Aggregation of preferences under uncertainty

Thibault Gajdos

CNRS-CES
IT4, 14/01/2009

Risk and Uncertainty

Luce \& Raiffa, 1957

- Certainty: each action is known to lead invariably to a specific outcome
- Risk: each action leads to one of a set of possible specific outcomes, each outcome occurring with a known proability. The probabilities are assumed to be known to the decision maker
- Uncertainty: each action has as its consequence a set of possible specific outcomes, but the probability of these outcomes are completely unknown or are not even meaningful (p.13)

The Aggregation Problem

$$
\left(x_{E}, E ; x_{\bar{E}}, \bar{E}\right)
$$

The Aggregation Problem

The Aggregation Problem

$$
\begin{gathered}
\left(x_{E}, E ; x_{\bar{E}}, \bar{E}\right) \\
{\left[\begin{array}{c}
u_{1}\left(x_{E}\right), p_{1}(E) \\
u_{1}\left(x_{\bar{E}}\right), p_{1}(\bar{E}) \\
u_{2}\left(x_{E}\right), p_{2}(E) \\
u_{2}\left(x_{\bar{E}}\right), p_{2}(\bar{E})
\end{array}\right]} \\
\vdots \\
V_{1}\left(x_{E}, \bar{E} ; x_{\bar{E}}, \bar{E}\right) \\
V_{2}\left(x_{E}, E ; x_{\bar{E}}, \bar{E}\right)
\end{gathered}
$$

The Aggregation Problem

$$
\begin{gathered}
\left(x_{E}, E ; x_{\bar{E}}, \bar{E}\right) \\
{\left[\begin{array}{c}
u_{1}\left(x_{E}\right), p_{1}(E) \\
u_{1}\left(x_{\bar{E}}\right), p_{1}(\bar{E}) \\
u_{2}\left(x_{E}\right), p_{2}(E) \\
u_{2}\left(x_{\bar{E}}\right), p_{2}(\bar{E})
\end{array}\right]} \\
V_{1}\left(x_{E}, E ; x_{\bar{E}}, \bar{E}\right) \\
V_{2}\left(x_{E}, E ; x_{\bar{E}}, \bar{E}\right) \\
\\
W\left(V_{1}(\cdot), V_{2}(\cdot)\right)
\end{gathered}
$$

The Aggregation Problem

$$
\begin{aligned}
& \left(x_{E}, E_{i} ; x_{\bar{E}}, \bar{E}\right) \\
& {\left[\begin{array}{c}
u_{1}\left(x_{E}\right), p_{1}(E) \\
u_{1}\left(x_{\bar{E}}\right), p_{1}(\bar{E}) \\
u_{2}\left(x_{E}\right), p_{2}(E) \\
u_{2}\left(x_{\bar{E}}\right), p_{2}(\bar{E})
\end{array}\right] \rightarrow\left[\begin{array}{l}
u_{0}\left(x_{E}\right), p_{0}(E) \\
u_{0}\left(x_{\bar{E}}\right), p_{0}(\bar{E})
\end{array}\right]} \\
& \begin{array}{l}
V_{1}\left(x_{E}, x_{i}, \bar{E}\right) \\
V_{2}\left(x_{E}, E ; x_{\bar{E}}, \bar{E}\right) \\
\\
W\left(V_{1}(\cdot), V_{2}(\cdot)\right)
\end{array}
\end{aligned}
$$

The Aggregation Problem

The Aggregation Problem

The aggregation problem

Aggregating n preferences into one that:
(1) satisfies the same "rationality" requirements as individuals' preferences
(2) is non dictatorial
(3) does not provoke unanimous opposition

Road map

(1) The vNM case: Harsanyi's aggregation theorem
(2) The Subjective Expected Utility case
(3) Uncertainty: the (almost) general case

Setup

- $N^{\prime}=\{1, \cdots, n\}$ agents, $N=\{0\} \cup N^{\prime}$ where $0=$ "society"
- X (sure) social alternatives
- $\mathscr{L}=\left\{\begin{array}{l|l}p: X \rightarrow[0,1] & \begin{array}{c}\#\{x \mid p(x)>0\}<\infty \\ \sum_{x \in X} p(x)=1\end{array}\end{array}\right\}$ social lotteries

Setup

- $N^{\prime}=\{1, \cdots, n\}$ agents, $N=\{0\} \cup N^{\prime}$ where $0=$ "society"
- X (sure) social alternatives
- $\mathscr{L}=\left\{\begin{array}{l|l}p: X \rightarrow[0,1] & \begin{array}{c}\#\{x \mid p(x)>0\}<\infty \\ \sum_{x \in X} p(x)=1\end{array}\end{array}\right\}$ social lotteries
- individuals and society satisfy vNM axioms: for all $i \in N$, there exists $u_{i}: X \rightarrow \mathbb{R}$ such that:

$$
p \succcurlyeq_{i} q \Leftrightarrow \sum_{x \in X} p(x) u_{i}(x) \geq \sum_{x \in X} q(x) u_{i}(x)
$$

Moreover, u_{i} is unique up to an increasing affine transformation.

