Aggregation of preferences under uncertainty

Thibault Gajdos

CNRS-CES

IT4, 14/01/2009

Risk and Uncertainty

Luce & Raiffa, 1957

- Certainty: each action is known to lead invariably to a specific outcome
- Risk: each action leads to one of a set of possible specific outcomes, each outcome occurring with a known proability. The probabilities are assumed to be known to the decision maker
- Uncertainty: each action has as its consequence a set of possible specific outcomes, but the probability of these outcomes are completely unknown or are not even meaningful (p.13)

$$(x_E,E;x_{\bar E},\bar E)$$

$$(x_{E}, E; x_{\bar{E}}, \bar{E})$$

$$\downarrow$$

$$[u_{1}(x_{E}), p_{1}(E) \quad u_{2}(x_{E}), p_{2}(E) \\ u_{1}(x_{\bar{E}}), p_{1}(\bar{E}) \quad u_{2}(x_{\bar{E}}), p_{2}(\bar{E})]$$

$$(x_{E}, E; x_{\bar{E}}, \bar{E})$$

$$[u_{1}(x_{E}), p_{1}(E) u_{2}(x_{E}), p_{2}(E)]$$

$$[u_{1}(x_{\bar{E}}), p_{1}(\bar{E}) u_{2}(x_{\bar{E}}), p_{2}(\bar{E})]$$

$$V_{1}(x_{E}, E; x_{\bar{E}}, \bar{E})$$

$$V_{2}(x_{E}, E; x_{\bar{E}}, \bar{E})$$

$$W (V_{1}(\cdot), V_{2}(\cdot))$$

$$(x_{E}, E; x_{\overline{E}}, \overline{E})$$

$$\downarrow$$

$$\begin{bmatrix} u_{1}(x_{E}), p_{1}(E) & u_{2}(x_{E}), p_{2}(E) \\ u_{1}(x_{\overline{E}}), p_{1}(\overline{E}) & u_{2}(x_{\overline{E}}), p_{2}(\overline{E}) \end{bmatrix} \rightarrow \begin{bmatrix} u_{0}(x_{E}), p_{0}(E) \\ u_{0}(x_{\overline{E}}), p_{0}(\overline{E}) \end{bmatrix}$$

$$\downarrow$$

$$V_{1}(x_{E}, E; x_{\overline{E}}, \overline{E})$$

$$V_{2}(x_{E}, E; x_{\overline{E}}, \overline{E})$$

$$\downarrow$$

$$W(V_{1}(\cdot), V_{2}(\cdot))$$

$$\begin{array}{c} (x_{E}, E; x_{\overline{E}}, \overline{E}) \\ \downarrow \\ \downarrow \\ u_{1}(x_{E}), p_{1}(E) & u_{2}(x_{E}), p_{2}(E) \\ u_{1}(x_{\overline{E}}), p_{1}(\overline{E}) & u_{2}(x_{\overline{E}}), p_{2}(\overline{E}) \end{array} \right] \longrightarrow \left[\begin{array}{c} u_{0}(x_{E}), p_{0}(E) \\ u_{0}(x_{\overline{E}}), p_{0}(\overline{E}) \end{array} \right] \\ \downarrow \\ V_{1}(x_{E}, E; x_{\overline{E}}, \overline{E}) \\ V_{2}(x_{E}, E; x_{\overline{E}}, \overline{E}) \\ \downarrow \\ W(V_{1}(\cdot), V_{2}(\cdot)) \end{array} \right. \qquad V_{0}(x_{E}, E; x_{\overline{E}}, \overline{E})$$

$$(x_{E}, E; x_{\overline{E}}, \overline{E})$$

$$\downarrow$$

$$\begin{bmatrix} u_{1}(x_{E}), p_{1}(E) & u_{2}(x_{E}), p_{2}(E) \\ u_{1}(x_{\overline{E}}), p_{1}(\overline{E}) & u_{2}(x_{\overline{E}}), p_{2}(\overline{E}) \end{bmatrix} \longrightarrow \begin{bmatrix} u_{0}(x_{E}), p_{0}(E) \\ u_{0}(x_{\overline{E}}), p_{0}(\overline{E}) \end{bmatrix}$$

$$\downarrow$$

$$V_{1}(x_{E}, E; x_{\overline{E}}, \overline{E})$$

$$V_{2}(x_{E}, E; x_{\overline{E}}, \overline{E})$$

$$\downarrow$$

$$W(V_{1}(\cdot), V_{2}(\cdot)) \longleftarrow ? \longrightarrow V_{0}(x_{E}, E; x_{\overline{E}}, \overline{E})$$

