Distributional Change			
Cowell			
The Setting Underlying problem Information and income distribution Generalisations Axiomatics			D
Step 1 Step 2 Application: mobility Measures Example			ST
Application: GoF GoF: the approach Evaluation of fit Discrepancy as distributional change Implementation			
Conclusions			

Distributional Change

Winter School, Canazei

Frank A. Cowell

STICERD, London School of Economics

January 2010

The Setting

Distributional Change

Cowell

The Setting

- Underlying problem Information and income distribution Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

- Meaning and motivation
- Information and income distribution
- Information and entropy
 - uncertainty and income distribution
 - entropy and inequality
- Entropy: "dynamic" aspects

Motivation

Distributional Change

Cowell

- The Setting
- Underlying problem
- Information and income distribution Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application: GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

- What do we mean by "distributional change"?
 - welfare analysis mainly about single-distribution comparisons
 - examples: inequality, poverty. polarisation
 - distributional change concerns a class of two-distributional problems
- Why two-distribution problems?
 - mobility
 - effects of taxes and benefits?
 - other economic applications involving reranking
- Is there a unifying approach?
 - welfare economics?
 - statistical tools?
 - a general informational approach?
- Are standard tools appropriate?

This talk

Distributional Change

Cowell

- The Setting
- Underlying problem
- Information and income distributior Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

Informational analysis

- Background in information theory
- Information theory extensions
- Connections to income-distribution analysis
 - measurement of mobility
 - goodness-of-fit measures and economics
- Axiomatisation
- Application
 - mobility indices
 - goodness-of-fit criteria
 - evaluation of some standard tools

Literature: Key references

Distributional Change

Cowell

The Setting

Underlying problem

- Information and income distribution Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application: GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change

- Cowell, F. A. (1985). Measures of distributional change: An axiomatic approach. *Review of Economic Studies* **52**, 135–151.
- Cowell, F. A., E. Flachaire, and S. Bandyopadhyay (2009). Goodness-of-fit: An economic approach. Distributional Analysis Discussion Paper 101, STICERD, London School of Economics, London WC2A 2AE.
- Fields, G. S. and E. A. Ok (1999). Measuring movement of incomes. *Economica* 66, 455–472.
- Van Kerm, P. (2004). What lies behind income mobility? Reranking and distributional change in Belgium, Western Germany and the USA. *Economica* **71**, 223–239.

Modelling information

Distributional Change

Cowell

- The Setting
- Underlying problem

Information and income distribution

- Concentration of the
- Step 1
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

- Entropy is an aggregation of information about a system:
 - the "degree of disorder"
- Consider a discrete set of events Θ := {θ₁, ..., θ_n} with probabilities {p₁, ..., p_n}
- An event $\theta_i \in \Theta$ occurs
 - model information content of this event as $h: \Theta \to \mathbb{R}$
- What properties for the function *h*?

Valuing information

Distributional Change

Cowell

- The Setting Underlying problem Information and
- income distribution
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Conclusions

- The more unlikely is θ_i the more valuable is the information that θ_i occurred
 - $p_i < p_j$ implies $h(p_i) > h(p_j)$
- For independent compound events value of information is additive

• $h(p_ip_j) = h(p_i) + h(p_j)$

- Additive property is a log Cauchy equation
 - solution $h(p) = C \log(p)$
 - where *C* is a constant
- Decreasingness property implies *C* is negative

Aggregating information

Distributional Change

Cowell

The Setting

Underlying problem

Information and income distribution

Generalisations

Axiomatics

Step 1 Step 2

Application mobility

Measures

Example

Application GoF

GoF: the approach

Evaluation of fit

Discrepancy as distributional change

Implementation

Conclusions

Aggregate information by taking expectationShannon entropy measure for discrete distribution:

•
$$-\sum_{i=1}^{n} p_i \log(p_i)$$

• max value is $-\sum_{i=1}^{n} \frac{1}{n} \log\left(\frac{1}{n}\right) = \log(n)$

• But why use this precise formulation?