Setup

- $N^{\prime}=\{1, \cdots, n\}$ agents, $N=\{0\} \cup N^{\prime}$ where $0=$ "society"
- X (sure) social alternatives
- $\mathscr{L}=\left\{\begin{array}{l|l}p: X \rightarrow[0,1] & \begin{array}{c}\#\{x \mid p(x)>0\}<\infty \\ \sum_{x \in X} p(x)=1\end{array}\end{array}\right\}$ social lotteries
- individuals and society satisfy vNM axioms: for all $i \in N$, there exists $u_{i}: X \rightarrow \mathbb{R}$ such that:

$$
p \succcurlyeq_{i} q \Leftrightarrow \sum_{x \in X} p(x) u_{i}(x) \geq \sum_{x \in X} q(x) u_{i}(x)
$$

Moreover, u_{i} is unique up to an increasing affine transformation.

Axioms

Weak Pareto (WP)
$\left[p \succ_{i} q, \forall i \in N^{\prime}\right] \Rightarrow p \succ_{0} q$

Axioms

Weak Pareto (WP)
$\left[p \succ_{i} q, \forall i \in N^{\prime}\right] \Rightarrow p \succ_{0} q$

Independent Prospect (IP)
For all $k \in N^{\prime}$, there exist p_{k} and q_{k} such that:

$$
p_{k} \succ_{k} q_{k} \text { and } p_{k} \sim_{i} q_{k}, \forall i \in N^{\prime} \backslash\{k\}
$$

Harsanyi's aggregation theorem

Theorem
Assume that \succcurlyeq_{i} is represented by a $v N M$ function $u_{i}(i \in N)$ and (IP) is satisfied. Then (WP) holds iff there exist unique $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}_{+}^{n} \backslash\left\{0_{n}\right\}, \mu \in \mathbb{R}$ such that:

$$
u_{0}=\sum_{i} \lambda_{i} u_{i}+\mu
$$

Harsanyi's aggregation theorem

Theorem
Assume that \succcurlyeq_{i} is represented by a $v N M$ function $u_{i}(i \in N)$ and (IP) is satisfied. Then (WP) holds iff there exist unique $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}_{+}^{n} \backslash\left\{0_{n}\right\}, \mu \in \mathbb{R}$ such that:

$$
u_{0}=\sum_{i} \lambda_{i} u_{i}+\mu
$$

Remark

In Harsanyi's original (1955) theorem:

- Pareto indifference: sign of coefficients undetermined
- Independent Prospect not assumed: coefficients not unique

Proof (sketch)

Lemma 1
Under vNM, (IP) implies that there exist p^{*} and p_{*} such that:

$$
p^{*} \succ_{i} q_{*}, \forall i \in N^{\prime}
$$

Proof (sketch)

Lemma 1
Under vNM, (IP) implies that there exist p^{*} and p_{*} such that:

$$
\begin{equation*}
p^{*} \succ_{i} q_{*}, \forall i \in N^{\prime} \tag{MA}
\end{equation*}
$$

Lemma 2 (De Meyer \& Mongin, 1995)
Let $X \neq \emptyset$ and $F=\left(f_{0}, f_{1}, \ldots, f_{n}\right): X \rightarrow \mathbb{R}^{n+1}$. If $K=F(X)$ is convex and (WP) and (MA) hold, then there exist $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}_{+}^{n} \backslash\left\{0_{n}\right\}$, $\mu \in \mathbb{R}$ such that:

$$
f_{0}=\sum_{i} \lambda_{i} f_{i}+\mu
$$

Proof (sketch)

Lemma 3
Under the assumptions of Lemma 2, (IP) implies unicity of the coefficients.

Proof (sketch)

Lemma 3

Under the assumptions of Lemma 2, (IP) implies unicity of the coefficients.

Remark

This theorem gave rise to a substantial body of work and often passionate debates. For a survey, see Sen (1986) and Weymark (1991). These debates concern:

- the interpretation of the theorem
- its normative appeal

```
4 more
```


Subjective Expected Utility

Anscombe-Aumann setup

- S finite set of states of nature
- X social outcomes
- Y simple probability distributions over X (roulette lotteries)
- $\mathscr{A}=\{f: S \rightarrow X\}$ acts (horse lotteries)
- \mathscr{A} is a mixture space: $(\alpha f+(1-\alpha) g)(s)=\alpha f(s)+(1-\alpha) g(s)$

Subjective Expected Utility

Anscombe-Aumann setup

- S finite set of states of nature
- X social outcomes
- Y simple probability distributions over X (roulette lotteries)
- $\mathscr{A}=\{f: S \rightarrow X\}$ acts (horse lotteries)
- \mathscr{A} is a mixture space: $(\alpha f+(1-\alpha) g)(s)=\alpha f(s)+(1-\alpha) g(s)$

Subjective Expected Utility

individuals and society satisfy SEU axioms: for all i there exist a probability measure p_{i} on S and a non-constant vNM function $u_{i}: Y \rightarrow \mathbb{R}$ such that:

$$
f \succcurlyeq_{i} g \Leftrightarrow \sum_{s \in S} p_{i}(s) u(f(s)) \geq \sum_{s \in S} p_{i}(s) u(g(s))
$$

Moreover, p_{i} is unique, u_{i} is unique up to an increasing affine transform.