Aggregating *n* preferences into one that:

- satisfies the same "rationality" requirements as individuals' preferences
- is non dictatorial
- o does not provoke unanimous opposition

Road map

- The vNM case: Harsanyi's aggregation theorem
- In Subjective Expected Utility case
- Ouncertainty: the (almost) general case

Setup

•
$$\mathcal{N}' = \{1, \cdots, n\}$$
 agents, $\mathcal{N} = \{0\} \cup \mathcal{N}'$ where $0 =$ "society"

• X (sure) social alternatives

•
$$\mathscr{L} = \left\{ p : X \to [0,1] \left| \begin{array}{c} \#\{x|p(x) > 0\} < \infty \\ \sum_{x \in X} p(x) = 1 \end{array} \right\}$$
 social lotteries

Setup

- ${\it N}'=\{1,\cdots,n\}$ agents, ${\it N}=\{0\}\cup{\it N}'$ where 0= "society"
- X (sure) social alternatives

•
$$\mathscr{L} = \left\{ p : X \to [0,1] \left| \begin{array}{c} \#\{x|p(x) > 0\} < \infty \\ \sum_{x \in X} p(x) = 1 \end{array} \right\} \text{ social lotteries} \right.$$

• individuals and society satisfy vNM axioms: for all $i \in N$, there exists $u_i : X \to \mathbb{R}$ such that:

$$p \succcurlyeq_i q \Leftrightarrow \sum_{x \in X} p(x) u_i(x) \ge \sum_{x \in X} q(x) u_i(x)$$

Moreover, u_i is unique up to an increasing affine transformation.

Setup

- ${\it N}'=\{1,\cdots,n\}$ agents, ${\it N}=\{0\}\cup{\it N}'$ where 0= "society"
- X (sure) social alternatives

•
$$\mathscr{L} = \left\{ p : X \to [0,1] \left| \begin{array}{c} \#\{x|p(x) > 0\} < \infty \\ \sum_{x \in X} p(x) = 1 \end{array} \right\} \text{ social lotteries} \right.$$

• individuals and society satisfy vNM axioms: for all $i \in N$, there exists $u_i : X \to \mathbb{R}$ such that:

$$p \succcurlyeq_i q \Leftrightarrow \sum_{x \in X} p(x) u_i(x) \ge \sum_{x \in X} q(x) u_i(x)$$

Moreover, u_i is unique up to an increasing affine transformation.

Weak Pareto (WP) $[p \succ_i q, \forall i \in N'] \Rightarrow p \succ_0 q$

Axioms

Weak Pareto (WP) $[p \succ_i q, \forall i \in N'] \Rightarrow p \succ_0 q$

Independent Prospect (IP)

For all $k \in N'$, there exist p_k and q_k such that:

 $p_k \succ_k q_k$ and $p_k \sim_i q_k, \forall i \in N' \setminus \{k\}$

Harsanyi's aggregation theorem

Theorem

Assume that \succeq_i is represented by a vNM function u_i ($i \in N$) and (IP) is satisfied. Then (WP) holds iff there exist unique $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n_+ \setminus \{0_n\}, \mu \in \mathbb{R}$ such that:

$$u_0=\sum_i\lambda_iu_i+\mu.$$

Harsanyi's aggregation theorem

Theorem

Assume that \succeq_i is represented by a vNM function u_i ($i \in N$) and (IP) is satisfied. Then (WP) holds iff there exist unique $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n_+ \setminus \{0_n\}, \mu \in \mathbb{R}$ such that:

$$u_0=\sum_i\lambda_iu_i+\mu.$$

Remark

In Harsanyi's original (1955) theorem:

- Pareto indifference: sign of coefficients undetermined
- Independent Prospect not assumed: coefficients not unique

Lemma 1

Under vNM, (IP) implies that there exist p^* and p_* such that:

$$p^* \succ_i q_*, \forall i \in N'$$
 (MA)

