0) is more unfair than the �rst one (Y 0) looking
from the individuals perspective
All indices �rst aggregating across attributes will consider
W (Y 0) = W (Z 0)
Also inequality indices aggregating �rst across individuals may lead to
W (Y 0) < W (Z 0)
See Dardanoni (1995) comment on Maasaouni (1986) Multidimensional Inequality Index
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Alternative sequences.. Using non additive
measure (Gini type welfare/inequality indices)

Use a functional ψ = G in order to aggregate across individuals their
realizations in each attribute [aggregating vertically for each matrix
column] and another functional φ = µ in order to aggregate across
attributes per each individual [aggregating horizontally for each
matrix row].
Then evaluate µ � G and G � µ and take their weighted average.

De�nition
First procedure µ � G (average of Gini indices of the agents
distribution for each attribute): aggregating for each attribute taking
the Gini index across agents AND then averaging the obtained result.
Second procedure (Gini index of average agent score).
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Comments

Note the procedures are di¤erent from Hicks (1997 World Dev.)
proposal of taking the average of the Gini welfare index of the
distribution of each attribute.
Gajdos and Weymark (ET 2005) characterize families of Generalized
averages across attributes of Gini indices across individuals per each
attribute.
However as already pointed out for these measures

Z =
�
1 1
0 0

�
and Y =

�
0 1
1 0

�
are considered socially indi¤erent.
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What about applying a Gini evaluation to the
overall matrix?

A problem due to comonotonic independence (across attributes):

H =
�
1/2 0
0 0

�
;H 0 =

�
0 0
1/2 0

�
;K =

�
1/2 1/2
1/2 0

�
;

K is comonotonic w.r.t. H and H 0 because the ranking of the
attributes is the same in all matrices
Taken any pair of cells ij and i 0j 0 it is always true that
Hij � Hi 0j 0 () Kij � Ki 0j 0 (similarly for comparisons of K and H 0)

Comonotonic Independence is the key property characterizing
Gini type (i.e. rank dependent) evaluations!
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by Comonotonic independence between K and H and K and H 0.
It follows that for a Gini index G

G(H +K) � G(H 0 +K)() G(H) � G(H 0)
...but G(H) = G(H 0) by anonymity, thus

G(H +K) = G(H 0 +K) where

H +K =

�
1 1/2
1/2 0

�
;H 0 +K =

�
1/2 1/2
1 0

�
.

However "according to CIT" we need to have
W (H +K) � W (H 0 +K).

Open question...appropriate de�nition of multidimensional Gini
functionals...
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From indices to dominance conditions

The key component is still the dependence between attributes
Di¤erent tools:

Multidimensional Majorization

Multidimensional version of Lorenz and Generalized Lorenz
curves

Multidimensional Stochastic dominance conditions
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Multidimensional Majorization

Kolm (QJE 1977), Koshevoy (SCW 1995), Koshevoy, Mosler (JASA 1996), Koshevoy, Mosler

(AStA 2007), Weymark (2004), Savaglio (2004)

Marshall, A. W. and Olkin, I. (1979): Inequalities: Theory of Majorization and Its Applications.

New York: Academic Press.

Generalizes the majorization from the unidimensional case to
multidimensional distributions where attributes are transferable
between individuals (e.g. bundles of goods) Marshall and Olkin
(1979)
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Multidimensional Majorization

Consider matrices X ,Y 2 Rn�d for n individuals, d goods
(characteristics)
and such that ∑n

i=1 xi = ∑n
i=1 yi where xi , yi 2 Rd vectors of goods

belonging to individual i .

Distribution of a �xed bundle of d goods across n individuals

De�nitions
Y multidimensionally majorize X ,

Y >M X () X = ΠY ,

where Π is a n� n bistochastic matrix.

X is obtained from Y averaging the endowments vectors of the
individuals, or in other terms X shows less disparity in the
distributions of the bundles of goods than Y .
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Multidimensional Majorization

Example

Π =

240.1 0.2 0.7
0.2 0.6 0.2
0.7 0.2 0.1

35 ;Y =
2410 30
20 30
10 0

35 =) X = ΠY =

2412 9
16 24
12 27

35
individual 3 situation in X is substantially improved (she has
overtaken individual 1) if compared to Y .
but we need to rely on symmetric evaluations across individuals (a
permutation matrix is bistochastic)
Note however that all attributes are "mixed" in the same way for
each individual (i.e. they are multiplied by the same raw of Π)
xi = ∑n

k=1 πik � yk the averaging of every attribute is made using the
same weights depending on the individuals and not on the attribute
itself.
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Multidimensional Majorization
A welfare interpretation

Consider matrices X ,Y 2 Rn�d such that ∑n
i=1 xi = ∑n

i=1 yi

Theorem
The following conditions are equivalent:
(I) Y >M X
(II) φ(Y ) � φ(X ) for all φ : Rn�d! R which are S-concave;
(III) ∑n

i=1 u(yi .) � ∑n
i=1 u(xi .) for all u : Rd! R which are concave

[they can also be increasing].