Aggregation of SEU (Mongin, 1998)

Theorem
Assume that \succcurlyeq_{i} is represented by a SEU function with utility u_{i} and beliefs $p_{i}(i \in N)$ and (IP) is satisfied. Then (WP) iff there exist unique $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}_{+}^{n} \backslash\left\{0_{n}\right\}, \mu \in \mathbb{R}$ such that for $f \in \mathscr{A}$:

$$
\sum_{s} p_{0}(s) u_{0}(f(s))=\sum_{i \in N^{\prime}} \lambda_{i}\left(\sum_{s} p_{i}(s) u_{i}(f(s))\right)+\mu .
$$

Moreover, $p_{j}=p_{k}=p_{0}$ for all $j, k \in J=\left\{i \in N^{\prime} \mid \lambda_{i} \neq 0\right\}$.

Proof

The first part of the theorem follows from Lemma 1, 2 and 3.

Proof

The first part of the theorem follows from Lemma 1, 2 and 3. Wlog, pick $y \in Y$ and let $u_{i}(y)=0, \forall i \in N^{\prime}$.
$\mathscr{A}_{y, t}=\{f \in \mathscr{A} \mid f(s)=y, \forall s \neq t\}$

Proof

The first part of the theorem follows from Lemma 1, 2 and 3.
Wlog, pick $y \in Y$ and let $u_{i}(y)=0, \forall i \in N^{\prime}$.
$\mathscr{A}_{y, t}=\{f \in \mathscr{A} \mid f(s)=y, \forall s \neq t\}$
Second part of the theorem
By the first part:

- $p_{0}(s) u_{0}=\sum_{i \in N^{\prime}} \lambda_{i} p_{i}(s) u_{i}, \forall s \in S$ (acts in $\left.\mathscr{A}_{y, s}\right)$

Proof

The first part of the theorem follows from Lemma 1, 2 and 3.
Wlog, pick $y \in Y$ and let $u_{i}(y)=0, \forall i \in N^{\prime}$.
$\mathscr{A}_{y, t}=\{f \in \mathscr{A} \mid f(s)=y, \forall s \neq t\}$
Second part of the theorem
By the first part:

- $p_{0}(s) u_{0}=\sum_{i \in N^{\prime}} \lambda_{i} p_{i}(s) u_{i}, \forall s \in S$ (acts in $\left.\mathscr{A}_{y, s}\right)$
- $u_{0}=\sum_{i \in N^{\prime}} \lambda_{i} u_{i}$ (constant acts)
- $p_{0}(s)\left(\sum_{i \in N^{\prime}} \lambda_{i} u_{i}\right)=\sum_{i \in N^{\prime}} \lambda_{i} p_{i}(s) u_{i} \forall s$

Proof

The first part of the theorem follows from Lemma 1, 2 and 3.
Wlog, pick $y \in Y$ and let $u_{i}(y)=0, \forall i \in N^{\prime}$.
$\mathscr{A}_{y, t}=\{f \in \mathscr{A} \mid f(s)=y, \forall s \neq t\}$
Second part of the theorem
By the first part:

- $p_{0}(s) u_{0}=\sum_{i \in N^{\prime}} \lambda_{i} p_{i}(s) u_{i}, \forall s \in S$ (acts in $\left.\mathscr{A}_{y, s}\right)$
- $u_{0}=\sum_{i \in N^{\prime}} \lambda_{i} u_{i}$ (constant acts)
- $p_{0}(s)\left(\sum_{i \in N^{\prime}} \lambda_{i} u_{i}\right)=\sum_{i \in N^{\prime}} \lambda_{i} p_{i}(s) u_{i} \forall s$

$$
\sum_{i \in J} \lambda_{i} u_{i}\left(p_{0}(s)-p_{i}(s)\right)=0
$$

Proof

The first part of the theorem follows from Lemma 1, 2 and 3.
Wlog, pick $y \in Y$ and let $u_{i}(y)=0, \forall i \in N^{\prime}$.
$\mathscr{A}_{y, t}=\{f \in \mathscr{A} \mid f(s)=y, \forall s \neq t\}$
Second part of the theorem
By the first part:

- $p_{0}(s) u_{0}=\sum_{i \in N^{\prime}} \lambda_{i} p_{i}(s) u_{i}, \forall s \in S$ (acts in $\left.\mathscr{A}_{y, s}\right)$
- $u_{0}=\sum_{i \in N^{\prime}} \lambda_{i} u_{i}$ (constant acts)
- $p_{0}(s)\left(\sum_{i \in N^{\prime}} \lambda_{i} u_{i}\right)=\sum_{i \in N^{\prime}} \lambda_{i} p_{i}(s) u_{i} \forall s$

$$
\sum_{i \in J} \lambda_{i} u_{i}\left(p_{0}(s)-p_{i}(s)\right)=0
$$

$u_{i}(i \in J)$ aff. indep. $\Rightarrow p_{0}(s)=p_{i}(s), \forall i \in J, s \in S$

What can we do?