Lemma 1

Under vNM, (IP) implies that there exist p^* and p_* such that:

$$p^* \succ_i q_*, \forall i \in N'$$
 (MA)

Proof

Lemma 2 (De Meyer & Mongin, 1995)

Let $X \neq \emptyset$ and $F = (f_0, f_1, \ldots, f_n) : X \to \mathbb{R}^{n+1}$. If K = F(X) is convex and (WP) and (MA) hold, then there exist $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n_+ \setminus \{0_n\}$, $\mu \in \mathbb{R}$ such that:

$$f_0 = \sum_i \lambda_i f_i + \mu.$$

◀ Proof

Lemma 3

Under the assumptions of Lemma 2, (IP) implies unicity of the coefficients.

Lemma 3

Under the assumptions of Lemma 2, (IP) implies unicity of the coefficients.

Remark

This theorem gave rise to a substantial body of work and often passionate debates. For a survey, see Sen (1986) and Weymark (1991). These debates concern:

- the interpretation of the theorem more
- its normative appeal <-----

Subjective Expected Utility

Anscombe-Aumann setup

- S finite set of states of nature
- X social outcomes
- Y simple probability distributions over X (roulette lotteries)
- $\mathscr{A} = \{f : S \to X\}$ acts (horse lotteries)
- \mathscr{A} is a mixture space: $(\alpha f + (1 \alpha)g)(s) = \alpha f(s) + (1 \alpha)g(s)$

Subjective Expected Utility

Anscombe-Aumann setup

- S finite set of states of nature
- X social outcomes
- Y simple probability distributions over X (roulette lotteries)

•
$$\mathscr{A} = \{f : S \to X\}$$
 acts (horse lotteries)

•
$$\mathscr{A}$$
 is a mixture space: $(\alpha f + (1 - \alpha)g)(s) = \alpha f(s) + (1 - \alpha)g(s)$

Subjective Expected Utility

individuals and society satisfy SEU axioms: for all *i* there exist a probability measure p_i on *S* and a non-constant vNM function $u_i : Y \to \mathbb{R}$ such that:

$$f \succcurlyeq_i g \Leftrightarrow \sum_{s \in S} p_i(s)u(f(s)) \ge \sum_{s \in S} p_i(s)u(g(s))$$

Moreover, p_i is unique, u_i is unique up to an increasing affine transform.

Aggregation of SEU (Mongin, 1998)

Theorem

Assume that \succeq_i is represented by a SEU function with utility u_i and beliefs p_i $(i \in N)$ and (IP) is satisfied. Then (WP) iff there exist unique $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n_+ \setminus \{0_n\}, \mu \in \mathbb{R}$ such that for $f \in \mathscr{A}$:

$$\sum_{s} p_0(s)u_0(f(s)) = \sum_{i \in N'} \lambda_i \left(\sum_{s} p_i(s)u_i(f(s)) \right) + \mu.$$

Moreover, $p_j = p_k = p_0$ for all $j, k \in J = \{i \in N' | \lambda_i \neq 0\}$.

The first part of the theorem follows from Lemma 1, 2 and 3.

The first part of the theorem follows from Lemma 1, 2 and 3. Wlog, pick $y \in Y$ and let $u_i(y) = 0$, $\forall i \in N'$. $\mathscr{A}_{y,t} = \{f \in \mathscr{A} | f(s) = y, \forall s \neq t\}$

The first part of the theorem follows from Lemma 1, 2 and 3. Wlog, pick $y \in Y$ and let $u_i(y) = 0$, $\forall i \in N'$. $\mathscr{A}_{y,t} = \{f \in \mathscr{A} | f(s) = y, \forall s \neq t\}$

Second part of the theorem

By the first part:

•
$$p_0(s)u_0 = \sum_{i \in N'} \lambda_i p_i(s)u_i, \, \forall s \in S \text{ (acts in } \mathscr{A}_{y,s})$$

The first part of the theorem follows from Lemma 1, 2 and 3. Wlog, pick $y \in Y$ and let $u_i(y) = 0$, $\forall i \in N'$. $\mathscr{A}_{y,t} = \{f \in \mathscr{A} | f(s) = y, \forall s \neq t\}$

