Labour shares and the personal distribution of income in the OECD Daniele Checchi University of Milan and Cecilia García Peñalosa **CNRS** and **GREQAM** #### Introduction During the past three decades, apparent increase in various measures of inequality Different approaches: - ⇒ labour economists focus on how the price of different types of labour changes over time - ⇒ macroeconomists are concerned with the reward to different factors, i.e. with the shares of labour and capital in aggregate income - policy analysts care about the distribution of household income, which combines capital income, the different labour incomes of household members, and transfers received #### In this paper we ask the following questions - 1. Is the factor distribution of income still a major determinant of the personal distribution of income? - 2. What determines differences in labour shares? - 3. What is the role of labour market institutions in determining personal income inequality? ## In so doing - ① we develop a theoretical model of the labour market, which allows for understanding the main variables that come into play - ② propose a framework to combine inequality components in a consistent way in order to understand the observed trends - ③ we take the theoretical model to the data in an unbalanced panel of countries - 4 we perform counterfactual analysis to assess the magnitudes of the effects we found. #### **Existing evidence: Effect of LMIs on labour market** Extensive literature on the impact of LMIs on unemployment and wage dispersion - Unemployment rates increase with the unemployment benefit and the tax wedge (Nickell, Nunziata and Ochel 2005; Bassanini and Duval 2006) - Wage dispersion is greater when unions are weaker and less centralised, and the minimum wage lower (Card, Lemieux and Riddell 2004; Koeninger, Leonardi and Nunziata 2007) - Wage share tends to increase with greater union density and capital per worker (Blanchard 1997, Bentolila and Saint-Paul 2003) ## Wage and employment determination in a unionised economy Output determined assuming elasticity of substitution between capital and labour equal to $1/(1+\sigma)$, and that between the two types of labour equal to 1. $$Y = \left[\alpha K^{-\sigma} + (1 - \alpha) \left(H^{\beta} L^{1-\beta}\right)^{-\sigma}\right]^{-1/\sigma}$$ Under profit maximisation $$\frac{H}{L} = \frac{\beta}{1 - \beta} \frac{w_u}{w_s} \text{ and } \qquad \theta = \frac{1 - \alpha}{1 - \alpha + \alpha x^{\sigma}}$$ where $x\equiv \frac{H^{\beta}L^{1-\beta}}{K}$ is the ratio of the labour aggregate to capital. ## Two modes of wage determination - ✓ Skilled workers: efficiency wages - ✓ Unskilled workers: union bargaining #### **Skilled workers** Shirking $$U^{S} = (1-p)((1-\tau)w_{s})^{\rho} + pB^{\rho}$$ Not shirking $$U^N = ((1-\tau)w_s - e)^{\rho}$$ Equilibrium $$(1-\tau)\overline{w}_s - e)^{\rho} = (1-p)((1-\tau)\overline{w}_s)^{\rho} + pB^{\rho}$$ The labour demand for unskilled worker by the firm can be expressed by $$w_s = \beta(1-\alpha)\left(\alpha + (1-\alpha)x^{-\sigma}\right)^{-(1+\sigma)/\sigma}x^{-\sigma}\frac{K}{H}$$ #### **Unskilled workers** A representative union maximises the expected utility of unskilled union members in a right to manage framework. The bargaining process between firm and union is given by $$\max_{w_u} \left(\frac{L}{L} \left[((1-\tau)w_u)^{\rho} - B^{\rho} \right] \right)^{\gamma} (Y - w_u L - w_s H)^{1-\gamma}$$ First order conditions $$\rho(1-\tau)^{\rho} = \left(\frac{1-\gamma}{\gamma}\frac{(1-\beta)\theta}{1-\theta} + \varepsilon_L\right)\left((1-\tau)^{\rho} - \left(\frac{B}{w_u}\right)^{\rho}\right)$$ The labour demand for unskilled