- Relaxing Pareto: Gilboa, Samet and Schmeidler (2004)
- Allowing for less restrictive preferences
- After all, SEU is very special: it imposes uncertainty neutrality

Uncertainty aversion

Ellsberg's paradox
90 balls in urn: 30 red, and 60 blue and yellow

Uncertainty aversion

Ellsberg's paradox
90 balls in urn: 30 red, and 60 blue and yellow

	R	Y	B
f	1	0	0
g_{1}	0	1	0
g_{2}	1	0	1
h	0	1	1

Uncertainty aversion

Ellsberg's paradox
90 balls in urn: 30 red, and 60 blue and yellow

	R	Y	B
f	1	0	0
g_{1}	0	1	0
g_{2}	1	0	1
h	0	1	1

Modal preferences

$$
f \succ g_{1} \& h \succ g_{2}
$$

Uncertainty aversion

Ellsberg's paradox
90 balls in urn: 30 red, and 60 blue and yellow

	R	Y	B
f	1	0	0
g_{1}	0	1	0
g_{2}	1	0	1
h	0	1	1

Modal preferences

$$
f \succ g_{1} \& h \succ g_{2}
$$

Inconsistent with SEU

- $f \succ g_{1} \Rightarrow \operatorname{Pr}(Y)<\frac{1}{3}$
- $h \succ g_{2} \Rightarrow \frac{2}{3}>\frac{1}{3}+\operatorname{Pr}(B)=\frac{1}{3}+\left(\frac{2}{3}-\operatorname{Pr}(Y)\right) \Rightarrow \operatorname{Pr}(Y)>\frac{1}{3}$

Preliminary definitions

Capacity
$\rho: 2^{S} \rightarrow[0,1]$ such that:

- $\rho(\emptyset)=0$ and $\rho(S)=1$
- $A \subseteq B \Rightarrow \rho(A) \leq \rho(B)$

Preliminary definitions

Capacity
$\rho: 2^{S} \rightarrow[0,1]$ such that:

- $\rho(\emptyset)=0$ and $\rho(S)=1$
- $A \subseteq B \Rightarrow \rho(A) \leq \rho(B)$

Binary acts \mathscr{B}
$f \in \mathscr{A}$ st there exists $E \in 2^{S}, x, y \in Y$:

- $f(s)=x, \forall s \in A$
- $f(s)=y, \forall s \in A^{c}$
- denoted: $x A y$

Biseparable preference (Ghirardato \& Marinacci, 2001)

c-linear biseparable preferences
The preference relation \succcurlyeq is c-linear biseparable iff there exist a function $V: \mathscr{A} \rightarrow \mathbb{R}$ and a capacity ρ on 2^{S} such that:

- $\forall x \succcurlyeq y$, letting $u(x)=V(x)$,

$$
V(x A y)=\rho(A) u(x)+(1-\rho(A)) u(y)
$$

Biseparable preference (Ghirardato \& Marinacci, 2001)

c-linear biseparable preferences
The preference relation \succcurlyeq is c-linear biseparable iff there exist a function $V: \mathscr{A} \rightarrow \mathbb{R}$ and a capacity ρ on 2^{S} such that:

- $\forall x \succcurlyeq y$, letting $u(x)=V(x)$,

$$
V(x A y)=\rho(A) u(x)+(1-\rho(A)) u(y)
$$

- $\forall f \in \mathscr{B}, x \in Y, \alpha \in[0,1]$,

$$
V(\alpha f+(1-\alpha) x)=\alpha V(f)+(1-\alpha) V(x)
$$

Moreover ρ is unique and V is unique up to an increasing affine transformation.

Biseparable preference (Ghirardato \& Marinacci, 2001)

c-linear biseparable preferences
The preference relation \succcurlyeq is c-linear biseparable iff there exist a function $V: \mathscr{A} \rightarrow \mathbb{R}$ and a capacity ρ on 2^{S} such that:

- $\forall x \succcurlyeq y$, letting $u(x)=V(x)$,

$$
V(x A y)=\rho(A) u(x)+(1-\rho(A)) u(y)
$$

- $\forall f \in \mathscr{B}, x \in Y, \alpha \in[0,1]$,

$$
V(\alpha f+(1-\alpha) x)=\alpha V(f)+(1-\alpha) V(x)
$$

Moreover ρ is unique and V is unique up to an increasing affine transformation.

Uncertainty aversion
A c-linear bisep. preference is uncertainty neutral wrt event E iff $\rho(E)=1-\rho\left(E^{c}\right)$.
It is uncertainty neutral if it is uncertainty neutral wrt all events.