Second part of the theorem

By the first part:

•
$$p_0(s)u_0 = \sum_{i \in N'} \lambda_i p_i(s)u_i, \, \forall s \in S \text{ (acts in } \mathscr{A}_{y,s})$$

•
$$u_0 = \sum_{i \in N'} \lambda_i u_i$$
 (constant acts)

•
$$p_0(s)\left(\sum_{i\in N'}\lambda_i u_i\right) = \sum_{i\in N'}\lambda_i p_i(s)u_i \forall s$$

The first part of the theorem follows from Lemma 1, 2 and 3. Wlog, pick $y \in Y$ and let $u_i(y) = 0$, $\forall i \in N'$. $\mathscr{A}_{y,t} = \{f \in \mathscr{A} | f(s) = y, \forall s \neq t\}$

Second part of the theorem

By the first part:

•
$$p_0(s)u_0 = \sum_{i \in N'} \lambda_i p_i(s)u_i, \, \forall s \in S \text{ (acts in } \mathscr{A}_{y,s})$$

•
$$u_0 = \sum_{i \in N'} \lambda_i u_i$$
 (constant acts)

•
$$p_0(s)\left(\sum_{i\in N'}\lambda_i u_i\right) = \sum_{i\in N'}\lambda_i p_i(s)u_i \forall s$$

$$\sum_{i\in J}\lambda_i u_i \left(p_0(s)-p_i(s)\right)=0$$

The first part of the theorem follows from Lemma 1, 2 and 3. Wlog, pick $y \in Y$ and let $u_i(y) = 0$, $\forall i \in N'$. $\mathscr{A}_{y,t} = \{f \in \mathscr{A} | f(s) = y, \forall s \neq t\}$

Second part of the theorem

By the first part:

•
$$p_0(s)u_0 = \sum_{i \in N'} \lambda_i p_i(s)u_i, \forall s \in S \text{ (acts in } \mathscr{A}_{y,s})$$

•
$$u_0 = \sum_{i \in N'} \lambda_i u_i$$
 (constant acts)

•
$$p_0(s)\left(\sum_{i\in N'}\lambda_i u_i\right) = \sum_{i\in N'}\lambda_i p_i(s)u_i \forall s$$

$$\sum_{i\in J}\lambda_i u_i \left(p_0(s)-p_i(s)\right)=0$$

 $u_i \ (i \in J)$ aff. indep. $\Rightarrow p_0(s) = p_i(s), \ \forall i \in J, \ s \in S$

What can we do?

- Relaxing Pareto: Gilboa, Samet and Schmeidler (2004)
- Allowing for less restrictive preferences
- After all, SEU is very special: it imposes uncertainty neutrality

Ellsberg's paradox

90 balls in urn: 30 red, and 60 blue and yellow

Ellsberg's paradox

90 balls in urn: 30 red, and 60 blue and yellow

	R	Y	В
f	1	0	0
g_1	0	1	0
g ₂	1	0	1
h	0	1	1

Ellsberg's paradox

90 balls in urn: 30 red, and 60 blue and yellow

	R	Y	В
f	1	0	0
g_1	0	1	0
g ₂	1	0	1
h	0	1	1

Modal preferences

 $f\succ g_1 \And h\succ g_2$

Ellsberg's paradox

90 balls in urn: 30 red, and 60 blue and yellow

	R	Y	В
f	1	0	0
g_1	0	1	0
g ₂	1	0	1
h	0	1	1

Modal preferences

$$f \succ g_1 \& h \succ g_2$$

Inconsistent with SEU

•
$$f \succ g_1 \Rightarrow \Pr(Y) < \frac{1}{3}$$

• $h \succ g_2 \Rightarrow \frac{2}{3} > \frac{1}{3} + \Pr(B) = \frac{1}{3} + (\frac{2}{3} - \Pr(Y)) \Rightarrow \Pr(Y) > \frac{1}{3}$

Preliminary definitions

Capacity

- $\rho: \mathbf{2^S} \rightarrow [\mathbf{0},\mathbf{1}]$ such that:
 - $\rho(\emptyset) = 0$ and $\rho(S) = 1$
 - $A \subseteq B \Rightarrow \rho(A) \le \rho(B)$