worker by the firm can be expressed by $$w_u = (1 - \beta)(1 - \alpha)(\alpha + (1 - \alpha)x^{-\sigma})^{-(1+\sigma)/\sigma}x^{-\sigma}\frac{K}{L}$$ - ① A population composed by four groups: - (i) A fraction u of the labour force are unemployed, and receive an unemployment benefit B; - (ii) A fraction ι of the labour force are unskilled workers earning a wage $\widetilde{w}_u = w_u(1-\tau)$; - (iii) A fraction h of the labour force are skilled workers. Of those $h \kappa$ have an income equal to the skilled wage $\widetilde{w}_s = w_s(1-\tau)$; - (iv) There are κ worker-capitalists, each of whom earns profits π and the skilled wage \widetilde{w}_s . Our assumptions imply that h+l+u=1. We further assume that $\widetilde{w}_s>\widetilde{w}_u>B$ and $\pi>0$. - ② The public budget is balanced: $B = \tau \theta y / u$. - ③ Define the labour share as $\theta = \frac{w_s H + w_u L}{Y} = \frac{w_s h + w_u l}{y}$ where y denotes output per capita. Profits of each worker-capitalist are given by $\pi = (1 - \theta)y/\kappa$. ④ Income inequality is measured by the Gini index for population subgroups: $$Gini = \frac{1}{2y} \sum_{i=1}^{N} \sum_{j=1}^{N} |y_i - y_j| \cdot n_i \cdot n_j$$ where y_i is the income in subgroup i, which has relative weight n_i , and y is the average income. Given our assumptions about the population and their incomes, the Gini coefficient can be expressed as $$Gini = (1 - \kappa)(1 - \theta) + lh \frac{\widetilde{w}_s - \widetilde{w}_u}{y} + u(1 - u) \frac{\widetilde{w} - B}{y}$$ where \widetilde{w} is the average wage. - ⇒ A higher labour share will reduce inequality by lowering profits and thus reducing the income of the richest individuals. - ⇒ A greater wage differential between the skilled and the unskilled will raise the Gini coefficient as it increases inequality within the group of employed individuals. - ⇒ a larger unemployment benefit will reduce the Gini coefficient. ## **Empirical specification** Our theoretical analysis can be summarised by $$Gini = G\left(\theta, \frac{w_s - w_u}{y}, b, u_{-\frac{\pm}{2}}\right)$$ where the variable $b = \frac{B}{y}$ measures the replacement rate in the population, whereas the wage differential will be proxied by taking the 1st and the 9th decile in the earnings distribution. We thus estimate the following relationship $$Gini_{it} = \alpha_0 + \alpha_1 \cdot \theta_{it} + \alpha_2 \cdot \frac{w_{it}^{90}}{w_{it}^{10}} + \alpha_3 \cdot b_{it} + \alpha_4 \cdot u_{it} + \alpha_5 \cdot b_{it} \cdot u_{it} + \delta_i + \lambda_t + def_{it} + \varepsilon_{it}$$ | country |
 | gini1 | gini2 | p9010 | ls1 | ur | ben | |----------------|-----------|-------|-------|-------|------|------|------| | australia | | 32.83 | 38.08 | 2.83 | 0.49 | 5.32 | 0.22 | | belgium | 1 | 27.75 | 26.81 | 2.34 | 0.52 | 6.64 | 0.41 | | canada | 1 | 36.03 | 31.32 | 4.24 | 0.53 | 7.42 | 0.26 | | denmark | 1 | 32.86 | 32.08 | 2.17 | 0.55 | 5.01 | 0.44 | | finland | 1 | 21.76 | 29.77 | 2.45 | 0.51 | 5.68 | 0.25 | | france | 1 | 38.33 | 42.13 | 3.44 | 0.52 | 6.52 | 0.30 | | germany | 1 | 36.22 | 31.23 | 2.84 | 0.54 | 3.85 | 0.29 | | italy | 1 | 34.71 | 34.67 | 2.33 | 0.46 | 6.07 | 0.05 | | japan | 1 | • | 34.86 | 3.06 | 0.51 | 2.20 | 0.11 | | korea | 1 | • | 34.18 | 3.97 | 0.41 | • | • | | netherlands | 1 | 28.55 | 28.54 | 2.61 | 0.55 | 5.11 | 0.45 | | new zealand | 1 | 27.23 | 34.06 | 3.03 | 0.48 | 2.91 | 0.31 | | norway | 1 | 22.64 | 34.75 | 2.08 | 0.48 | 2.73 | 0.23 | | sweden | 1 | 47.12 | 31.69 | 2.10 | 0.58 | 3.17 | 0.19 | | united kingdom | 1 | 27.52 | 25.98 | 3.27 | 0.58 | 6.31 | 0.22 | | united states | 1 | 37.58 | 35.49 | 4.16 | 0.58 | 5.86 | 0.12 | | Total |