Entropy: role of axioms

Distributional Change

Cowell

- The Setting
- Underlying problem

Information and income distribution

- Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

• Role of some axioms is clear

- decreasingness
- additivity of independent compound events
- But there is a "hidden" assumption
 - why additivity in aggregation?
 - implied by expectational approach
- Perhaps a more general approach would be worth while
 - to generalise additivity of independent compound events
 - to motivate additive aggregation

Entropy: a general approach

Distributional Change

Cowell

The Setting

Information and income distribution

Axiomatics

Step 1 Step 2

Application mobility

Measures

Example

Application: GoF

GoF: the approach

Evaluation of fit

Discrepancy as distributional change Implementation

Conclusions

• Model entropy directly as $H^n : \Delta^n \to \mathbb{R}$ and assume:

1 Continuity

Symmetry: Hⁿ (p₁, p₂, p₃, ...) = Hⁿ (p₂, p₁, p₃, ...) = ...
 Grouping axiom: 0 < m < n and p := ∑_{i=1}^m p_i:

$$H^{n}(p_{1},...,p_{n}) = pH^{m}\left(\frac{p_{1}}{p},...,\frac{p_{m}}{p}\right) + [1-p]H^{n-m}\left(\frac{p_{m+1}}{1-p},...,\frac{p_{n}}{1-p}\right) + H^{2}(p,1-p)$$

④ 0-*irrelevance*: $H^{n+1}(p_1, ..., p_n, 0) = H^n(p_1, ..., p_n)$

• Then you get Shannon entropy

Entropy: extensions (1)

Entropy: extensions (2)

- Get the α -class entropy $H_{\alpha}(f) = \frac{1}{\alpha 1} \left[1 E(f(\theta)^{\alpha 1}) \right]$
- F: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

Entropy and inequality (1)

Distributional Change

Cowell

- The Setting
- Underlying problem

Information and income distribution

- Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Conclusions

- Take $x \in X \subseteq \mathbb{R}_+$ where x can be thought of as "income"
- If *x* has cdf *F* then income share function is $s(q) := \frac{F^{-1}(q)}{\int_0^1 F^{-1}(t)dt} = \frac{x}{\mu}$
 - population normalised to 1
- Use this to get entropy-based inequality measures
 apply entropy concept to s (·) rather than f (·)
- Theil inequality index $I_1 := \int_0^\infty \frac{x}{\mu} \log\left(\frac{x}{\mu}\right) dF(x)$
 - where $I_1 = -H(s)$

Entropy and inequality (2)

Distributional Change

Cowell

The Setting

Underlying problem

Information and income distribution

Generalisations

Axiomatics

Step 1 Step 2

Application mobility

Measures

Example

Application GoF

GoF: the approach

Evaluation of fit

Discrepancy as distributional change

Implementation

Conclusions

• Generalised entropy index $I_{\alpha} = \int_{0}^{\infty} \frac{1}{\alpha(\alpha-1)} \left[\left[\frac{x}{\mu} \right]^{\alpha} - 1 \right] dF(x)$ • where $I_{\alpha} = -\alpha^{-1} H_{\alpha}(s)$

Important special cases

- Theil's second index $I_0 = -\int_0^\infty \log\left(\frac{x}{\mu}\right) dF(x)$
- also known as MLD index $\int_0^\infty \left[\log(\mu) \log(x)\right] dF(x)$

Atkinson indices

- Social values emerge implicitly
 - choice of sensitivity index *α*
 - $\alpha = 1 \epsilon$ (for $\alpha < 1$) gives Atkinson inequality aversion

Relative entropy (1)

Distributional Change

Cowell

- The Setting
- Underlying problem Information and income distribution
- Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

- Use entropy to characterise changes in distributions
 - relative entropy
 - (equivalently) *divergence* entropy
- Divergence of f_2 with respect to f_1 , is given by $H(f_1, f_2) = \int_{\Theta} h\left(\frac{f_1}{f_2}\right) f_1 d\theta$
 - "relative entropy": expected information content in *f*₂ with respect to *f*₁
 - get standard entropy index as a special case
- Corresponding to *α*-class entropy get a class of divergence measures:

•
$$H_{\alpha}(f_1, f_2) = \frac{1}{\alpha - 1} \int_{\Theta} \left[1 - f_1 \left[\frac{f_1}{f_2} \right]^{\alpha - 1} \right] d\theta$$

Relative entropy (2)

Distributional Change

Cowell

- The Setting
- Underlying problem Information and income distribution

Generalisations

- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation

Conclusions

• Switch from probabilities to income shares:

•
$$s_1(q) = \frac{F_1^{-1}(q)}{\int_0^1 F_1^{-1}(t)dt} = \frac{x}{\mu_1}$$
 and $s_2(q) = \frac{F_2^{-1}(q)}{\int_0^1 F_2^{-1}(t)dt} = \frac{y}{\mu_2}$

• We can also apply relative entropy here:

•
$$H_1(s_1, s_2) = -\int_0^1 s_1(q) \log\left(\frac{s_2(q)}{s_1(q)}\right) dq$$

- Raises a number of issues:
 - how to interpret?
 - generalisation?
 - axiomatisation?