S-Concave function: symmetric functions such that φ(Y ) � φ(ΠY )
The distribution X of a �xed amount of resources improves welfare

Does it means that we have also less inequality in terms of the
distribution of the concave and increasing utilities u(yi )?
Will it be possible to decompose the change from Y to X in
terms of progressive transfers?
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Multidimensional Majorization
A controversial implication in terms of inequality

Dardanoni (REI 1994) On multidimensional inequality measurement

Example

Π =

241 0 0
0 0.5 0.5
0 0.5 0.5

35 ;Y =
241 1
1 3
3 1

35 =) X = ΠY =

241 1
2 2
2 2

35
The utility of the poorest individual 1 is left unchanged, while
according to any strictly concave utility agents 2 and 3 are better o¤.
There is more inequality as well as welfare even though the resources
are �xed!!!

If we consider majorization dominance as ethical compelling then
in evaluating inequality the approach that �rst aggregates in
terms of individual utilities might not be appropriate
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Multidimensional Majorization
Relation with Progressive (Pigou Dalton) transfers

Will it be possible to decompose the change from Y to X in terms of
progressive transfers?

De�nition
T transform (Pigou Dalton transfer)

Π2,3(λ) = λ �

241 0 0
0 1 0
0 0 1

35+ (1� λ) �

241 0 0
0 0 1
0 1 0

35
=

241 0 0
0 λ (1� λ)
0 (1� λ) λ

35
a convex combination of identity matrix and a permutation matrix
involving a permutation of 2 individuals.
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Multidimensional Majorization
Relation with Progressive (Pigou Dalton) transfers

Will it be possible to decompose the change from Y to X in terms of
progressive transfers?
In general when n � 3 not all bistochastic matrices Π can be
obtained as product of T transforms
this issue is particularly crucial when d � 2.

Example

the matrix Π =

240.5 0 0.5
0 0.5 0.5
0.5 0.5 0

35, cannot be obtained as product of
T-transforms

the 3 entries with 0 involving all individuals cannot be replicated by a
chain of T-transforms di¤erent from permutation matrices in which
case we won�t be able to obtain the 0.5 entries
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Multidimensional Majorization
Relation with Progressive (Pigou Dalton) transfers

Note however that in the unidimensional case the above mentioned
problem is not an issue because there exist always the possibility to
obtain the �nal distribution through T transforms even though they
generate a di¤erent bistochastic matrix:

Example240.5 0 0.5
0 0.5 0.5
0.5 0.5 0

35243030
0

35 =
241515
30

35 =
240 0.5 0.5
0 0.5 0.5
1 0 0

35243030
0

35
=

240 0 1
0 1 0
1 0 0

35241 0 0
0 0.5 0.5
0 0.5 0.5

35243030
0

35
With two dimension it is essential to be able to generate the speci�c
bistochastic matrix considered.
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Tests for Multidimensional Majorization...

Unfortunately SO FAR there exists no multidimensional
generalization of the Lorenz curve which could be used to rank
matrices according to the >M preorder.

Standard majorization could be wakened in di¤erent ways in order to
be applied in di¤erent economic contexts. The most interesting
device is the price majorization criterion Kolm (QJE 1977).

De�nitions
The matrix Y is said to price majorize X that is

Y >P X () Yp >M Xp 8p 2 Rd
+, (or 8p 2 Rd )

i.e. the distribution of potential incomes associated to X , and
evaluated according to the vector of prices p, Lorenz dominates the
one associated to Y for all possible price pro�les [they can be also
negative].
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Price Majorization...

According to >P the distribution of initial endowments X is always
preferred to Y by an inequality averse policy maker which is
concerned in maximizing the distribution of indirect utilities and
attaches to each individual the same direct utility function, this
evaluation is valid no matter what will be the equilibrium price pro�le.

Y >M X , X = ΠY =) Xp = ΠYp , Yp >M Xp , Y >P X

thus >M=)>P but the converse is not always true.

