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Risk and Uncertainty

Luce & Raiffa, 1957

o Certainty: each action is known to lead invariably to a specific
outcome

@ Risk: each action leads to one of a set of possible specific outcomes,
each outcome occurring with a known proability. The probabilities are
assumed to be known to the decision maker

@ Uncertainty: each action has as its consequence a set of possible
specific outcomes, but the probability of these outcomes are
completely unknown or are not even meaningful (p.13)
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Introduction

The aggregation problem

Aggregating n preferences into one that:

@ satisfies the same “rationality” requirements as individuals’
preferences

@ is non dictatorial

© does not provoke unanimous opposition




Road map

@ The vNM case: Harsanyi's aggregation theorem
@ The Subjective Expected Utility case

© Uncertainty: the (almost) general case




Setup

o N ={1,---,n} agents, N = {0} U N' where 0 = “society”
e X (sure) social alternatives
#{x|p(x) > 0} < 0

o.i”:{p:X—>[0,1] Sy pl) = 1
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Weak Pareto (WP)
[p-iq,Vie N = p-oq J
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Axioms

Weak Pareto (WP)
[p-iq,Vie N = p-oq

Independent Prospect (IP)
For all k € N, there exist px and qgx such that:

Pk =k Gk and py ~; qi, Vi € N\ {k}
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Theorem

Assume that »=; is represented by a vNM function u; (i € N) and (IP) is
satisfied. Then (WP) holds iff there exist unique
(A1,---,An) € RTA\ {04}, 1 € R such that:

ug = Z)\,‘U,‘ + u.
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Remark
In Harsanyi's original (1955) theorem:
@ Pareto indifference: sign of coefficients undetermined

@ Independent Prospect not assumed: coefficients not unique
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Lemma 1
Under vNM, (IP) implies that there exist p* and p, such that:

p* =i qu, Vie N (MA)

Lemma 2 (De Meyer & Mongin, 1995)

Let X #0 and F = (fo, f1,..., ) : X — R™L_If K = F(X) is convex
and (WP) and (MA) hold, then there exist (A1,...,A;) € R] \ {05},
@ € R such that:

fo= Aifi+p.




Proof (sketch)

Lemma 3

Under the assumptions of Lemma 2, (IP) implies unicity of the coefficients.
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Proof (sketch)

Lemma 3

Under the assumptions of Lemma 2, (IP) implies unicity of the coefficients.

Remark

This theorem gave rise to a substantial body of work and often passionate

debates. For a survey, see Sen (1986) and Weymark (1991). These
debates concern:

@ the interpretation of the theorem

@ its normative appeal




Subjective Expected Utility

Anscombe-Aumann setup
@ S finite set of states of nature
@ X social outcomes
@ Y simple probability distributions over X (roulette lotteries)
o of ={f:S — X} acts (horse lotteries)
e o/ is a mixture space: (af + (1 — a)g)(s) = af(s) + (1 — a)g(s)
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Subjective Expected Utility

Anscombe-Aumann setup
@ S finite set of states of nature
@ X social outcomes
@ Y simple probability distributions over X (roulette lotteries)
o of ={f:S — X} acts (horse lotteries)
e o/ is a mixture space: (af + (1 — a)g)(s) = af(s) + (1 — a)g(s)

Subjective Expected Utility

individuals and society satisfy SEU axioms: for all i there exist a probability
measure p; on S and a non-constant vNM function u; : Y — R such that:

firig & YeesPi(S)u(f(s)) = Xses pi(s)u(g(s))

Moreover, p; is unique, u; is unique up to an increasing affine transform.

v




Aggregation of SEU (Mongin, 1998)

Theorem

Assume that 3=; is represented by a SEU function with utility u; and beliefs
pi (i € N) and (IP) is satisfied. Then (WP) iff there exist unique
(A1,-.5An) € RUN\ {05}, 1 € R such that for f € & :

S pols)uolf() = S (Zp,-(s)u,-(f(s))) o

ieN’

Moreover, pj = px = po for all j,k € J={ie N'|\; #0}.
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The first part of the theorem follows from Lemma 1, 2 and 3.
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The SEU case

Proof

The first part of the theorem follows from Lemma 1, 2 and 3.
Wilog, pick y € Y and let u;(y) =0, Vi e N'.
dyr={f e dI|f(s)=y, Vs # 1t}
Second part of the theorem
By the first part:
® po(s)uo =D jcpr Aipi(s)ui, Vs € S (acts in 7, )
® ug = ) ;cpv AiUj (constant acts)
[} po(s) (ZieN’ )\,'u,-) = Z"ENI )\,-p,'(s)u,- Vs

e At (po(s) = pils)) = 0 |

ui (i € J) aff. indep. = po(s) = pi(s), Vic J,s€ S ]




What can we do?