Literature: Information theory

Distributional Change

Cowell

- The Setting Underlying problem
- Information and income distribution
- Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application: GoF
- GoF: the approach
- Discrepancy as
- distributional change Implementation
- Conclusions

- Kullback, S. and R. A. Leibler (1951). On information and sufficiency. *Annals of Mathematical Statistics* **22**, 79–86.
- Havrda, J. and F. Charvat (1967). Quantification method in classification processes: concept of structural -entropy. *Kybernetica* **3**, 30–35.
- Renyi, G. (1961). On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Statistics, Volume 1: Probability, pp. 547.561. University of California Press.
- Shannon, C. E. (1948). A mathematical theory of communication. *Bell System Technical Journal* 106, 379–423 and 623–656.
- Theil, H. (1967). Economics and Information Theory, Chapter 4, pp. 91–134. Amsterdam: North Holland.

Dynamic aspect: Distributional change

Distributional Change

Cowell

- The Setting Underlying problem
- income distribution
- Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change Implementation
- Conclusions

- Revisit analogy between entropy (*H*) and inequality (*I*)
- Divergence entropy has a counterpart: measure of distributional change
- Distributional change measure:

$$\Gamma_{\alpha}(\mathbf{x},\mathbf{y}) := \frac{1}{n\alpha(\alpha-1)} \sum_{i=1}^{n} \left[\left[\frac{x_i}{\mu_1} \right]^{\alpha} \left[\frac{y_i}{\mu_2} \right]^{1-\alpha} - 1 \right]$$

•
$$J_{\alpha}(\mathbf{x},\mathbf{y}) = -\alpha^{-1}H_{\alpha}(s_1,s_2)$$

- captures the average distance of an income distribution *s*₁ from a reference distribution *s*₂.
- *J*_α (**x**, **y**) is an aggregate measure of *discrepancy* between two distributions
 - use this to build analytical tools

Axiomatics

Distributional Change

Cowell

- The Setting
- Underlying problem Information and income distribution Generalisations

Axiomatics

- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

- Basics
- Representation of problem
- The axioms
 - fundamental structure
 - income scaling
- Characterisation theorems
- The index

Axiomatics: basics

Distributional Change

Cowell

- The Setting
- Underlying problem Information and income distribution Generalisations

Axiomatics

- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

• Purpose:

- to give meaning to the distributional change problem
- to avoid concealed arbitrariness
- Principles:
 - parsimony: not impose too much mathematical structure
 - consistency with axiomatisation of other economic problems
- Precedents:
 - inequality
 - welfare
 - poverty
 - mobility

Representation of problem

Distributional Change

Cowell

The Setting

Underlying problem Information and income distribution Generalisations

Axiomatics

Step 1 Step 2

Application mobility

Measures

Example

Application GoF

GoF: the approach

Evaluation of fit

Discrepancy as distributional change

Implementation

Conclusions

• $\mathbf{z} := (z_1, z_2, ..., z_n)$

• z_i is the ordered pair (x_i, y_i)

• Work with vector of discrepancies $(D(z_1), ..., D(z_n))$

- discrepancy function $D: Z \to \mathbb{R}$
- $D(z_i)$ strictly increasing in $|x_i y_i|$
- Two-step approach
 - ① characterise a weak ordering \succeq on Z^n , the space of **z**
 - ② use the function representing \succeq to generate index *J*.