Fact
There exist multidimensional generalizations of the Lorenz curve that
can be used to test >Pboth when p 2 Rd

+, and p 2 Rd . They also
work as analogous of generalized Lorenz dominance over distributions
of income budgets. The are the Lorenz Zonoid, the Lift Zonoid and
their extensions!!!
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Note that...

Price majorization can be useful to rank Z =
�
1 1
0 0

�
and

Y =
�
0 1
1 0

�
.

Consider p =
�
p1
p2

�
, if either p 2 R2++ or p 2 R2��we have

Yp =

�
p2
p1

�
=

�
λ (1� λ)

(1� λ) λ

� �
p1 + p2
0

�
= Zp

when λ =
p2

p1 + p2
2 (0, 1)

thus Zp >M Yp.

Price majorization with positive prices appears an interesting
candidate for a meaningful multidimensional dominance
condition.
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Lift Zonoid and Lorenz Zonoid
by Koshevoy & Mosler

For empirical distributions:

De�nitions
The Lift Zonoid Z(X ) is a convex compact set in the (d + 1) space
obtained as the weighted sum of segments xi 2 Rd , for all possible
sets of normalized weights, that is

Z(X ) =

(
n

∑
i=1
z0i ;

n

∑
i=1
z0ixi : 0 � z0i � 1/n, i = 1, 2, ..., n

)
.

The Lorenz Zonoid LZ(X ) is the Lift Zonoid evaluated over
distribution X̃ := (x.1/µ (x.1) ; x.2/µ (x.2) ; ...; x.d/µ (x.d )) where
each attribute is normalized dividing it by its average:
LZ(X ) := Z(X̃ ).
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Zonoids the intuition

Take all subsets of the population of a given relative size
z0 2 [0, 1] (e.g. 50%) [where z0 = Σiz0i ] what is the aggregate
(divided by n) realization in the d dimensional space of the
resources of any of these subsets covering a z0 proportion of
population? Take the convex hull of all these distributions in the
d dimensional space. We have obtained the section of the Lift
Zonoid for a �xed value of population share z0. As z0
moves from 0 to 1 we construct the Lift Zonoid. For �nite
populations we convexify all sections corresponding to adjacent
proportions of population.

In order to get the Lorenz Zonoid we need just to apply the
same logic to the normalized distributions of each attribute. So
normalize each columns in relative terms so that any aggregate
amount sums to n.
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Example
Lift zonoid of univariate distribution (2400,5600) taken from
Koshevoy and Mosler (AStA2007)
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Example
Lorenz zonoid of univariate distribution (2400,5600) [in relative terms
(0.6; 1.4)] taken from Koshevoy and Mosler (AStA2007)
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Dominance is de�ned in terms of inclusion of Zonoids

Example

Y =

2664
0 6
0 4
4 0
1 4

3775 X =
2664
0 5
0 5
2 3
3 1

3775 note that Z(X ) � Z(Y ).
Note that we have (Generalized) Lorenz dominance for each
attribute!!

There is no (4� 4) bistochastic matrix Π such that X = ΠY
In order to accommodate for the transformation from Y to X
involving the �rst two individuals the only admissible matrix should

be

2664
0.5 0.5 0 0
0.5 0.5 0 0
0 0 a b
0 0 c d

3775. If we set a = 1/3; b = 2/3 in order to

accommodate for the �rst attribute of the third individual we cannot
obtain the distribution in X of her second attribute!!!
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A graphical representation for Z(X ) � Z(Y ) evaluated for z0 = 1/4

Y =

2664
0 6
0 4
4 0
1 4

3775 X =
2664
0 5
0 5
2 3
3 1

3775

4

4

6

32

1

1

3

x.1

x.2
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A further example
Zonoids fail in taking into account the e¤ect of Correlation Incres. Transf.

Z =
�
1 1
0 0

�
; Y =

�
0 1
1 0

�
There is no inclusion relation between the Lift Zonoids of the two
distributions Z(Z) and Z(Y ).

Lift Zonoid of Y Lift Zonoid of Z

This problem is the logical counterpart of the lack of comparability of
the two matrices in terms of price majorization when also negative
prices are taken into account.
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Lorenz Dominance and Price Majorization

Theorem
The following conditions are equivalent:
(I) LZ(X ) � LZ(Y ).
(Ia) LZ(XS ) � LZ(YS ) for the distributions of all the subsets S of
attributes
(II) Ỹ >P X̃ (for all p 2 Rd ).
(III) X̃p Generalize Lorenz dominates Ỹ p for all p 2 Rd . (Budget
dominance)
(IV) ψ(Ỹ p) � φ(X̃p) for all ψ : Rn! R which are S-concave and
all p 2 Rd .
(V) ∑n

i=1 v(~yi � p) � ∑n
i=1 v(~xi � p) for all v : R ! R which are

concave and all p 2 Rd .

