Social interactions and segregation in skill accumulation

Stefan NAPEL University of Bayreuth

Based on work with Dilip MOOKHERJEE (BU) and Debraj RAY (NYU)

Introduction

- This lecture explores some causes and implications of geographical segregation w.r.t. human capital investment incentives and inequality theoretically
- A large literature explains persistent inter-household inequality in earnings and human capital, on the basis of capital market imperfections and historical wealth differences (Loury 1981; Ray 1990, 2006; Galor-Zeira 1993; Banerjee-Newman 1993; Ljungqvist 1993; Freeman 1996; Maoz-Moav 1999; Mookherjee-Ray 2003; ...)
- One could view geographical segregation as a *result* of such inequality, upon combining with patterns of spatial mobility (Schelling 1978; Bénabou 1993; Pancs-Vriend 2007)
- Accordingly, geographic inequality would merely be a symptom; policy-makers should not be concerned with segregation *per se*

Introduction, contd.

- Mookherjee, Napel, and Ray (2010a; 2010b) explore the basis for an alternate view, wherein geographical segregation can be a primary independent factor affecting human capital incentives, even in the absence of any capital market imperfections and spatial mobility
- We incorporate neighborhood effects in an OLG model of human capital investments: high skill of neighbors increases own incentive to invest, through peer effects in formation of aspirations and training, or locally funded learning facilities
- MNRa looks at the existence, macroeconomic and welfare properties of steady states with varying patterns of geographical segregation;
 - MNRb investigates how changes in the "local-ness" of interactions affect inequality and welfare

Agenda

- I. Baseline model with no local interaction
- II. Model with local interaction
- III. Segregated and unsegregated equilibria
- IV. Decrease in "local-ness" of social interactions

I. Baseline model with no local interaction

- Simple variation of Mookherjee and Ray (2003)
- Unskilled and skilled inputs are essential for production; work in skilled profession requires prior educational investment c
- Single consumption good with concave CRS production function (C¹, Inada)
- ⇒ Equilibrium skilled wage $w_s(\lambda)$ falls in economy-wide *skill ratio* λ ; unskilled wage $w_u(\lambda)$ rises in λ ; $\lim_{\lambda\downarrow 0} w_s = \infty$, $\lim_{\lambda\downarrow 0} w_u = 0$, and $\exists \lambda^b$: $w_s(\lambda^b) = w_u(\lambda^b)$
- At each date *t* = 0,1,2,... a household *h* divides its income *w^h* between consumption and educational investment 1(*h*)∈{0,1} so as to maximize

$$u(w^h - c \cdot \mathbf{1}(h)) + v(\mathbf{1}(h) \cdot w_s + (1 - \mathbf{1}(h)) \cdot w_u)$$

with *u* and *v* strictly \uparrow and *C*¹, *u* strictly concave, *v* unbounded

• No loans, no financial bequests

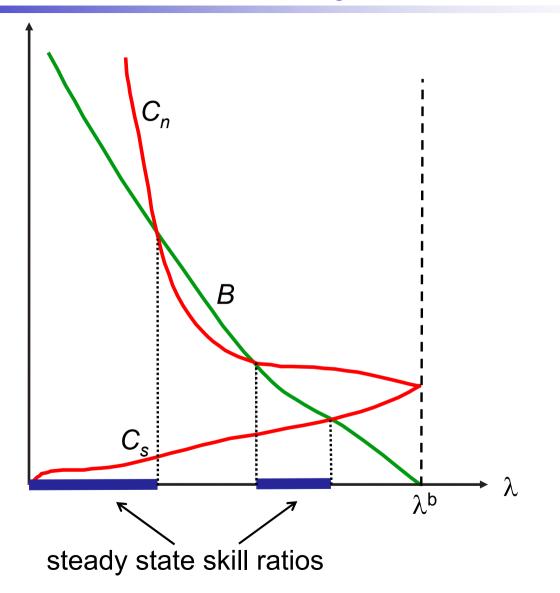
Results for the baseline model

- A competitive equilibrium is a sequence {λ_t}_{t≥0} s.t. given λ₀ and agents' anticipation of λ_{t+1}, individual decisions result in λ_{t+1}; it is a steady state if λ_t = λ for all t
- Result:
 - 1. Persistent inequality and no social mobility in any steady state.
 - 2. There exists a *continuum* of steady states, ordered by human capital, per capita income, and social equality.