Preliminary definitions

Capacity

 $\rho: 2^S \to [0, 1] \text{ such that:}$ • $\rho(\emptyset) = 0 \text{ and } \rho(S) = 1$ • $A \subseteq B \Rightarrow \rho(A) \le \rho(B)$

Binary acts \mathscr{B}

- $f \in \mathscr{A}$ st there exists $E \in 2^{S}$, $x, y \in Y$:
 - $f(s) = x, \forall s \in A$
 - $f(s) = y, \forall s \in A^c$
 - denoted: *xAy*

c-linear biseparable preferences

The preference relation \succeq is c-linear biseparable iff there exist a function $V : \mathscr{A} \to \mathbb{R}$ and a capacity ρ on 2^S such that:

• $\forall x \succcurlyeq y$, letting u(x) = V(x),

$$V(xAy) = \rho(A)u(x) + (1 - \rho(A))u(y)$$

c-linear biseparable preferences

The preference relation \succeq is c-linear biseparable iff there exist a function $V : \mathscr{A} \to \mathbb{R}$ and a capacity ρ on 2^S such that:

∀x ≽ y, letting u(x) = V(x), V(xAy) = ρ(A)u(x) + (1 − ρ(A))u(y)
∀f ∈ ℬ, x ∈ Y, α ∈ [0, 1], V(αf + (1 − α)x) = αV(f) + (1 − α)V(x)

Moreover ρ is unique and V is unique up to an increasing affine transformation.

c-linear biseparable preferences

The preference relation \succeq is c-linear biseparable iff there exist a function $V : \mathscr{A} \to \mathbb{R}$ and a capacity ρ on 2^S such that:

Moreover ρ is unique and V is unique up to an increasing affine transformation.

Uncertainty aversion

A c-linear bisep. preference is *uncertainty neutral wrt event* E iff $\rho(E) = 1 - \rho(E^c)$. It is *uncertainty neutral* if it is uncertainty neutral wrt all events.

Examples

- Subjective Expected Utility
- Choquet Expected Utility (Schmeidler, 1986)
- Maxmin Expected Utility (Gilboa & Schmeidler, 1989)
- α -Maxmin Expected Utility (Jaffray, 1989)

Examples

- Subjective Expected Utility
- Choquet Expected Utility (Schmeidler, 1986)
- Maxmin Expected Utility (Gilboa & Schmeidler, 1989)
- α -Maxmin Expected Utility (Jaffray, 1989)

GTV 08

Generalization of c-linear biseparable preferences: rank dependent additive preferences allow for state dependence.

Theorem

Assume that \succeq_i are c-linear biseparable preferences, represented by functions V_i with capacities ρ_i and that (IP) is satisfied. Then (WP) holds iff there exist unique $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n_+ \setminus \{0_n\}, \mu \in \mathbb{R}$ such that for $f \in \mathscr{B}$:

$$V(f) = \sum_{i \in N'} \lambda_i V_i(f) + \mu.$$

Moreover, $\lambda_i \lambda_j \neq 0$ iff *i* and *j* are uncertainty neutral

Interpretation

- Either social preferences are a linear aggregation of uncertainty neutral individual preferences;
- Or there is a dictator.

Interpretation

- Either social preferences are a linear aggregation of uncertainty neutral individual preferences;
- Or there is a dictator.

Consequences

- If social preferences are not neutral towards uncertainty, then there is a dictator;
- It is in some sense stronger than Harsanyi's Theorem, since neutrality towards uncertainty is a consequence, not an assumption.

Interpretation

- Either social preferences are a linear aggregation of uncertainty neutral individual preferences;
- Or there is a dictator.

Consequences

- If social preferences are not neutral towards uncertainty, then there is a dictator;
- It is in some sense stronger than Harsanyi's Theorem, since neutrality towards uncertainty is a consequence, not an assumption.