Is it possible to obtain conditions analogous to Generalized
Lorenz dominance of budgets when prices are only positive?
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Budget dominance with positive prices
The dominance tool: the Extended Lift Zonoid

We need to extend the notion of Lift Zonoid.

De�nition
The Extended Lift Zonoid eZ(X ) is obtained extending the
volume of the Lift Zonoid taking all points below it for the coordinate
relative to the population share and all points above the Lift Zonoid
in the d dimensional space of the attributes. Thus for instance any
two dimensional section of Z(X ) for a given population share taking
all points north-east w.r.t. each point in Z(X ). In general
eZ(X ) := Z(X ) + (R��Rd

+).

Price dominance with positive prices can be implemented through the
Extended Lift Zonoid also for distributions with di¤erent total
amounts of attributes......
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Budget dominance with positive prices
The result

Theorem
The following conditions are equivalent:
(I) eZ(X ) � eZ(Y ).
(II) Xp Generalize Lorenz dominates Yp for all p 2 Rd

+. (Budget
dominance)
(III) ψ(Yp) � φ(Xp) for all ψ : Rn! R which are increasing and
S-concave and all p 2 Rd

+.
(IV) ∑n

i=1 v(yi � p) � ∑n
i=1 v(xi � p) for all v : R+! R which are

increasing and concave and all p 2 Rd
+.

If for each share of population the upper contour set of the section of
the Lift Zonoid of X in the d dimensional space is included into the
same set for Y then social welfare is larger in X than in Y for SWFs
that are increasing and inequality averse.
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Back to the example

For Z =
�
1 1
0 0

�
and Y =

�
0 1
1 0

�
we know that Zp >M Yp for

p 2 R2
+ thus according to the previous theorem it is also true that

eZ(Y ) � eZ(Z). One can check this last condition with the
graphical representation.

eLZ(Y ) : volume below the
shaded area

eLZ(Z) : volume below the
shaded areaC. Zoli () Measuring.... January 13, 2009 57 / 69



Multidimensional Stochastic orders

Integral Stochastic Orders can be applied in a multidimensional
framework for distributions in Rd

+.
We focus on very few stochastic orders see Shaked and Shanthikumar (1994)
and Müller and Stoyan (2002) for a survey.

Let X = (X.j : j = 1, 2, ..d) denote the marginal distributions of each
attribute j with generic realization x = (x1, x2, ..., xd ) identifying a d
dimensional vector of realizations one for each attribute with

Cumulative Distribution Function:

FX(x) := P(X � x) := P(X.j � xj for all j = 1, 2, 3, ..., d)
with marginals FX.j (x) for j = 1, 2, 3, ..., d .
Survival Function:

F̄X(x) := P(X > x) := P(X.j > xj for all j = 1, 2, 3, ..., d)

Here probabilities logically correspond to proportions of
populations in the multidimensional distribution framework.
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Multidimensional Stochastic orders
A �rst result

Let u : Rd
+ ! R denote an "utility" [evaluation] function over d

dimensional attributes realizations x and

dU1 := fu : u non-decreasingg

i.e. if x � x0 then u(x) � u(x0). Thus >dU1 denotes the
following integral stochastic order

De�nition

X >dU1 Y ()
Z

Rd
+

udFX �
Z

Rd
+

udFY 8u 2 dU1

C. Zoli () Measuring.... January 13, 2009 59 / 69



Upper sets and dominance

De�nition (Upper Set)
The set U 2 Rd

+ is an upper set i¤ for all x 2 Rd
+ if x 2 U then

y 2 U if y � x.

Theorem
The following statements are equivalent:
(i) X >dU1 Y
(ii) P(X 2 U) � P(Y 2 U) for all upper set U in Rd

+.
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De�nitions
let P := fp 2 Rd

+ : p1 + p2 + ...+ pd = 1g

X >1P Y ()
Z

Rd
+

g(Xp)dFX �
Z

Rd
+

g(Yp)dFY 8g 2 1U1 8p 2 ∆

The following statements are equivalent (Muliere and Scarsini EcLett
1989):

Theorem
(i) X >1P Y
(ii) P(Xp > t) � P((Yp > t) for all t > 0. (Dominance for all
upper sets whose boundary is an Hyperplane)
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Problem
Is it possible to add to the list of equivalent conditions also those on
comparisons of FX and FY or of F̄X and F̄Y?

De�nition (Upper Orthant order)
X <uo Y () F̄X(t) � F̄Y(t) for all t 2 Rd

+.