Intuition

- 1. Cost for skill acquisition requires wage premium for skilled; strict concavity implies *c* is a smaller utility sacrifice for the rich
- \Rightarrow Skilled parents always have greater net benefits from investing
- \Rightarrow No simultaneous upward and downward mobility
- 2. For some λ^* sufficiently high (i.e., wage premium low), skilled are indifferent and unskilled strictly do not want to invest
- ⇒ This λ^* is a steady state; unskilled's strict preference will be preserved by small decreases of λ

Illustration for strictly concave *u*



Remarks on baseline model

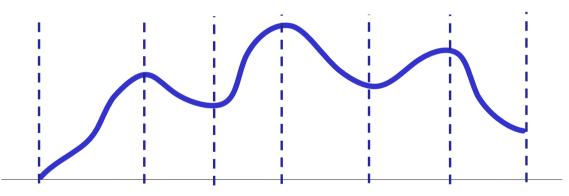
• If *u* is *linear*, C_u and C_s both equal u(c) (for $w_u \ge c$); strict monotonicity of the (identical) subjective gross benefits $B \equiv v(w_s) - v(w_u)$

in this case implies a *unique* steady state λ^* ; indifference of skilled and unskilled at λ^* allows for *social mobility*

- Social mobility is possible and scope for history-dependence is drastically reduced also if *heterogeneous agents* are considered: steady states with mobility generically are *locally unique* (Mookherjee-Napel 2007; Napel-Schneider 2008)
- History-dependence is similarly reduced if *fertility* is endogenized (Mookherjee-Prina-Ray 2009)
- Set of steady states shrinks to a singleton when k→∞ different occupations are considered (Mookherjee-Ray 2003)

II. Model with local interaction

- Now let the unit mass of households have fixed locations on an interval *I* ⊆ **R**, described by a continuous density *f* which is
 - strictly positive in I's interior
 - nowhere flat
 - has a finite number of increasing and decreasing *stretches*



• Each household provides skilled or unskilled labor on the *economy-wide* competitive market, but *local* social interaction creates spillovers in human capital investment incentives (Bénabou 1993, 1996; Durlauf 1994)

Model with local interaction (2)

- MNRa and MNRb focus on two different channels for spillovers:
 - 1. Subjective gross benefits have a social component; e.g., they increase in *parental aspirations* a^h for their offspring, i.e., $v(w_s, a^h) - v(w_n, a^h) \uparrow$ in a^h , where a^h increases in the neighborhoods' average earnings
 - 2. Objective investment costs have a social component;
 e.g., *cost* of acquiring skill is a (bounded) decreasing function *c*(*x_i*) of the "*learning effectiveness*" *x_i* at location *i*
- Both have the same macroeconomic implications, but can lead to different welfare conclusions
- Here, concentrate on cost-driven spillovers with

$$x_i = \eta \mu_i + (1 - \eta) \lambda,$$

where μ_i is the fraction of skilled in the local peer group of agents at location *i*, and $\eta \in (0,1)$ captures importance of local interactions

• The local peer group is an ε -neighborhood centered at *i*

Model with local interaction (3)

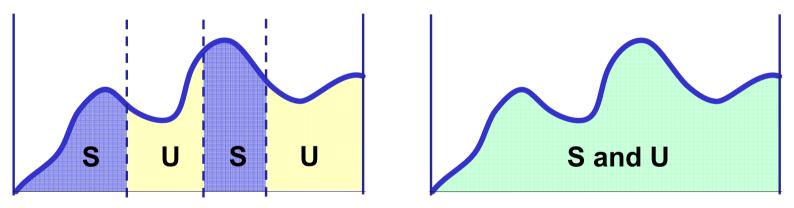
- In order to focus on geography dependence rather than history dependence of inequality, we assume *linear* utility
 → implicitly disregarding capital market imperfections
 (see Carneiro-Heckman 2002; Heckman-Krueger 2003 on empirics of CMI)
- Hence, households located at *i* prefer to invest if

 $B \equiv v(w_s) - v(w_u) > c(x_i)$

- A (steady state) equilibrium is a distribution of skills, an aggregate skill level λ , and wages w_s and w_u s.t.
 - 1. wages are consistent with the aggregate skill level
 - 2. the aggregate skill level is consistent with the distribution of skills
 - the distribution of skills results from optimal decisions by all households, given the wages and the local learning effectiveness implied by the distribution of skills

III. Segregated vs. unsegregated equilibria

- We can distinguish (at least) two geographical patterns
 - segregated equilibria, where locations are partitioned into alternating intervals of skilled and unskilled agents with a width ≥ 2ε,
 - and *unsegregated equilibria*, where $\mu_i \equiv \lambda$



A segregated equilibrium is called *regular* if all cuts have at least
 ε distance to f's local extrema

Existence of unsegregated equilibria

Result:

An unsegregated equilibrium exists (a continuum would exist if *u* is *strictly* concave)