@ Relaxing Pareto: Gilboa, Samet and Schmeidler (2004)
@ Allowing for less restrictive preferences

o After all, SEU is very special: it imposes uncertainty neutrality
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Uncertainty aversion

Ellsberg’'s paradox
90 balls in urn: 30 red, and 60 blue and yellow

R Y B
f11 0 0
g0 1 0
o1 0 1
h|0 1 1
Modal preferences
f- g1 & h > g2

Inconsistent with SEU
° f%gléPr(Y)<%
o h-g=35>3+Pr(B)=3+(3-Pr(Y))=Pr(Y)>3




Preliminary definitions

Capacity

p:2° —[0,1] such that:
e p(0)=0and p(S)=1
e AC B=p(A) <p(B)




The (almost) general case

Preliminary definitions

Capacity

p:2° —[0,1] such that:
e p(0)=0and p(S)=1
e AC B=p(A) <p(B)

Binary acts &

f € o st there exists E € 2°, x,y € Y:
o f(s)=x,Vsc€ A
o f(s) =y, Vse A
@ denoted: xAy




Biseparable preference (Ghirardato & Marinacci, 2001)

c-linear biseparable preferences

The preference relation 3= is c-linear biseparable iff there exist a function
V : o/ — R and a capacity p on 2° such that:

e Vx =y, letting u(x) = V(x),

V(xAy) = p(A)u(x) + (1 — p(A))u(y)
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Biseparable preference (Ghirardato & Marinacci, 2001)

c-linear biseparable preferences

The preference relation 3= is c-linear biseparable iff there exist a function
V : o/ — R and a capacity p on 2° such that:

e Vx =y, letting u(x) = V(x),
V(xAy) = p(A)u(x) + (1 = p(A))u(y)
eVfeAB xeVY, ae]01],
Viaf + (1 —a)x) =aV(f)+ (1 —a)V(x)

Moreover p is unique and V is unique up to an increasing affine
transformation.

Uncertainty aversion

A c-linear bisep. preference is uncertainty neutral wrt event E iff
p(E) = 1 p(E€).
It is uncertainty neutral if it is uncertainty neutral wrt all events.




Biseparable preference (Ghirardato & Marinacci, 2001)

Examples
@ Subjective Expected Utility
Choquet Expected Utility (Schmeidler, 1986)
Maxmin Expected Utility (Gilboa & Schmeidler, 1989)
a—Maxmin Expected Utility (Jaffray, 1989)
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Biseparable preference (Ghirardato & Marinacci, 2001)

Examples
@ Subjective Expected Utility
e Choquet Expected Utility (Schmeidler, 1986)
@ Maxmin Expected Utility (Gilboa & Schmeidler, 1989)
e a—Maxmin Expected Utility (Jaffray, 1989)

GTV 08

Generalization of c-linear biseparable preferences: rank dependent additive
preferences allow for state dependence.




Aggregation (Gajdos, Tallon, Vergnaud, 2008)

Theorem

Assume that »=; are c-linear biseparable preferences, represented by
functions V; with capacities p; and that (IP) is satisfied. Then (WP) holds
iff there exist unique (A1,...,A,) € R7T\{0,}, o € R such that for f € %:

V(F) =D AiVi(f) + .

ieN’

Moreover, A\;A\; # 0 iff i and j are uncertainty neutral




Aggregation (Gajdos, Tallon, Vergnaud, 2008)

Interpretation

@ Either social preferences are a linear aggregation of uncertainty
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@ Or there is a dictator.
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Interpretation

@ Either social preferences are a linear aggregation of uncertainty
neutral individual preferences;

@ Or there is a dictator.