Biseparable preference (Ghirardato \& Marinacci, 2001)

Examples

- Subjective Expected Utility
- Choquet Expected Utility (Schmeidler, 1986)
- Maxmin Expected Utility (Gilboa \& Schmeidler, 1989)
- α-Maxmin Expected Utility (Jaffray, 1989)

Biseparable preference (Ghirardato \& Marinacci, 2001)

Examples

- Subjective Expected Utility
- Choquet Expected Utility (Schmeidler, 1986)
- Maxmin Expected Utility (Gilboa \& Schmeidler, 1989)
- α-Maxmin Expected Utility (Jaffray, 1989)

GTV 08

Generalization of c-linear biseparable preferences: rank dependent additive preferences allow for state dependence.

Aggregation (Gajdos, Tallon, Vergnaud, 2008)

Theorem

Assume that \succcurlyeq_{i} are c-linear biseparable preferences, represented by functions V_{i} with capacities ρ_{i} and that (IP) is satisfied. Then (WP) holds iff there exist unique $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}_{+}^{n} \backslash\left\{0_{n}\right\}, \mu \in \mathbb{R}$ such that for $f \in \mathscr{B}$:

$$
V(f)=\sum_{i \in N^{\prime}} \lambda_{i} V_{i}(f)+\mu
$$

Moreover, $\lambda_{i} \lambda_{j} \neq 0$ iff i and j are uncertainty neutral

Aggregation (Gajdos, Tallon, Vergnaud, 2008)

Interpretation

- Either social preferences are a linear aggregation of uncertainty neutral individual preferences;
- Or there is a dictator.

Aggregation (Gajdos, Tallon, Vergnaud, 2008)

Interpretation

- Either social preferences are a linear aggregation of uncertainty neutral individual preferences;
- Or there is a dictator.

Consequences

- If social preferences are not neutral towards uncertainty, then there is a dictator;
- It is in some sense stronger than Harsanyi's Theorem, since neutrality towards uncertainty is a consequence, not an assumption.

Aggregation (Gajdos, Tallon, Vergnaud, 2008)

Interpretation

- Either social preferences are a linear aggregation of uncertainty neutral individual preferences;
- Or there is a dictator.

Consequences

- If social preferences are not neutral towards uncertainty, then there is a dictator;
- It is in some sense stronger than Harsanyi's Theorem, since neutrality towards uncertainty is a consequence, not an assumption.

Example

- Non-dictatorial aggregation of Maxmin Expected Utility maximizers (or CEU) is impossible if individuals are uncertainty averse
- True even if they have the same "beliefs"

Sketch of the proof

First step
Usual arguments show that aggregation must be linear

Sketch of the proof

First step

Usual arguments show that aggregation must be linear

Second step

- Use (IP) to show that if $\lambda_{i} \neq 0$ then $\rho_{i}(E)=1-\rho_{i}\left(E^{c}\right)$ for all E

Sketch of the proof

First step

Usual arguments show that aggregation must be linear

Second step

- Use (IP) to show that if $\lambda_{i} \neq 0$ then $\rho_{i}(E)=1-\rho_{i}\left(E^{c}\right)$ for all E
- Again use (IP), assuming $\exists \lambda_{j}>0, \lambda_{k}>0: \exists x, y$ st $x \succ_{j} y, y \succ_{k} x$ and $x \sim_{0} y$

$$
V_{0}(x E y)-V_{0}(y E x)=0(\text { direct computation })
$$

Sketch of the proof

First step

Usual arguments show that aggregation must be linear

Second step

- Use (IP) to show that if $\lambda_{i} \neq 0$ then $\rho_{i}(E)=1-\rho_{i}\left(E^{c}\right)$ for all E
- Again use (IP), assuming $\exists \lambda_{j}>0, \lambda_{k}>0$: $\exists x, y$ st $x \succ_{j} y, y \succ_{k} x$ and $x \sim_{0} y$
$V_{0}(x E y)-V_{0}(y E x)=0$ (direct computation)
$V_{0}(x E y)-V_{0}(y E x)=\sum_{i} \lambda_{i}\left(V_{i}(x E y)-V_{i}(y E x)\right)$
Given $\rho_{i}(E)=1-\rho_{i}\left(E^{c}\right)$, leads $\rho_{0}(E)=1-\rho_{0}\left(E^{c}\right)$

The End?

Proof of Lemma 1

By (IP) and $v N M$ there exist $\left(p_{k}, q_{k}\right), k \in N^{\prime}$ such that:

$$
\left\{\begin{array}{l}
u_{k}\left(p_{k}\right) \geq u_{k}\left(q_{k}\right) \\
u_{i}\left(p_{k}\right)=u_{i}\left(q_{k}\right), \forall i \in N^{\prime} \backslash\{k\}
\end{array}\right.
$$

Proof of Lemma 1

By (IP) and $v N M$ there exist $\left(p_{k}, q_{k}\right), k \in N^{\prime}$ such that:

$$
\left\{\begin{array}{l}
u_{k}\left(p_{k}\right) \geq u_{k}\left(q_{k}\right) \\
u_{i}\left(p_{k}\right)=u_{i}\left(q_{k}\right), \forall i \in N^{\prime} \backslash\{k\}
\end{array}\right.
$$

Let $p^{*}=\sum_{i} \frac{1}{n} p_{i}$ and $p_{*}=\sum_{i} \frac{1}{n} q_{i}$.

