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Introduction

Risk and Uncertainty

Luce & Raiffa, 1957

Certainty: each action is known to lead invariably to a specific
outcome

Risk: each action leads to one of a set of possible specific outcomes,
each outcome occurring with a known proability. The probabilities are
assumed to be known to the decision maker

Uncertainty: each action has as its consequence a set of possible
specific outcomes, but the probability of these outcomes are
completely unknown or are not even meaningful (p.13)



Introduction

The Aggregation Problem

(xE ,E ; xĒ , Ē )

[
u1(xE ), p1(E ) u2(xE ), p2(E )
u1(xĒ ), p1(Ē ) u2(xĒ ), p2(Ē )

]?

-

[
u0(xE ), p0(E )
u0(xĒ ), p0(Ē )

]

V1(xE ,E ; xĒ , Ē )
V2(xE ,E ; xĒ , Ē )

?

W (V1(·),V2(·))
?

� ? - V0(xE ,E ; xĒ , Ē )
?
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]

V1(xE ,E ; xĒ , Ē )
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Introduction

The aggregation problem

Aggregating n preferences into one that:

1 satisfies the same “rationality” requirements as individuals’
preferences

2 is non dictatorial

3 does not provoke unanimous opposition



Introduction

Road map

1 The vNM case: Harsanyi’s aggregation theorem

2 The Subjective Expected Utility case

3 Uncertainty: the (almost) general case



Harsanyi’s aggregation theorem

Setup

N ′ = {1, · · · , n} agents, N = {0} ∪ N ′ where 0 = “society”

X (sure) social alternatives

L =

{
p : X → [0, 1]

∣∣∣∣ #{x |p(x) > 0} <∞∑
x∈X p(x) = 1

}
social lotteries

individuals and society satisfy vNM axioms: for all i ∈ N, there exists
ui : X → R such that:

p <i q ⇔
∑
x∈X

p(x)ui (x) ≥
∑
x∈X

q(x)ui (x)

Moreover, ui is unique up to an increasing affine transformation.
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Harsanyi’s aggregation theorem

Axioms

Weak Pareto (WP)

[p �i q, ∀i ∈ N ′] ⇒ p �0 q

Independent Prospect (IP)

For all k ∈ N ′, there exist pk and qk such that:

pk �k qk and pk ∼i qk , ∀i ∈ N ′ \ {k}
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Harsanyi’s aggregation theorem

Harsanyi’s aggregation theorem

Theorem

Assume that <i is represented by a vNM function ui (i ∈ N) and (IP) is
satisfied. Then (WP) holds iff there exist unique
(λ1, . . . , λn) ∈ Rn

+ \ {0n}, µ ∈ R such that:

u0 =
∑

i

λiui + µ.

Remark

In Harsanyi’s original (1955) theorem:

Pareto indifference: sign of coefficients undetermined

Independent Prospect not assumed: coefficients not unique
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Harsanyi’s aggregation theorem

Proof (sketch)

Lemma 1

Under vNM, (IP) implies that there exist p∗ and p∗ such that:

p∗ �i q∗, ∀i ∈ N ′ (MA)

Proof

Lemma 2 (De Meyer & Mongin, 1995)

Let X 6= ∅ and F = (f0, f1, . . . , fn) : X → Rn+1. If K = F (X ) is convex
and (WP) and (MA) hold, then there exist (λ1, . . . , λn) ∈ Rn

+ \ {0n},
µ ∈ R such that:

f0 =
∑

i

λi fi + µ.

Proof
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Harsanyi’s aggregation theorem

Proof (sketch)

Lemma 3

Under the assumptions of Lemma 2, (IP) implies unicity of the coefficients.

Proof

Remark

This theorem gave rise to a substantial body of work and often passionate
debates. For a survey, see Sen (1986) and Weymark (1991). These
debates concern:

the interpretation of the theorem more

its normative appeal more
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The SEU case

Subjective Expected Utility

Anscombe-Aumann setup

S finite set of states of nature

X social outcomes

Y simple probability distributions over X (roulette lotteries)

A = {f : S → X} acts (horse lotteries)

A is a mixture space: (αf + (1− α)g)(s) = αf (s) + (1− α)g(s)

Subjective Expected Utility

individuals and society satisfy SEU axioms: for all i there exist a probability
measure pi on S and a non-constant vNM function ui : Y → R such that:

f <i g ⇔
∑

s∈S pi (s)u(f (s)) ≥
∑

s∈S pi (s)u(g(s))

Moreover, pi is unique, ui is unique up to an increasing affine transform.
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The SEU case

Aggregation of SEU (Mongin, 1998)

Theorem

Assume that <i is represented by a SEU function with utility ui and beliefs
pi (i ∈ N) and (IP) is satisfied. Then (WP) iff there exist unique
(λ1, . . . , λn) ∈ Rn

+ \ {0n}, µ ∈ R such that for f ∈ A :

∑
s

p0(s)u0(f (s)) =
∑
i∈N′

λi

(∑
s

pi (s)ui (f (s))

)
+ µ.