Example

- Non-dictatorial aggregation of Maxmin Expected Utility maximizers (or CEU) is impossible if individuals are uncertainty averse
- True even if they have the same "beliefs"

First step

Usual arguments show that aggregation must be linear

First step

Usual arguments show that aggregation must be linear

Second step

• Use (IP) to show that if $\lambda_i \neq 0$ then $\rho_i(E) = 1 - \rho_i(E^c)$ for all E

First step

Usual arguments show that aggregation must be linear

Second step

- Use (IP) to show that if $\lambda_i \neq 0$ then $\rho_i(E) = 1 \rho_i(E^c)$ for all E
- Again use (IP), assuming $\exists \lambda_j > 0, \lambda_k > 0$: $\exists x, y \text{ st } x \succ_j y, y \succ_k x$ and $x \sim_0 y$ $V_0(xEy) - V_0(yEx) = 0$ (direct computation)

First step

Usual arguments show that aggregation must be linear

Second step

- Use (IP) to show that if $\lambda_i \neq 0$ then $\rho_i(E) = 1 \rho_i(E^c)$ for all E
- Again use (IP), assuming $\exists \lambda_j > 0, \lambda_k > 0$: $\exists x, y \text{ st } x \succ_j y, y \succ_k x$ and $x \sim_0 y$ $V_0(xEy) - V_0(yEx) = 0$ (direct computation) $V_0(xEy) - V_0(yEx) = \sum_i \lambda_i (V_i(xEy) - V_i(yEx))$ Given $\rho_i(E) = 1 - \rho_i(E^c)$, leads $\rho_0(E) = 1 - \rho_0(E^c)$

The (almost) general case

The End?

By (IP) and vNM there exist (p_k, q_k) , $k \in N'$ such that:

$$\left\{ egin{array}{l} u_k(p_k) \geq u_k(q_k) \ u_i(p_k) = u_i(q_k), \, orall i \in {\sf N}' \setminus \{k\} \end{array}
ight.$$

By (IP) and vNM there exist (p_k, q_k) , $k \in N'$ such that:

$$\left\{\begin{array}{l}u_k(p_k)\geq u_k(q_k)\\u_i(p_k)=u_i(q_k),\,\forall i\in N'\setminus\{k\}\end{array}\right.$$

Let $p^* = \sum_i \frac{1}{n} p_i$ and $p_* = \sum_i \frac{1}{n} q_i$.

By (IP) and vNM there exist (p_k, q_k) , $k \in N'$ such that:

$$\left\{\begin{array}{l} u_k(p_k) \geq u_k(q_k) \\ u_i(p_k) = u_i(q_k), \, \forall i \in \mathsf{N}' \setminus \{k\} \end{array}\right.$$

Let $p^* = \sum_i \frac{1}{n} p_i$ and $p_* = \sum_i \frac{1}{n} q_i$.

$$u_{k}(p^{*}) = \sum_{i} \frac{1}{n} u_{k}(p_{i})$$

= $\frac{1}{n} u_{k}(p_{k}) + \sum_{i \neq k} \frac{1}{n} u_{k}(p_{i})$
> $\frac{1}{n} u_{k}(q_{k}) + \sum_{i \neq k} \frac{1}{n} u_{k}(q_{i}) = u_{k}(p_{*})$

Definitions

•
$$R = \{ z \in \mathbb{R}^{n+1} | z_0 \le 0, \, z_i > 0 \, \forall \in N' \}$$

•
$$K = (f_0, f_1, ..., f_n)(X) = F(X)$$
 convex

•
$$K^- = \{z' - z'' | (z', z'') \in K^2\}$$
 convex and symmetric wrt 0

Definitions

•
$$R = \{ z \in \mathbb{R}^{n+1} | z_0 \le 0, \, z_i > 0 \, \forall \in N' \}$$

•
$$K = (f_0, f_1, ..., f_n)(X) = F(X)$$
 convex

• $\mathcal{K}^- = \{z' - z'' \, | \, (z', z'') \in \mathcal{K}^2 \}$ convex and symmetric wrt 0

• (WP)
$$\Leftrightarrow R \cap K^- = \emptyset \Leftrightarrow R \cap \operatorname{Vect}(K^-) = \emptyset$$
 (K⁻ conv and sym)

Definitions

•
$$R = \{ z \in \mathbb{R}^{n+1} | z_0 \le 0, \, z_i > 0 \, \forall \in N' \}$$

•
$$K = (f_0, f_1, ..., f_n)(X) = F(X)$$
 convex

• $\mathcal{K}^- = \{z' - z'' \, \big| (z', z'') \in \mathcal{K}^2\}$ convex and symmetric wrt 0