 | 33.98 | 32.56 | 3.03 | 0.52 | 5.00 | 0.26 | #### Legend: gini1 = Gini index on personal income distribution, from Brandolini 2003 gini2 = Gini index on personal income distribution, from Deininger and Squire 1996 p9010 = ratio between 90th and 10th percentile in earnings distribution, from OECD ls1 = labour share on value added at market price, from OECD-Stan database ur = unemployment rate, from Nickell-Nunziata 2001 ben = unemployment benefit from OECD 2001 Figure A.1 – Gini indices on income inequality Figure A.2 – Labour shares – Total economy Table 1 – Determinants of personal income inequality – OLS regressions – robust standard errors - t-statistics in parentheses | Model : | 1 | 2 | 3 | 4 | 5 | 6 | |------------------------------------|-------------------|-------------------|-------------------|--------------------------|--------------------------|--------------------------| | # obs : | 233 | 142 | 233 | 233 | 142 | 233 | | Depvar: | gini1 | gini1 | gini1 | gini1 | gini1 | gini1 | | labour | -43.737 | -32.971 | -39.00 4 | -48.455 | -43.910 | -49.112 | | share | (-7.84) | (-4.19) | (-6.62) | (-5.12) | (-4.68) | (-5.39) | | unemply. | -36.585 | -6.033 | -34.538 | -37.130 | -4.124 | -34.363 | | benefit | (-7.98) | (-1.05) | (-7.38) | (-7.82) | (-0.65) | (-7.23) | | unemply. | -0.916 | 0.101 | -0.714 | -1.021 | 0.122 | -0.780 | | rate | (-4.30) | (0.48) | (-3.34) | (-4.17) | (0.50) | (-3.24) | | benefitx unemply. | 2.476 | -0.277 | 2.236 | 2.536 | -0.534 | 2.215 | | | (3.84) | (-0.51) | (3.48) | (3.56) | (-0.81) | (3.22) | | time | 0.155 | 0.155 | 0.107 | 0.151 | 0.160 | 0.090 | | | (6.90) | (5.04) | (4.44) | (11.70) | (6.33) | (3.54) | | p9010 | | 3.564
(3.41) | 3.596
(3.68) | | 3.688
(2.76) | 3.995
(2.97) | | Constant Definitns Countries Years | Yes
Yes
Yes | Yes
Yes
Yes | Yes
Yes
Yes | Yes
Yes
Yes
Yes | Yes
Yes
Yes
Yes | Yes
Yes
Yes
Yes | | R ² | 0.938 | 0.963 | 0.941 | 0.945 | 0.971 | 0.948 | Table 2 – Determinants of potentially endogenous variables – OLS regressions robust standard errors - t-statistics in parentheses | # obs :
Depvar: | 429
lab.sh. | 429
lab.sh. | 292
p9010 | 292
p9010 | 541
un.rate | 541
un.rate | |--------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------------|--------------------------| | union
density | 0.063
(3.05) | 0.022
(1.33) | -0.989
(-4.41) | -0.858
(-3.91) | | | | minimum
wage | 0.096
(3.54) | 0.048
(1.79) | -3.256
(-6.38) | -2.217
(-4.14) | | | | capital
×worker | 0.110
(17.35) | 0.071
(10.43) | | | | | | oil
price | 0.013
(9.40) | -0.022
(-4.97) | | | | | | yrs of educat | -0.045
(-16.40) | -0.008
(-1.18) | -0.343
(-4.33) | -0.292
(-3.19) | | | | time | | | 0.031
(4.01) | 0.022
(2.98) | | | | unempl
benefit | | | | | 8.99 4
(6.58) | 3.7 4 5
(3.32) | | tax
wedge | | | | | 16.969
(7.61) | -0.351
(-0.17) | | Constant
Countries
Years | Yes
Yes | Yes
Yes
Yes | Yes
Yes | Yes
Yes
Yes | Yes
Yes | Yes
Yes
Yes | | R ² | 0.813 | 0.886 | 0.962 | 0.971 | 0.494 | 0.742 | Table 3 – Comparison between OLS and IV estimates - robust standard errors - t-statistics in parentheses Endogenous: labour share, unemployment rate, p9010 Instruments: (log)capital×worker, union density, tax wedge, years of education, population share with some secondary school attainment. | Model : # obs : | ols | ols | iv | i v | |-------------------------------------|-------------------|--------------------------|-------------------|--------------------------| | | 188 | 188 | 188 | 188 | | Depvar: | gini1 | gini1 | gini1 | gini1 | | labour | -23.540 | -38.293 | -15.729 | -57.917 | | share | (-2.82) | (-4.00) | (-1.15) | (-2.73) | | p9010 | 4.939 | 6.674
(4.92) | 11.421
(3.95) | 15.162