De�nition (Lower Orthant order)
X <lo Y () FX(t) � FY(t) for all t 2 Rd

+.

X <uo Y and X <lo Y are independent.
X >dU1 Y =) [X <uo Y and X <lo Y ]
[X <uo Y and X <lo Y ] 6=) X >dU1 Y .
[X <uo Y and X <lo Y ] give the Concordance order X <c Y ,
i.e. an order of association between variables

From last remark clearly the answer to the previous problem is NO!
Note that by construction Upper Sets are unions of Upper Orthants.
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De�nition (∆�monotone functions)
Consider the function u : Rd

+ ! R, let ε > 0, 1 := (1, 1, 1, 1, ..., 1)
and 1i := (0, 0, 0, 1i , 0, ..., 0)

∆ε
i u (x) := u (x+ ε1i )� u (x) .

Function u is ∆�monotone if for every set
fi1, i2, .., ikg � f1, 2, 3, ..., dg and every εi > 0 for i 2 f1, 2, 3, .., kg
then

∆ε1
i1

∆ε2
i2
...∆εk

ik
u (x) � 0.
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Delta monotone functions

De�nition
d∆M is the set of all bounded ∆�monotone functions u : Rd

+ ! R.

De�nition
d∆A is the set of all bounded ∆� antitone functions u : Rd

+ ! R

i.e. u(x) 2 d∆A , �u(�x) 2 d∆M. NB ∆� antitone functions
satisfy decreasing increments.

Theorem
(i) X <uo Y () X >d∆M Y
(ii) X <lo Y () X >d∆A Y .
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De�nition (Supermodular functions)
The function u : Rd

+ ! R, is supermodular if for all x, y 2 Rd
+

u (maxfx1, y1g; ..;maxfxd , ydg) + u (minfx1, y1g; ..;minfxd , ydg)
� u (x) + u (y) .

alternatively if u is twice di¤erentiable ∂2u
∂xi ∂xj

� 0 for all
i , j 2 f1, 2, 3, .., dg, i 6= j .

Fact
A function u : Rd

+ ! R is supermodular if and only ifR
Rd
+
udFX �

R
Rd
+
udFY whenever X is obtained from Y through a

Correlation Increasing Transformation. (It is an indicator of
dependence across attributes)
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Supermodular functions

De�nition
The set of supermodular functions is dUSM .

Consider the bivariate case:

Theorem
Let d = 2, the following statements are equivalent:
(i) X >2USM\ 2U1 Y
(ii) X <uo Y and X.j <1 Y.j for j = 1, 2
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Theorem
Let d = 2, the following statements are equivalent:
(i) X >2USM Y
(ii) Y <lo X and X.j = Y.j for j = 1, 2
(iii) X <uo Y and X.j = Y.j for j = 1, 2

See also Atkinson, Bourguignon (1987), Bourguignon, Chakravarty (2002), Athey (2000, 2002).

For d > 2 some of the equivalences may break.

Theorem
Let d = 2, and X.j = Y.j for j = 1, 2 the following statements are
equivalent:
(i) X >2USM Y ; (ii) Y <lo X (iii) X <uo Y (iv)
Cov [f1(X.1), f2(X.2)] � Cov [f1(Y.1), f2(Y.2)] for increasing functions
f1, f2; (v) X >d∆M Y .
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One more result

Scarsini (J appl. Prob 1998)

Theorem
If X.j = Y.j for all j = 1, 2, .., d then Y >dUSM X implies that Xp
Lorenz dominates Yp for all p 2 Rd

+.
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A closer look at dependence between variables..

The dependence structure of a distribution can be represented by a
Copula (a random vector uniformly distributed between [0, 1])
Consider for the Frechet class Γ(FX.1 ,FX.2 , ....,FX .d ) of d dimensional
distributions with FX.1 ,FX.2 , ....,FX .d as marginals.
Given a FX 2 Γ(FX.1 , ...,FX .d ) there exist C : [0, 1]d ! [0, 1] s.t. for
all x 2 Rd FX(x) = C [FX.1(x1),FX.2(x2), ...,FX.d (xd )] and can be
constructed if FX is continuous as:

C [u] := FX [F�1x.1 (u1);F
�1
x.2 (u2); ...,F

�1
x.d (ud )] u 2 [0, 1]d

Theorem
If X and Y have a common copula then X.j <1 Y.j for all
j = 1, 2, ...d implies X >dU1 Y .

Dominance in terms of the distributions of each attribute is su¢ cient
to guarantee multivariate dominance!
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