Basic axioms

Distributional Change

Cowell

- The Setting
- Underlying problem Information and income distribution Generalisations

Axiomatics

Step 1 Step 2

- Application mobility
- Measures
- Example
- Application: GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change Implementation
- Conclusions

- **Continuity:** \succeq is continuous on Z^n
- **Monotonicity:** if $\mathbf{z}, \mathbf{z}' \in Z^n$ differ only in their *i*th component then $D(x_i, y_i) < D(x'_i, y'_i) \iff \mathbf{z} \succ \mathbf{z}'$
- Symmetry: If z' is obtained by permuting the components of z: z ~ z'.
 - we can impose a simultaneous ordering on the *x* and *y* components of **z**
- Independence: If $\mathbf{z} \sim \mathbf{z}'$ and $z_i = z'_i$ for some *i* then $\mathbf{z} (\zeta, i) \sim \mathbf{z}' (\zeta, i)$ for all $\zeta \in [z_{i-1}, z_{i+1}] \cap [z'_{i-1}, z'_{i+1}]$
 - $\mathbf{z}(\zeta, i)$ means "replace *i*th component of \mathbf{z} by ζ "
- **Perfect local fit:** Suppose $x_i = y_i$, $x_j = y_j$, $x'_i = x_i + \delta$, $y'_i = y_i + \delta$, $x'_j = x_j \delta$, $y'_j = y_j \delta$ and, for all $k \neq i, j$, $x'_k = x_k$, $y'_k = y_k$. Then $\mathbf{z} \sim \mathbf{z}'$

First theorem

Distributional Change

Cowell

- The Setting
- Underlying problem Information and income distribution Generalisations
- Axiomatics
- Step 1
- Application mobility
- Measures
- Example
- Application: GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

- **Theorem:** Given basic axioms \succeq is representable by $\sum_{i=1}^{n} \phi_i(z_i)$
 - φ_i is continuous and strictly decreasing in |x_i y_i|
 φ_i (x, x) = a_i + b_ix
- An additivity result
- We can evaluate distributional change focusing on one income-position at a time

Second theorem

Distributional Change

Cowell

- The Setting
- Underlying problem Information and income distribution Generalisations
- Axiomatics
- Step 1
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

- We need one more axiom
- Income scale irrelevance: If z ~ z' then tz ~ tz' for all t > 0
- **Theorem:** Given conditions of first theorem and scale irrelevance \succeq is representable by $\phi\left(\sum_{i=1}^{n} x_i h_i\left(\frac{x_i}{u_i}\right)\right)$
- The function *h_i* is essentially arbitrary
 - we need to impose more structure
 - do this in step 2

Income discrepancy and distributional change

Distributional Change

Cowell

- The Setting
- Underlying problem Information and income distribution Generalisations
- Axiomatics
- Step 1
- Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

- How to compare (*x*, *y*) discrepancies in different parts of the income distribution
- From Theorem 2 comparisons in terms of proportional differences: discrepancy should be

$$D\left(z_{i}
ight)=\max\left(rac{x_{i}}{y_{i}},rac{y_{i}}{x_{i}}
ight)$$

1

- Discrepancy scale irrelevance: Suppose $\mathbf{z}_0 \sim \mathbf{z}'_0$. Then $\mathbf{z} \sim \mathbf{z}'$ for all \mathbf{z}, \mathbf{z}' such that $D(\mathbf{z}) = tD(\mathbf{z}_0)$ and $D(\mathbf{z}') = tD(\mathbf{z}'_0)$
 - suppose vectors \mathbf{z}_0 and \mathbf{z}'_0 are equivalent under \succeq
 - rescale all discrepancies in \mathbf{z}_0 and \mathbf{z}'_0 by the same factor t
 - resulting pair of vectors **z** and **z**' will also be equivalent

The index

Distributional Change

Cowell

The Setting

Underlying problem Information and income distribution Generalisations

Axiomatics

Step 1

Step 2

Application mobility

Measures

Example

Application GoF

GoF: the approach

Discrepancy as distributional change

Implementation

Conclusions

- **Theorem:** Given discrepancy scale irrelevance \succeq is representable by $\phi\left(\sum_{i=1}^{n} x_{i}^{\alpha} y_{i}^{1-\alpha}\right)$
 - $\alpha \neq 1$ is a constant
- Use the "natural" cardinalisation $\sum_{i=1}^{n} x_i^{\alpha} y_i^{1-\alpha}$
- Normalise with reference to case where x_i = μ₁ and y_i = μ₂ for all i
 - observed and modelled distribution exhibit complete equality