- (WP) $\Leftrightarrow R \cap K^- = \emptyset \Leftrightarrow R \cap \operatorname{Vect}(K^-) = \emptyset$ (K⁻ conv and sym)
- $\tilde{R} = \operatorname{cl}(R) + \sum_{i \in N} e_i \subset R$

Definitions

•
$$R = \{ z \in \mathbb{R}^{n+1} | z_0 \le 0, \, z_i > 0 \, \forall \in N' \}$$

•
$$K = (f_0, f_1, ..., f_n)(X) = F(X)$$
 convex

• $K^- = \{z' - z'' | (z', z'') \in K^2\}$ convex and symmetric wrt 0

- (WP) $\Leftrightarrow R \cap K^- = \emptyset \Leftrightarrow R \cap \operatorname{Vect}(K^-) = \emptyset$ (K⁻ conv and sym)
- $\tilde{R} = \operatorname{cl}(R) + \sum_{i \in N} e_i \subset R$
- Separation of closed disjoint non-empty polyhedral sets: $\exists \varphi = (\varphi_0, \varphi_1, \dots, \varphi_n) \text{ st } \forall k \in \text{Vect}(K^-), z \in \text{cl}(R):$ $\langle \varphi, z + \sum_{i \in N'} e_i \rangle > \langle \varphi, k \rangle$

Definitions

•
$$R = \{ z \in \mathbb{R}^{n+1} | z_0 \le 0, \, z_i > 0 \, \forall \in N' \}$$

•
$$K = (f_0, f_1, ..., f_n)(X) = F(X)$$
 convex

• $K^- = \{z' - z'' | (z', z'') \in K^2\}$ convex and symmetric wrt 0

- (WP) $\Leftrightarrow R \cap K^- = \emptyset \Leftrightarrow R \cap \operatorname{Vect}(K^-) = \emptyset$ (K⁻ conv and sym)
- $\tilde{R} = \operatorname{cl}(R) + \sum_{i \in N} e_i \subset R$
- Separation of closed disjoint non-empty polyhedral sets: ∃φ = (φ₀, φ₁,..., φ_n) st ∀k ∈ Vect(K⁻), z ∈ cl(R): ⟨φ, z + ∑_{i∈N'} e_i⟩ > ⟨φ, k⟩
 ⟨φ, k⟩ = 0, ∀k ∈ Vect(K⁻)

Definitions

•
$$R = \{ z \in \mathbb{R}^{n+1} | z_0 \le 0, \, z_i > 0 \, \forall \in N' \}$$

•
$$K = (f_0, f_1, ..., f_n)(X) = F(X)$$
 convex

• $K^- = \{z' - z'' | (z', z'') \in K^2\}$ convex and symmetric wrt 0

Separation argument

- (WP) $\Leftrightarrow R \cap K^- = \emptyset \Leftrightarrow R \cap \operatorname{Vect}(K^-) = \emptyset$ (K⁻ conv and sym)
- $\tilde{R} = \operatorname{cl}(R) + \sum_{i \in N} e_i \subset R$
- Separation of closed disjoint non-empty polyhedral sets: $\exists \varphi = (\varphi_0, \varphi_1, \dots, \varphi_n) \text{ st } \forall k \in \text{Vect}(K^-), z \in \text{cl}(R):$ $\langle \varphi, z + \sum_{i \in N'} e_i \rangle > \langle \varphi, k \rangle$

• $\langle \varphi, k \rangle = 0, \, \forall k \in \mathsf{Vect}(K^-)$

• $\varphi_0(f_0(x) - f_0(y)) = \sum_{i \in N'} -\varphi_i(f_i(x) - f_i(y)), \, \forall x, y \in X$

Definitions

•
$$R = \{ z \in \mathbb{R}^{n+1} | z_0 \le 0, \, z_i > 0 \, \forall \in N' \}$$

•
$$K = (f_0, f_1, ..., f_n)(X) = F(X)$$
 convex

• $K^- = \{z' - z'' | (z', z'') \in K^2\}$ convex and symmetric wrt 0

Separation argument

- (WP) $\Leftrightarrow R \cap K^- = \emptyset \Leftrightarrow R \cap \operatorname{Vect}(K^-) = \emptyset$ (K⁻ conv and sym)
- $\tilde{R} = \operatorname{cl}(R) + \sum_{i \in N} e_i \subset R$
- Separation of closed disjoint non-empty polyhedral sets: $\exists \varphi = (\varphi_0, \varphi_1, \dots, \varphi_n) \text{ st } \forall k \in \text{Vect}(K^-), z \in \text{cl}(R):$ $\langle \varphi, z + \sum_{i \in N'} e_i \rangle > \langle \varphi, k \rangle$