(4.73) | | unempl | -21.141 | -21.884 | -17.736 | -17.018 | | benefit | (-4.47) | (-5.36) | (-4.83) | (-3.79) | | unempl | 0.040 | 0.050 | 0.185 | 0.466 | | rate | (0.55) | (0.56) | (0.73) | (1.66) | | time | 0.056 | 0.077 | -0.026 | -0.139 | | | (1.75) | (1.84) | (-0.34) | (-1.22) | | Constant Definition Countries Years | Yes
Yes
Yes | Yes
Yes
Yes
Yes | Yes
Yes
Yes | Yes
Yes
Yes
Yes | | R-sq | 0.933 | 0.947 | 0.915 | 0.92 4 | | Sargan (pva | alue) | | 0.01 | 0.15 | #### Robustness checks - ✓ estimates in subsample with balanced panel (Canada, Finland, Italy, Sweden, UK, US make 171 observations) - ✓ system estimation to account for endogeneity - ✓ reduced form estimation (to appreciate the magnitude of the overall impact) - ✓ different data source for Gini (Deininger and Squire) - ✓ counterfactual exercises Gini coefficient: Canada, Finland, Italy, Sweden, UK, US Model: 2 4 6 8 # obs : 171 171 171 171 labour -47.744-42.695 -51.326 -56.80share (-7.64)(-6.40)(-4.25)(-5.07)unemply. -40.760-38.048-44.339 -41.272benefit (-6.45)(-6.40)(-5.98)(-6.68)unemply. -1.085 -0.857-1.155 -0.889rate (-3.60)(-2.89)(-3.67)(-2.97)benefitx 2.997 2.640 3.047 2.698 unemply. (2.25)(2.52)(2.54)(2.42)time 0.166 0.119 0.152 0.081 (7.31)(4.54)(11.82)(2.73)p9010 3.274 4.523 (3.14)(2.77)Years Yes Yes \mathbb{R}^2 0.915 0.92 0.927 0.932 ## Determinants of personal income inequality – 3SLS regressions | Observations: | 129 | 129 | 129 | 129 | |----------------|------------|--------------|---------|-------------| | depvar: | gini index | labour share | p9010 | unempl.rate | | labour share | -67.53** | | | | | p9010 | 15.27** | | | | | unempl.rate | 1.37** | | | | | unempl.benefit | -1.01 | 0.05 | -0.55* | 1.90 | | capital×worker | | 0.21** | 0.14 | 8.17* | | union density | | -0.07 | -2.48** | 6.34 | | minimum wage | | 0.01 | -3.62** | 34.88** | | years educatio | | -0.07** | -0.10 | | | log oil price | | -0.02* | | | | tax wedge | | | | -15.95** | | time | 1.20 | | 0.04 | -2.36 | | Constant | yes | yes | yes | yes | | Countries | yes | yes | yes | yes | | Years | yes | yes | yes | yes | | R^2 | 0.8873 | 0.9474 | 0.9887 | 0.8541 | | Model : | 1 | 2 | 3 | 4 | |----------------|---------|---------|---------|---------| | # obs : | 211 | 211 | 225 | 225 | | Depvar: | gini1 | gini1 | gini2 | gini2 | | union | -13.202 | -14.314 | -2.157 | -2.745 | | density | (-3.18) | (-3.50) | (-0.41) | (-0.46) | | minimum | -1.190 | -8.127 | -9.574 | -8.695 | | wage | (-0.28) | (-1.64) | (-2.28) | (-1.81) | | capital | -8.354 | -19.557 | -2.690 | -3.175 | | ×worker | (-2.44) | (-4.60) | (-3.24) | (-3.15) | | years | -0.90 | 6.471 | -0.565 | -1.150 | | education | (-0.68) | (3.13) | (-0.20) | (-0.34) | | tax wedge | -23.812 | -26.533 | -3.314 | -5.188 | | _ | (-4.02) | (-4.14) | (-0.73) | (-1.00) | | unemploy | -8.737 | -15.308 | -13.576 | -14.741 | | benefit | (-2.22) | (-4.05) | (-3.08) | (-3.22) | | time | 0.488 | 0.276 | 0.199 | 0.263 | | | (3.15) | (1.59) | (0.70) | (0.75) | | Constant | Yes | Yes | Yes | Yes | | Definition | Yes | Yes | Yes | Yes | | Countries | Yes | Yes | Yes | Yes | | Years | | Yes | | Yes | | R ² | 0.947 | 0.958 | 0.815 | 0.825 | | ======== | | | | ======= | # Counterfactual with US institutions: union density # Counterfactual with US institutions: unemployment benefit # Counterfactual with US labour share and wage differential #### **Conclusions** - The labour share is still an essential component of personal income inequality - US more unequal due to wage dispersion - offsetting effect of LS (high K/L) - Crucial role of unions in reducing personal income inequality - at the cost of higher unemployment - But are there dynamic effects?