• This gives
$$J_{\alpha}(\mathbf{x}, \mathbf{y}) := \frac{1}{n\alpha(\alpha-1)} \sum_{i=1}^{n} \left[\left[\frac{x_i}{\mu_1} \right]^{\alpha} \left[\frac{y_i}{\mu_2} \right]^{1-\alpha} - 1 \right]$$

Application: mobility

Distributional Change Cowell The Setting Underlying problem Information and Income distribution Generalisations Step 1 Step 2 Application: mobility Bista

Measures

Application GoF

GoF: the approach

Evaluation of fit

Discrepancy as distributional change

Implementation

Conclusions

- Mobility concepts
- Mobility modelling
- Mobility measures
- Distance and mobility: examples

Mobility concepts

Distributional Change

Cowell

- The Setting
- Underlying problem Information and income distribution Generalisations
- Axiomatics
- Step 1 Step 2

Application: mobility

- Measures Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

• Variety of approaches

- ad hoc classification?
- focus on information theory?

• How does mobility use information?

- use a pre-grouped scheme?
- use individual information in relation to others?
- use distance concept?
- Distance concept
 - not only concerned with how many people move
 - also we want to know how far
 - some of this lost in the transition-matrix approach

Mobility modelling

Distributional Change

Cowell

- The Setting Underlying proble
- Information and income distributio Generalisations
- Axiomatics
- Step 1 Step 2

Application: mobility

- Measures Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

- Basic information is the temporal pair z_i = (x_{i,t-1}, x_{i,t})
 Bivariate distribution
 - distribution function $F(z) = F(x_{t-1}, x_t)$
 - marginal distributions *F*_{*t*-1} and *F*_{*t*} give income distribution in each period
- Time-aggregated income
 - derived from z_i using weights w_{t-1} , w_t
 - $\bar{x}_i := w_{t-1}x_{t-1} + w_t x_t$
 - Distribution \overline{F} derived from F

Mobility measures in practice

Distributional Change

Cowell

The Setting

Underlying problem Information and income distribution Generalisations

Axiomatics

Step 1 Step 2

Application mobility

Measures

Example

Application: GoF

GoF: the approach

Evaluation of fit

Discrepancy as distributional change Implementation

Conclusions

• Stability indices:
$$1 - \frac{I(F_w)}{w_{t-1}I(F_{t-1}) + w_tI(F_t)}$$

• Hart (1976): $1 - r(\log x_{t-1}, \log x_t)$

• where *r* is the correlation coefficient

• King (1983):
$$1 - \left[\frac{\int \int \left(x_t e^{\gamma r(F,z)}\right)^k dF(z)}{\mu_k(F_t)}\right]^{\frac{1}{k}}$$

•
$$k \le 1, k \ne 0, \gamma \ge 0$$

• where $r(F;z)$ is a rank indicator:
 $\mu_1 (F_t)^{-1} |x_t - Q(F_t; F_{t-1}(x_{t-1}))|$
• $Q(G;q) := \inf\{x : G(x) \ge q\}$

• Fields-Ok (1999): $c \int \int |\log x_{t-1} - \log x_t| dF(x_{t-1}, x_t)$

Mobility measures: distance

Distributional Change

Cowell

- The Setting
- Underlying problem Information and income distribution Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility

Measures

Example

Application: GoF

- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation

Conclusions

- $M(F) := \phi \left(\int D(z) \, dF(z), \, \mu(F) \right)$
- the function $D: X \times X \to \mathbb{R}$ incorporates the distance concept
- If *D* is homothetic, the measure takes the form:

•
$$\frac{1}{\alpha^2 - \alpha} \int \int \left[\left[\frac{x_{t-1}}{\mu(F_{t-1})} \right]^{1-\alpha} \left[\frac{x_t}{\mu(F_t)} \right]^{\alpha} - 1 \right] dF(x_{t-1}, x_t)$$

α is a sensitivity parameter

Mobility: example

Distributional Change

Cowell

- The Setting Underlying problem Information and income distribution
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application: GoF GoF: the approach
- Discrepancy as distributional change
- Implementation
- Conclusions

- Van Kerm's comparison of mobility in Europe and USA
 Uses trimmed panel data for each case
 Compares 1985, 1997
- Belgium Germany USA 0.150 0.137Shorrocks (1978) 0.161 Hart (1976) 0.5840.630 0.544King (1983) 0.263 0.300 0.375Fields-Ok (1999) 0.3350.392 0.523Fields-Ok (1996) 0.370.3990.534