Consequences

o If social preferences are not neutral towards uncertainty, then there is
a dictator;

@ It is in some sense stronger than Harsanyi's Theorem, since neutrality
towards uncertainty is a consequence, not an assumption.

Example

o Non-dictatorial aggregation of Maxmin Expected Utility maximizers
(or CEU) is impossible if individuals are uncertainty averse

@ True even if they have the same “beliefs”
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Sketch of the proof

First step

Usual arguments show that aggregation must be linear

Second step

@ Use (IP) to show that if A\; # 0 then p;(E) =1 — p;(E€) for all E
@ Again use (IP), assuming 3\; > 0, A, > 0: Ix,y st x =y, y >k X
and x ~g y
Vo(xEy) — Vo(yEx) = 0 (direct computation)
Vo(xEy) — Vo(yEx) = >_; Xi (Vi(xEy) — Vi(yEX))
Given pi(E) =1 — pi(E€), leads po(E) =1 — po(E°)




The (almost) general case

The End? ]
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Proof of Lemma 1

By (IP) and vNM there exist (pk, qk), k € N’ such that:

{ uk(pk) > ur(qx)
ui(pk) = ui(qk), Vi e N\ {k}

Let p* =3, 1piand p. = 3, 1g;.

u(p?) = > %Uk(Pi)

i
1 1
= ;Uk(Pk) + Z ;Uk(Pi)
i#k

1 1
> ;Uk(Qk) + ; Euk(Qi) = uk(ps)
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Proof of Lemma 2

Definitions
° R={zeR"z <0,z >0ve N}
e K= (fo,f,...,M)(X) = F(X) convex

o K~ ={z —2"|(,7") € K?} convex and symmetric wrt 0

Separation argument
e (WP)& RNK™ =0« RnNVect(K~) =0 (K~ conv and sym)
o R=c(R)+X;cnyei CR
@ Separation of closed disjoint non-empty polyhedral sets:
Jp = (po,¥1,---,9n) st Yk € Vect(K™), z € cl(R):

(P 2+ Tien &) > (g, k)
@ (p, k) =0, Vk € Vect(K™)
° o (fo(x) = fo(y)) = Xjen —i (fi(x) = fi(y)) , Vx,y € X
® wofy(x) = ZieN’ —pifi(x) + p, ¥x € X




The (almost) general case

Proof of Lemma 2

Sign of ¢;, i € N
® Ve + Y i€ €R VY >0
o (p,7e + Xjen €i) >0
° pi(1+7)+ Xien\yp i >0,Vy >0
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Sign of ¢;, i € N
® Ve + Y i€ €R VY >0
o (p,7e + Xjen €i) >0
° pi(1+7)+ Xien\yp i >0,Vy >0
@ Thus ¢ #0. Let v — 00 : ¢; >0

Sign of g
e [(MA) and (WP)]| = there exist (0, 01,...,0,) € K~ s.t. 6; > 0 for
all i
® wobo = D ;e —illi
@ Thus ¢ <0
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Proof of Lemma 3

By Lemma 2: up = >_; Ajuj + p.
By (IP) and vNM there exist (pk, k), k € N’ such that:

{ ur(pr) > uk(qr)
ui(pk) = ui(qk), Vi€ N"\ {k}

uo(px) — to(qk) = i (uk(pi) — u(a))
Thus g unique (true for all k € N')
Thus p unique



The (almost) general case

Diamond’s critics

p|Pr(by)=5 Pr6a)=35 q|Pr(by)=3 Pr(62)=;
Ua 1 0 Us 1 1
Up 0 1 Up 0 0
_1 1 _1
o V(p)=3Valp) +35Vb(p) = 3
° V(q) = 3Va(a) +3Vs(q) = 3
o jpr\/q )




The (almost) general case

Diamond’s critics

° V(p) =3 2
o V(q)=1Vi(q)+1Vi(q) =3

The Independence assumption is unacceptable for the social preferences )
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Sen (1986), Weymark (1991)
o Let U; = aju;
@ i is still a vNM representation of >=;
) Auj= —u,




The identification problem

Sen (1986), Weymark (1991)
o Let i = qju;
@ i is still a vNM representation of >=;

OZ)\U,—E-—U,

Weights are meaningless from a normative point of view J
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