On MD poverty comparisons

(K. Bosmans, L. Lauwers) & E. Ooghe

Overview

- □ Introduction: 3 problems
- □ Notation
- □ Axioms
- □ Result
- Discussion

Problem 1: 'transferability'

□ Are all attributes 'transferable'?

- □ We split up all attributes into
 - 'transferable' (typically cardinal) attributes
 - 'non-transferable' (typically ordinal/nominal) attributes
 - Whether an attribute is transferable is
 - not a physical characteristic of the attribute, but depends on whether the attribute should be included in the definition of certain 'transfer'-type axioms
 - ..., thus a 'normative' choice

Problem 2: defining the poor

 \Box Given a poverty bundle *z*, should we use

- an intersection approach,
- a union approach, or
- an intermediate approach?

□ Roughly speaking, we start by measuring poverty via

$$\sum_{i} \pi_{z}(x^{i})$$
, with $x^{i} = (x_{1}^{i}, x_{2}^{i}, ...)$ and $z = (z_{1}, z_{2}, ...)$

and define the poor as individuals with bundles *x* s.t.

$$\pi_z(x) > \pi_z(z).$$

Problem 3: priority to the poor

□ a MD generalization of the FGT poverty family:

$$\sum_{i} I(x^{i} \ll z) \prod_{j} (z_{j} - x_{j}^{i})^{\alpha_{j}},$$

- □ Consider
 - 2 dimensions (with all $\alpha_i = 1$) and a poverty bundle z = (1, 1)
 - 2 individuals with bundles (0.4, 0.6) & (0.65, 0.4)
- Both individuals are poor, but who is poorest?
- □ Consider
 - an indivisible amount 0.05 of the 1st attribute, say income
 - who should get it? priority!
 - but ...

Notation

- $\Box \quad \text{Set of individuals } I$
- \Box Set of attributes $J = T \cup N$ (recall problem 1)
- □ An attribute bundle $x = (x_T, x_N)$, element of $B = \mathcal{R}^{|J|}_+$
- \Box A poverty bundle *z* in *B*
- □ A distribution $X = (x^1, x^2, ...)$, element of $D = B^{|I|}$
- \square A poverty ranking ('better-than' relation) \succeq_z on D

Representation

□ Representation (R): There exists a C^1 -map $\pi_z : B \to \mathcal{R}$, with $\pi_z(z) = 0$, s.t. for all X, Y in D, we have

$$X \succeq_{z} Y \iff \sum_{i \in I} \pi_{z} \left(x^{i} \right) \le \sum_{i \in I} \pi_{z} \left(y^{i} \right)$$

 \Box the poverty ranking \succeq_z is assumed to be

- Complete, transitive & continuous(ly differentiable)
- Separable (decomposable)
- Anonymous
- Normalization
- □ strong, but not unusual (A&B, 1982; F, 1984)

Focus

- □ Recall problem 2 (= defining the poor)
- \Box The set of poor individuals in *X* is defined as

$$\mathcal{P}(X, \succeq_z) = \left\{ i \in I | \left(x^i, x^i, \dots, x^i \right) \prec_z \left(z, z, \dots, z \right) \right\}$$

Given (R), the poor are those with $\pi_z(x) > 0$

□ Focus (F): for all X in D, $X \sim_z Y$, with Y obtained from X by a 'change' in the bundle of a non-poor in X, while keeping him/her non-poor in Y.

Given (R) & (F), the non-poor have $\pi_z(x) = 0$

Monotonicity

□ Monotonicity (M): for all X, Y in D & for each i in $\mathcal{P}(X, \succeq_z)$ if $x_T^i < y_T^i \& x_N^i = y_N^i$ $x^k = v^k, k \neq i$ then $X \prec_{_{\mathcal{T}}} Y$ □ Given (R) & (M)

 $\pi_z(x) > 0$ implies $D_j \pi_z(x) < 0$, for all j in T

Priority

□ Recall problem 3 (priority)

□ Priority (P):

- for each X in D,
- for each $\varepsilon = (\varepsilon_T, \varepsilon_N)$, with $\varepsilon_T > 0$ and $\varepsilon_N = 0$,
- for all k, l in $\mathcal{P}(X, \succeq_z)$, with $(x^k, x^k, \dots, x^k) \prec_z (x^l, x^l, \dots, x^l)$ we have

$$(\ldots, x^k + \varepsilon, \ldots, x^l, \ldots) \succ_z (\ldots, x^k, \ldots, x^l + \varepsilon, \ldots)$$

Result

□ Consider a poverty bundle *z*. A poverty ranking \succeq_z satisfies R, F, M & P if and only if there exist

- a vector $p_T >> 0$ (for the transferables in T)
- a C^{l} -map $\psi: \mathcal{R}^{|N|}_{+} \to \mathcal{R}$ (for the non-transferables in N)

a
$$C^{l}$$
-map $\varphi \colon \mathcal{R} \to \mathcal{R}, a \to \varphi(a)$

 \Box strictly decreasing & strictly convex at $a < p_T \cdot z_T + \psi(z_N)$

 \square and $\varphi(a) = 0$ elsewhere

such that, for each X and Y in D, we have

$$X \succeq_{z} Y \Leftrightarrow \sum_{i \in I} \varphi \left(p_{T} \cdot x_{T}^{i} + \psi \left(x_{N}^{i} \right) \right) \leq \sum_{i \in I} \varphi \left(p_{T} \cdot y_{T}^{i} + \psi \left(y_{N}^{i} \right) \right)$$

$$X \succeq_{z} Y \Leftrightarrow \sum_{i \in I} \varphi \left(p_{T} \cdot x_{T}^{i} + \psi \left(x_{N}^{i} \right) \right) \leq \sum_{i \in I} \varphi \left(p_{T} \cdot y_{T}^{i} + \psi \left(y_{N}^{i} \right) \right)$$

- \square |T| > 1 & |N| = 0: budget (dominance) & zonoids
- \square |T|=1=|N| : equivalence scales (& B89 dominance)
- □ Related impossibility results:
 - Sen's weak equity principle
 - Ebert's conflict

. . .

- impossibility of a Paretian egalitarian
- "I "fundamental difficulty to work in two separate spaces"
- □ role of differentiability ...