Literature: Mobility

Distributional Change

Cowell

The Setting

Underlying problem Information and income distribution Generalisations

Axiomatics

Step 1 Step 2

Application mobility

Measures

Example

Application: GoF

GoF: the approach

Evaluation of In

distributional change

Conclusions

- Fields, G. S. and E. A. Ok (1996). The meaning and measurement of income mobility. *Journal of Economic Theory* **71**, 349–377.
- Fields, G. S. and E. A. Ok (1999). The measurement of income mobility: An Introduction to the literature. In J. Silber (ed.), *Handbook of Income Inequality Measurement*. Dewenter: Kluwer.
- King, M. A. (1983). An index of inequality: with applications to horizontal equity and social mobility. *Econometrica* **51**, 99-116.
- Shorrocks, A. F. Income inequality and income mobility. Journal of Economic Theory, 46, 376–93.
 - Van de gaer, D., E. Schokkaert, and M. Martinez (2001). Three meanings of intergenerational mobility. *Economica* **68**, 519–537.

Application: Goodness-of-Fit

GoF: the approach Evaluation of fit Discrepancy as distributional chan

Conclusions

EDF and Model

Distributional Change

Cowell

- The Setting
- Underlying problem Information and income distribution Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application: GoF
- GoF: the approach
- Evaluation of fit Discrepancy as distributional change Implementation
- Conclusions

- GoF problem requires representation of the facts and the model used to represent them
- *x_i*: sample observations
 - *i* = 1, ..., *n*
 - *x_i* is a scalar

• Empirical Distribution Function

- $\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} \iota(x_i \le x)$ • $\iota(S)$ means "statement *S* is true"
- Modelled distribution $F_*(x_i)$
 - could be continuous or discrete

The EDF approach

• For each *x_i* evaluate distance between *F* values

Quantile approach

Distributional Change

Cowell

- The Setting Underlying problem Information and
- income distribut Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach

Evaluation of fit

- Discrepancy as distributional change Implementation
- Conclusions

- A kind of "dual" approach
- Compute the quantiles $F_*^{-1}(q)$ where $q = \frac{i}{n+1}$
 - Transpose previous diagram: plot quantiles against *q*

• For each *q* evaluate distance between incomes on vertical axis

Aggregating discrepancy (1)

Distributional Change

Cowell

- The Setting Underlying problem Information and income distribution
- Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach

Evaluation of fit

- Discrepancy as distributional change Implementation
- Conclusions

- Suppose distributions are discrete point masses
 - one observes **x**
 - proposed distribution is $\mathbf{y} = \mathbf{x} + \Delta \mathbf{x}$
- Consider three methods of evaluating overall discrepancy
- **Welfare loss:** $W(\mathbf{y}) W(\mathbf{x}) \simeq \sum_{i} \frac{\partial W(\mathbf{x})}{\partial x_{i}} \Delta x_{i}$
 - if W is ordinal this is not a well-defined loss function
 also, can find Δx ≠ 0 such that expression is zero
- ② Inequality change: $I(\mathbf{y}) I(\mathbf{x}) \simeq \sum_{i} \frac{\partial I(\mathbf{x})}{\partial x_{i}} \Delta x_{i}$
 - same basic objections as for welfare loss
 - ▶ **Distributional change:** examine more closely →

Aggregating discrepancy (2)

Distributional Change

Cowell

The Setting Underlying problem Information and income distribution

Generalisations

Axiomatic

Step 1 Step 2

Application mobility

Measures

Example

Applicatior GoF

GoF: the approach

Discrepancy as distributional change

Implementation

Conclusions

• Consider a change in **y**: $y'_k = y_k + \delta$, $y'_j = y_j - \delta$

• does the change $\mathbf{y} \to \mathbf{y}'$ move one closer to x?