Proof of Lemma 1

By (IP) and $v N M$ there exist $\left(p_{k}, q_{k}\right), k \in N^{\prime}$ such that:

$$
\left\{\begin{array}{l}
u_{k}\left(p_{k}\right) \geq u_{k}\left(q_{k}\right) \\
u_{i}\left(p_{k}\right)=u_{i}\left(q_{k}\right), \forall i \in N^{\prime} \backslash\{k\}
\end{array}\right.
$$

Let $p^{*}=\sum_{i} \frac{1}{n} p_{i}$ and $p_{*}=\sum_{i} \frac{1}{n} q_{i}$.

$$
\begin{aligned}
u_{k}\left(p^{*}\right) & =\sum_{i} \frac{1}{n} u_{k}\left(p_{i}\right) \\
& =\frac{1}{n} u_{k}\left(p_{k}\right)+\sum_{i \neq k} \frac{1}{n} u_{k}\left(p_{i}\right) \\
& >\frac{1}{n} u_{k}\left(q_{k}\right)+\sum_{i \neq k} \frac{1}{n} u_{k}\left(q_{i}\right)=u_{k}\left(p_{*}\right)
\end{aligned}
$$

Proof of Lemma 2

Definitions

- $R=\left\{z \in \mathbb{R}^{n+1} \mid z_{0} \leq 0, z_{i}>0 \forall \in N^{\prime}\right\}$
- $K=\left(f_{0}, f_{1}, \ldots, f_{n}\right)(X)=F(X)$ convex
- $K^{-}=\left\{z^{\prime}-z^{\prime \prime} \mid\left(z^{\prime}, z^{\prime \prime}\right) \in K^{2}\right\}$ convex and symmetric wrt 0

Proof of Lemma 2

Definitions

- $R=\left\{z \in \mathbb{R}^{n+1} \mid z_{0} \leq 0, z_{i}>0 \forall \in N^{\prime}\right\}$
- $K=\left(f_{0}, f_{1}, \ldots, f_{n}\right)(X)=F(X)$ convex
- $K^{-}=\left\{z^{\prime}-z^{\prime \prime} \mid\left(z^{\prime}, z^{\prime \prime}\right) \in K^{2}\right\}$ convex and symmetric wrt 0

Separation argument

- (WP) $\Leftrightarrow R \cap K^{-}=\emptyset \Leftrightarrow R \cap \operatorname{Vect}\left(K^{-}\right)=\emptyset\left(K^{-}\right.$conv and sym)

Proof of Lemma 2

Definitions

- $R=\left\{z \in \mathbb{R}^{n+1} \mid z_{0} \leq 0, z_{i}>0 \forall \in N^{\prime}\right\}$
- $K=\left(f_{0}, f_{1}, \ldots, f_{n}\right)(X)=F(X)$ convex
- $K^{-}=\left\{z^{\prime}-z^{\prime \prime} \mid\left(z^{\prime}, z^{\prime \prime}\right) \in K^{2}\right\}$ convex and symmetric wrt 0

Separation argument

- (WP) $\Leftrightarrow R \cap K^{-}=\emptyset \Leftrightarrow R \cap \operatorname{Vect}\left(K^{-}\right)=\emptyset\left(K^{-}\right.$conv and sym)
- $\tilde{R}=\operatorname{cl}(R)+\sum_{i \in N} e_{i} \subset R$

Proof of Lemma 2

Definitions

- $R=\left\{z \in \mathbb{R}^{n+1} \mid z_{0} \leq 0, z_{i}>0 \forall \in N^{\prime}\right\}$
- $K=\left(f_{0}, f_{1}, \ldots, f_{n}\right)(X)=F(X)$ convex
- $K^{-}=\left\{z^{\prime}-z^{\prime \prime} \mid\left(z^{\prime}, z^{\prime \prime}\right) \in K^{2}\right\}$ convex and symmetric wrt 0

Separation argument

- (WP) $\Leftrightarrow R \cap K^{-}=\emptyset \Leftrightarrow R \cap \operatorname{Vect}\left(K^{-}\right)=\emptyset\left(K^{-}\right.$conv and sym)
- $\tilde{R}=\mathrm{cl}(R)+\sum_{i \in N} e_{i} \subset R$
- Separation of closed disjoint non-empty polyhedral sets:

$$
\begin{array}{r}
\exists \varphi=\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}\right) \text { st } \forall k \in \operatorname{Vect}\left(K^{-}\right), z \in \mathrm{cl}(R): \\
\left\langle\varphi, z+\sum_{i \in N^{\prime}} e_{i}\right\rangle>\langle\varphi, k\rangle
\end{array}
$$

Proof of Lemma 2

Definitions

- $R=\left\{z \in \mathbb{R}^{n+1} \mid z_{0} \leq 0, z_{i}>0 \forall \in N^{\prime}\right\}$
- $K=\left(f_{0}, f_{1}, \ldots, f_{n}\right)(X)=F(X)$ convex
- $K^{-}=\left\{z^{\prime}-z^{\prime \prime} \mid\left(z^{\prime}, z^{\prime \prime}\right) \in K^{2}\right\}$ convex and symmetric wrt 0