Moreover, pj = pk = p0 for all j , k ∈ J = {i ∈ N ′ |λi 6= 0}.



The SEU case

Proof

The first part of the theorem follows from Lemma 1, 2 and 3.

Wlog, pick y ∈ Y and let ui (y) = 0, ∀i ∈ N ′.
Ay ,t = {f ∈ A |f (s) = y , ∀s 6= t }

Second part of the theorem

By the first part:

p0(s)u0 =
∑

i∈N′ λipi (s)ui , ∀s ∈ S (acts in Ay ,s)

u0 =
∑

i∈N′ λiui (constant acts)

p0(s)
(∑

i∈N′ λiui

)
=
∑

i∈N′ λipi (s)ui ∀s

∑
i∈J λiui (p0(s)− pi (s)) = 0

ui (i ∈ J) aff. indep. ⇒ p0(s) = pi (s), ∀i ∈ J, s ∈ S
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The SEU case

What can we do?

Relaxing Pareto: Gilboa, Samet and Schmeidler (2004)

Allowing for less restrictive preferences

After all, SEU is very special: it imposes uncertainty neutrality



The (almost) general case

Uncertainty aversion

Ellsberg’s paradox

90 balls in urn: 30 red, and 60 blue and yellow

R Y B

f 1 0 0
g1 0 1 0
g2 1 0 1
h 0 1 1

Modal preferences

f � g1 & h � g2

Inconsistent with SEU

f � g1 ⇒ Pr(Y ) < 1
3

h � g2 ⇒ 2
3 >

1
3 + Pr(B) = 1

3 + ( 2
3 − Pr(Y ))⇒ Pr(Y ) > 1

3
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The (almost) general case

Preliminary definitions

Capacity

ρ : 2S → [0, 1] such that:

ρ(∅) = 0 and ρ(S) = 1

A ⊆ B ⇒ ρ(A) ≤ ρ(B)

Binary acts B

f ∈ A st there exists E ∈ 2S , x , y ∈ Y :

f (s) = x , ∀s ∈ A

f (s) = y , ∀s ∈ Ac

denoted: xAy
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The (almost) general case

Biseparable preference (Ghirardato & Marinacci, 2001)

c-linear biseparable preferences

The preference relation < is c-linear biseparable iff there exist a function
V : A → R and a capacity ρ on 2S such that:

∀x < y , letting u(x) = V (x),

V (xAy) = ρ(A)u(x) + (1− ρ(A))u(y)

∀f ∈ B, x ∈ Y , α ∈ [0, 1],

V (αf + (1− α)x) = αV (f ) + (1− α)V (x)

Moreover ρ is unique and V is unique up to an increasing affine
transformation.

Uncertainty aversion

A c-linear bisep. preference is uncertainty neutral wrt event E iff
ρ(E ) = 1− ρ(E c).
It is uncertainty neutral if it is uncertainty neutral wrt all events.
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The (almost) general case

Biseparable preference (Ghirardato & Marinacci, 2001)

Examples

Subjective Expected Utility

Choquet Expected Utility (Schmeidler, 1986)

Maxmin Expected Utility (Gilboa & Schmeidler, 1989)

α−Maxmin Expected Utility (Jaffray, 1989)

GTV 08

Generalization of c-linear biseparable preferences: rank dependent additive
preferences allow for state dependence.
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The (almost) general case

Aggregation (Gajdos, Tallon, Vergnaud, 2008)

Theorem

Assume that <i are c-linear biseparable preferences, represented by
functions Vi with capacities ρi and that (IP) is satisfied. Then (WP) holds
iff there exist unique (λ1, . . . , λn) ∈ Rn

+ \ {0n}, µ ∈ R such that for f ∈ B:

V (f ) =
∑
i∈N′

λiVi (f ) + µ.

Moreover, λiλj 6= 0 iff i and j are uncertainty neutral



The (almost) general case

Aggregation (Gajdos, Tallon, Vergnaud, 2008)

Interpretation

Either social preferences are a linear aggregation of uncertainty
neutral individual preferences;

Or there is a dictator.

Consequences

If social preferences are not neutral towards uncertainty, then there is
a dictator;

It is in some sense stronger than Harsanyi’s Theorem, since neutrality
towards uncertainty is a consequence, not an assumption.