• Ineq difference: up/down as $y_i \ge y_j$, irrespective of **x**

• Distributional change measure: up/down as $\frac{y_k}{y_j} \ge \frac{x_k}{x_j}$

• Use this to formalise (1) aggregate discrepancy, (2) GoF

Simulation

- Implementation

• f_0, f_1, f_2 each formed from a mixture of three lognormals • f_1, f_0 similar in high incomes; f_2, f_0 similar in low incomes

 f_1

0.11389

0.10649

fo

 f_2

0.12064

0.12172

• In inequality terms f_1 is "closer" than f_2 to the reference distribution f_0

Results for traditional GoF criteria

Distributional Change

Cowell

- The Setting Underlying problem Information and income distribution
- Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional chang
- Implementation
- Conclusions

- Simulate f_0 , f_1 and f_2 using 10,000
- Compute Chi-squared criterion (χ²)
 Also Cramér-von Mises (ω²)

		f_1	f_2
•	χ^2	0.058679	0.048541
	ω^2	3.556511	2.421263

• f_2 is "closer" than f_1 to the reference distribution f_0 !

Results for the J index

Distributional Change

Cowell

- The Setting
- Underlying problem Information and income distribution Generalisations

- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional chan
- Implementation
- Conclusions

• Now compute $J_{\alpha} \times 10^2$ for a variety of α -values

α	f_1	f_2
-1.0	0.079	0.191
-0.5	0.076	0.195
0.0	0.0742	0.1989
0.5	0.0720	0.2028
1.0	0.0699	0.2070

- *f*₁ is "closer" than *f*₂ to the reference distribution *f*₀ (as with inequality)
- The higher is *α*, the closer is the approximation of *f*₁ to *f*₀ and the worse is that of *f*₂

Application to UK income data

Distributional Change

Cowell

The Setting

Underlying problem Information and income distribution Generalisations

Axiomatics

Step 1 Step 2

Application mobility

Measures

Example

Application GoF

GoF: the approach

Evaluation of fit

Discrepancy as distributional change

Implementation

Conclusions

HBAI data. n: 3858, mean: 398.28, sd: 253.75
Fit Singh-Maddala F_{SM}(y; a, b, c) = 1 - 1/([1+ay^b]^c)
MLE (â, b, c) = (5.75554E⁻¹⁰, 3.6303, 1.0106)

• \hat{F} (in red) and $F_{SM}(y; \hat{a}, \hat{b}, \hat{c})$

Application: results for traditional GoF measures

- Application mobility
- Measures
- Example
- Application GoF
- GoF: the approach
- Evaluation of fit
- Discrepancy as distributional change
- Implementation
- Conclusions

- *p* values computed using bootstrap
- Singh-Maddala distribution is satisfactory (high *p*)
- Applies for both traditional GoF criteria, χ^2 and ω^2

Application: results for J

Distributional						
Cowell	α	$J_{lpha} imes 10^2$	p (%)	α	$J_{\alpha} \times 10^2$	p (%)
cowen	-5	2.0313	0.00	0.2	0.1288	5.41
The Setting	-2	0.1480	1.90	0.5	0.1312	6.01
Information and income distribution	-1	0.1276	3.80	0.7	0.1332	7.21
Generalisations	-0.7	0.1263	4.00	1	0.1366	6.71
Axiomatics Step 1	-0.5	0.1261	5.41	2	0.1519	8.31
Step 2	-0.2	0.1267	5.11	5	0.2394	10.01
Application: mobility	0	0.1276	5.31			
Measures Example	 L_* criterion reveals a richer story 					
Application:						

• *p*-values rise with α

Implementation

- accept F_{SM} as suitable for *F* if *J* assigns higher weight to discrepancies at high incomes
- but for a "bottom-sensitive" GoF criterion ($\alpha < 1$) F_{SM} regarded as unsatisfactory

Conclusions

Distributional Change

Cowell

- The Setting
- Underlying problem Information and income distribution Generalisations
- Axiomatics
- Step 1 Step 2
- Application mobility
- Measures
- Example
- Application: GoF
- GoF: the approach Evaluation of fit Discrepancy as
- distributional change Implementation

Conclusions

- What type of mobility index?
 - borrowed from stats?
 - borrowed from inequality?
 - distance approach
- Why do economists want to use GoF criteria?
 - evaluate suitability of a statistical models
 - want a criterion based on economic principles
- J_{α} indices form a *class* of GoF criteria
 - calibrate to suit the nature of the economic problem under consideration
 - in which part of the distribution do you want the GoF criterion to be sensitive?
- The choice of a fit criterion really matters
 - off-the-shelf tools can be misleading
 - J_{α} answers accord with common sense
 - *α* crucial to understanding whether model "fits"