Separation argument

- (WP) $\Leftrightarrow R \cap K^{-}=\emptyset \Leftrightarrow R \cap \operatorname{Vect}\left(K^{-}\right)=\emptyset\left(K^{-}\right.$conv and sym)
- $\tilde{R}=\mathrm{cl}(R)+\sum_{i \in N} e_{i} \subset R$
- Separation of closed disjoint non-empty polyhedral sets:

$$
\exists \varphi=\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}\right) \text { st } \forall k \in \operatorname{Vect}\left(K^{-}\right), z \in \operatorname{cl}(R):
$$

$$
\left\langle\varphi, z+\sum_{i \in N^{\prime}} e_{i}\right\rangle>\langle\varphi, k\rangle
$$

- $\langle\varphi, k\rangle=0, \forall k \in \operatorname{Vect}\left(K^{-}\right)$

Proof of Lemma 2

Definitions

- $R=\left\{z \in \mathbb{R}^{n+1} \mid z_{0} \leq 0, z_{i}>0 \forall \in N^{\prime}\right\}$
- $K=\left(f_{0}, f_{1}, \ldots, f_{n}\right)(X)=F(X)$ convex
- $K^{-}=\left\{z^{\prime}-z^{\prime \prime} \mid\left(z^{\prime}, z^{\prime \prime}\right) \in K^{2}\right\}$ convex and symmetric wrt 0

Separation argument

- (WP) $\Leftrightarrow R \cap K^{-}=\emptyset \Leftrightarrow R \cap \operatorname{Vect}\left(K^{-}\right)=\emptyset\left(K^{-}\right.$conv and sym)
- $\tilde{R}=\mathrm{cl}(R)+\sum_{i \in N} e_{i} \subset R$
- Separation of closed disjoint non-empty polyhedral sets:

$$
\begin{array}{r}
\exists \varphi=\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}\right) \text { st } \forall k \in \operatorname{Vect}\left(K^{-}\right), z \in \mathrm{cl}(R): \\
\left\langle\varphi, z+\sum_{i \in N^{\prime}} e_{i}\right\rangle>\langle\varphi, k\rangle
\end{array}
$$

- $\langle\varphi, k\rangle=0, \forall k \in \operatorname{Vect}\left(K^{-}\right)$
- $\varphi_{0}\left(f_{0}(x)-f_{0}(y)\right)=\sum_{i \in N^{\prime}}-\varphi_{i}\left(f_{i}(x)-f_{i}(y)\right), \forall x, y \in X$

Proof of Lemma 2

Definitions

- $R=\left\{z \in \mathbb{R}^{n+1} \mid z_{0} \leq 0, z_{i}>0 \forall \in N^{\prime}\right\}$
- $K=\left(f_{0}, f_{1}, \ldots, f_{n}\right)(X)=F(X)$ convex
- $K^{-}=\left\{z^{\prime}-z^{\prime \prime} \mid\left(z^{\prime}, z^{\prime \prime}\right) \in K^{2}\right\}$ convex and symmetric wrt 0

Separation argument

- (WP) $\Leftrightarrow R \cap K^{-}=\emptyset \Leftrightarrow R \cap \operatorname{Vect}\left(K^{-}\right)=\emptyset\left(K^{-}\right.$conv and sym)
- $\tilde{R}=\operatorname{cl}(R)+\sum_{i \in N} e_{i} \subset R$
- Separation of closed disjoint non-empty polyhedral sets:

$$
\exists \varphi=\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}\right) \text { st } \forall k \in \operatorname{Vect}\left(K^{-}\right), z \in \operatorname{cl}(R):
$$

$$
\left\langle\varphi, z+\sum_{i \in N^{\prime}} e_{i}\right\rangle>\langle\varphi, k\rangle
$$

- $\langle\varphi, k\rangle=0, \forall k \in \operatorname{Vect}\left(K^{-}\right)$
- $\varphi_{0}\left(f_{0}(x)-f_{0}(y)\right)=\sum_{i \in N^{\prime}}-\varphi_{i}\left(f_{i}(x)-f_{i}(y)\right), \forall x, y \in X$
- $\varphi_{0} f_{0}(x)=\sum_{i \in N^{\prime}}-\varphi_{i} f_{i}(x)+\mu, \forall x \in X$

Proof of Lemma 2

Sign of $\varphi_{i}, i \in N^{\prime}$

- $\gamma e_{j}+\sum_{i \in N^{\prime}} e_{i} \in R, \forall \gamma>0$
- $\left\langle\varphi, \gamma e_{j}+\sum_{i \in N^{\prime}} e_{i}\right\rangle>0$
- $\varphi_{j}(1+\gamma)+\sum_{i \in N^{\prime} \backslash\{j\}} \varphi_{i}>0, \forall \gamma>0$
- Thus $\varphi \neq 0$. Let $\gamma \rightarrow \infty: \varphi_{j} \geq 0$