Example

Non-dictatorial aggregation of Maxmin Expected Utility maximizers
(or CEU) is impossible if individuals are uncertainty averse

True even if they have the same “beliefs”
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The (almost) general case

Sketch of the proof

First step

Usual arguments show that aggregation must be linear

Second step

Use (IP) to show that if λi 6= 0 then ρi (E ) = 1− ρi (E c) for all E

Again use (IP), assuming ∃λj > 0, λk > 0: ∃x , y st x �j y , y �k x
and x ∼0 y
V0(xEy)− V0(yEx) = 0 (direct computation)
V0(xEy)− V0(yEx) =

∑
i λi (Vi (xEy)− Vi (yEx))

Given ρi (E ) = 1− ρi (E c), leads ρ0(E ) = 1− ρ0(E c)
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The (almost) general case

The End?



The (almost) general case

Proof of Lemma 1

By (IP) and vNM there exist (pk , qk), k ∈ N ′ such that:{
uk(pk) ≥ uk(qk)
ui (pk) = ui (qk), ∀i ∈ N ′ \ {k}

Let p∗ =
∑

i
1
npi and p∗ =

∑
i

1
nqi .

uk(p∗) =
∑

i

1

n
uk(pi )

=
1

n
uk(pk) +

∑
i 6=k

1

n
uk(pi )

>
1

n
uk(qk) +

∑
i 6=k

1

n
uk(qi ) = uk(p∗)
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The (almost) general case

Proof of Lemma 2

Definitions

R = {z ∈ Rn+1 |z0 ≤ 0, zi > 0 ∀ ∈ N ′ }
K = (f0, f1, . . . , fn)(X ) = F (X ) convex

K− = {z ′ − z ′′
∣∣(z ′, z ′′) ∈ K 2 } convex and symmetric wrt 0

Separation argument

(WP)⇔ R ∩ K− = ∅ ⇔ R ∩ Vect(K−) = ∅ (K− conv and sym)

R̃ = cl(R) +
∑

i∈N ei ⊂ R

Separation of closed disjoint non-empty polyhedral sets:
∃ϕ = (ϕ0, ϕ1, . . . , ϕn) st ∀k ∈ Vect(K−), z ∈ cl(R):〈

ϕ, z +
∑

i∈N′ ei

〉
> 〈ϕ, k〉

〈ϕ, k〉 = 0, ∀k ∈ Vect(K−)

ϕ0 (f0(x)− f0(y)) =
∑

i∈N′ −ϕi (fi (x)− fi (y)) , ∀x , y ∈ X

ϕ0f0(x) =
∑

i∈N′ −ϕi fi (x) + µ, ∀x ∈ X
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The (almost) general case

Proof of Lemma 2

Sign of ϕi , i ∈ N ′

γej +
∑

i∈N′ ei ∈ R,∀γ > 0〈
ϕ, γej +

∑
i∈N′ ei

〉
> 0

ϕj(1 + γ) +
∑

i∈N′\{j} ϕi > 0,∀γ > 0

Thus ϕ 6= 0. Let γ →∞ : ϕj ≥ 0

Sign of ϕ0

[(MA) and (WP)]⇒ there exist (θ0, θ1, . . . , θn) ∈ K− s.t. θi > 0 for
all i

ϕ0θ0 =
∑

i∈N′ −ϕiθi

Thus ϕ0 < 0

Back
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The (almost) general case

Proof of Lemma 3

By Lemma 2: u0 =
∑

i λiui + µ.

By (IP) and vNM there exist (pk , qk), k ∈ N ′ such that:{
uk(pk) ≥ uk(qk)
ui (pk) = ui (qk), ∀i ∈ N ′ \ {k}

u0(pk)− u0(qk) = λi (uk(pk)− uk(qk))

Thus λk unique (true for all k ∈ N ′)

Thus µ unique

Back
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The (almost) general case

Diamond’s critics

p Pr(θ1) = 1
2 Pr(θ2) = 1

2

ua 1 0
ub 0 1

q Pr(θ1) = 1
2 Pr(θ2) = 1

2

ua 1 1
ub 0 0

V (p) = 1
2 Va(p) + 1

2 Vb(p) = 1
2

V (q) = 1
2 Va(q) + 1

2 Vb(q) = 1
2

⇒ p ∼ q

The Independence assumption is unacceptable for the social preferences
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The (almost) general case

The identification problem

Sen (1986), Weymark (1991)

Let ũi = αiui

ũi is still a vNM representation of <i∑
i λiui =

∑
i
λi
αi

ũi

Weights are meaningless from a normative point of view
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Let ũi = αiui
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