• $\langle \varphi, k \rangle = 0, \, \forall k \in \operatorname{Vect}(K^{-})$

- $\varphi_0(f_0(x) f_0(y)) = \sum_{i \in N'} -\varphi_i(f_i(x) f_i(y)), \forall x, y \in X$
- $\varphi_0 f_0(x) = \sum_{i \in N'} -\varphi_i f_i(x) + \mu, \, \forall x \in X$

Sign of φ_i , $i \in N'$

•
$$\gamma e_j + \sum_{i \in N'} e_i \in R, \forall \gamma > 0$$

• $\langle \varphi, \gamma e_j + \sum_{i \in N'} e_i \rangle > 0$

•
$$\varphi_j(1+\gamma) + \sum_{i \in N' \setminus \{j\}} \varphi_i > 0, \forall \gamma > 0$$

• Thus
$$\varphi \neq 0$$
. Let $\gamma \rightarrow \infty$: $\varphi_j \ge 0$

Sign of φ_i , $i \in N'$

•
$$\gamma e_j + \sum_{i \in N'} e_i \in R, \forall \gamma > 0$$

• $\langle \varphi, \gamma e_j + \sum_{i \in N'} e_i \rangle > 0$
• $\varphi_j(1 + \gamma) + \sum_{i \in N' \setminus \{j\}} \varphi_i > 0, \forall \gamma > 0$
• Thus $\varphi \neq 0$. Let $\gamma \to \infty : \varphi_j \ge 0$

Sign of φ_0

• [(MA) and (WP)] \Rightarrow there exist $(\theta_0, \theta_1, \dots, \theta_n) \in K^-$ s.t. $\theta_i > 0$ for all i

•
$$\varphi_0 \theta_0 = \sum_{i \in N'} -\varphi_i \theta_i$$

• Thus $\varphi_0 < 0$

• By Lemma 2: $u_0 = \sum_i \lambda_i u_i + \mu$.

- By Lemma 2: $u_0 = \sum_i \lambda_i u_i + \mu$.
- By (IP) and vNM there exist (p_k, q_k) , $k \in N'$ such that:

$$\begin{cases} u_k(p_k) \ge u_k(q_k) \\ u_i(p_k) = u_i(q_k), \, \forall i \in N' \setminus \{k\} \end{cases}$$

- By Lemma 2: $u_0 = \sum_i \lambda_i u_i + \mu$.
- By (IP) and vNM there exist (p_k, q_k) , $k \in N'$ such that:

$$\left\{ egin{array}{l} u_k(p_k) \geq u_k(q_k) \ u_i(p_k) = u_i(q_k), \, orall i \in N' \setminus \{k\} \end{array}
ight.$$

- $u_0(p_k) u_0(q_k) = \lambda_i (u_k(p_k) u_k(q_k))$
- Thus λ_k unique (true for all $k \in N'$)
- Thus μ unique

◀ Back

Diamond's critics

Diamond's critics

The Independence assumption is unacceptable for the social preferences

The identification problem

Sen (1986), Weymark (1991)

- Let $\tilde{u}_i = \alpha_i u_i$
- \tilde{u}_i is still a vNM representation of \succ_i

•
$$\sum_{i} \lambda_{i} u_{i} = \sum_{i} \frac{\lambda_{i}}{\alpha_{i}} \tilde{u}_{i}$$

The identification problem

Sen (1986), Weymark (1991)

- Let $\tilde{u}_i = \alpha_i u_i$
- \tilde{u}_i is still a vNM representation of \geq_i
- $\sum_{i} \lambda_{i} u_{i} = \sum_{i} \frac{\lambda_{i}}{\alpha_{i}} \tilde{u}_{i}$

Weights are meaningless from a normative point of view