Proof of Lemma 2

Sign of $\varphi_{i}, i \in N^{\prime}$

- $\gamma e_{j}+\sum_{i \in N^{\prime}} e_{i} \in R, \forall \gamma>0$
- $\left\langle\varphi, \gamma e_{j}+\sum_{i \in N^{\prime}} e_{i}\right\rangle>0$
- $\varphi_{j}(1+\gamma)+\sum_{i \in N^{\prime} \backslash\{j\}} \varphi_{i}>0, \forall \gamma>0$
- Thus $\varphi \neq 0$. Let $\gamma \rightarrow \infty: \varphi_{j} \geq 0$

Sign of φ_{0}

- $[(\mathrm{MA})$ and $(\mathrm{WP})] \Rightarrow$ there exist $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{n}\right) \in K^{-}$s.t. $\theta_{i}>0$ for all i
- $\varphi_{0} \theta_{0}=\sum_{i \in N^{\prime}}-\varphi_{i} \theta_{i}$
- Thus $\varphi_{0}<0$

Proof of Lemma 3

- By Lemma 2: $u_{0}=\sum_{i} \lambda_{i} u_{i}+\mu$.

Proof of Lemma 3

- By Lemma 2: $u_{0}=\sum_{i} \lambda_{i} u_{i}+\mu$.
- By (IP) and vNM there exist $\left(p_{k}, q_{k}\right), k \in N^{\prime}$ such that:

$$
\left\{\begin{array}{l}
u_{k}\left(p_{k}\right) \geq u_{k}\left(q_{k}\right) \\
u_{i}\left(p_{k}\right)=u_{i}\left(q_{k}\right), \forall i \in N^{\prime} \backslash\{k\}
\end{array}\right.
$$

Proof of Lemma 3

- By Lemma 2: $u_{0}=\sum_{i} \lambda_{i} u_{i}+\mu$.
- By (IP) and vNM there exist $\left(p_{k}, q_{k}\right), k \in N^{\prime}$ such that:

$$
\left\{\begin{array}{l}
u_{k}\left(p_{k}\right) \geq u_{k}\left(q_{k}\right) \\
u_{i}\left(p_{k}\right)=u_{i}\left(q_{k}\right), \forall i \in N^{\prime} \backslash\{k\}
\end{array}\right.
$$

- $u_{0}\left(p_{k}\right)-u_{0}\left(q_{k}\right)=\lambda_{i}\left(u_{k}\left(p_{k}\right)-u_{k}\left(q_{k}\right)\right)$
- Thus λ_{k} unique (true for all $k \in N^{\prime}$)
- Thus μ unique

Diamond's critics

p	$\operatorname{Pr}\left(\theta_{1}\right)=\frac{1}{2}$	$\operatorname{Pr}\left(\theta_{2}\right)=\frac{1}{2}$		$\operatorname{Pr}\left(\theta_{1}\right)=\frac{1}{2}$	$\operatorname{Pr}\left(\theta_{2}\right)=\frac{1}{2}$
u_{a}	1	0	u_{a}	1	1
u_{b}	0	1		u_{b}	0

- $V(p)=\frac{1}{2} V_{a}(p)+\frac{1}{2} V_{b}(p)=\frac{1}{2}$
- $V(q)=\frac{1}{2} V_{a}(q)+\frac{1}{2} V_{b}(q)=\frac{1}{2}$
- $\Rightarrow p \sim q$

Diamond's critics

p	$\operatorname{Pr}\left(\theta_{1}\right)=\frac{1}{2}$	$\operatorname{Pr}\left(\theta_{2}\right)=\frac{1}{2}$		q	$\operatorname{Pr}\left(\theta_{1}\right)=\frac{1}{2}$
u_{a}	1	0	$\operatorname{Pr}\left(\theta_{2}\right)=\frac{1}{2}$		
u_{b}	0	1		u_{a}	1
u_{b}	0	1			
				0	

- $V(p)=\frac{1}{2} V_{a}(p)+\frac{1}{2} V_{b}(p)=\frac{1}{2}$
- $V(q)=\frac{1}{2} V_{a}(q)+\frac{1}{2} V_{b}(q)=\frac{1}{2}$
- $\Rightarrow p \sim q$

The Independence assumption is unacceptable for the social preferences

The identification problem

Sen (1986), Weymark (1991)

- Let $\tilde{u}_{i}=\alpha_{i} u_{i}$
- \tilde{u}_{i} is still a vNM representation of \succcurlyeq_{i}
- $\sum_{i} \lambda_{i} u_{i}=\sum_{i} \frac{\lambda_{i}}{\alpha_{i}} \tilde{u}_{i}$

The identification problem

Sen (1986), Weymark (1991)

- Let $\tilde{u}_{i}=\alpha_{i} u_{i}$
- \tilde{u}_{i} is still a vNM representation of \succcurlyeq_{i}
- $\sum_{i} \lambda_{i} u_{i}=\sum_{i} \frac{\lambda_{i}}{\alpha_{i}} \tilde{u}_{i}$

Weights are meaningless from a normative point of view