• Intuition:

 $c(x_i)$ is identical at all locations and bounded in λ ; *B* varies continuously between infinity at $\lambda \approx 0$ and zero at $\lambda^b \Rightarrow$ at least one intersection

- Given an unsegregated equilibrium λ^* , a further increase of λ
 - reduces the wage premium for skill, and hence gross benefits
 - but also reduces the investment cost
- Effect on net investment benefits is ambiguous; if they increase at λ*, then another unsegregated equilibrium λ**>λ* exists
- \Rightarrow (Small) scope for history dependence even w/o CMI

Existence of segregated equilibria

Result:

A segregated equilibrium exists (again, a continuum would exist if *u* is strictly concave)

- Intuition:
 - Consider a single "cut" at $j \in I$ with unskilled to the left of j and skilled to the right, resulting in cost $c(x_i)$ faced by households at j
 - A necessary and sufficient condition for existence of a single-cut segregated equilibrium is

$$c(x_j) = v(w_s) - v(w_n)$$

with competitive wages for $\lambda = \lambda(j) \equiv \int_{x>j} f(x) dx$

- Continuity arguments imply existence of some cut position *j* s.t. $\lambda(j)$ implies wages so that costs $c(x_j)$ are smaller (greater) than benefits to the right (left) of *j*

Structure of segregated equilibria

Lemma

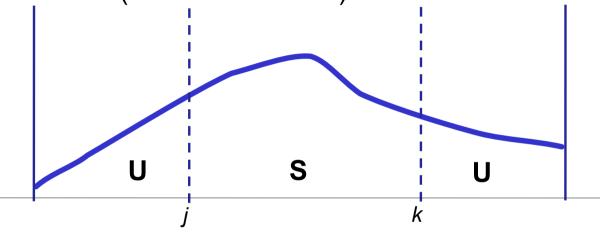
In any segregated regular equilibrium, each stretch of *f* contains at most one cut

- Intuition:
 - For two consecutive cuts *j* and *k* on the same \uparrow or \downarrow -stretch of *f*: $x_j \neq x_k$
 - Indifference of households at *j* implies strict incentives for those at *k*,
 i.e., there can be no cut at *k* in equilibrium

Structure of segregated equilibria

<u>Corollary</u>

If *f* is unimodal, then a segregated regular equilibrium can involve at most two cuts (one on each side)



<u>Corollary</u>

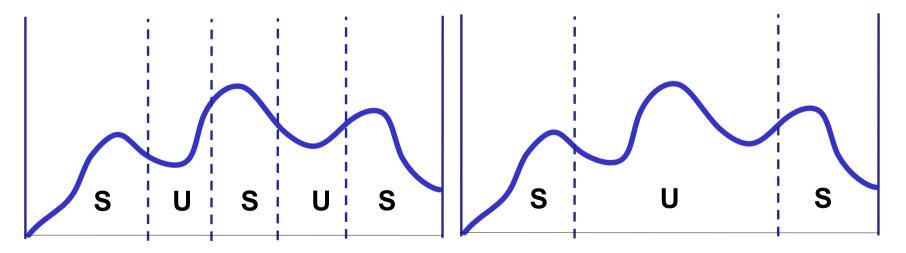
If *f* has *n* local modes, then a segregated regular equilibrium can involve at most 2*n* cuts; consecutive cuts lie on stretches of *f* with slopes of opposite signs

• Multi-cut segregated equilibria need not exist

City-skilled and city-unskilled equilibria

- Call a segregated equilibrium
 - *city-skilled* if some cut divides a skilled mode from an unskilled trough
 - *city-unskilled* if some cut divides an unskilled mode from a skilled trough
- <u>Result</u>

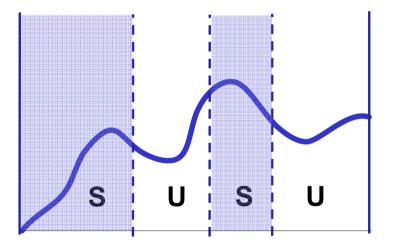
A segregated regular equilibrium must be either city-skilled or city-unskilled (never both)

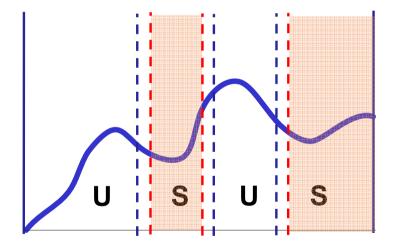


City-skilled vs. city-unskilled equilibria

<u>Result</u>

Any city-skilled equilibrium generates more skilled labor and less inequality than any city-unskilled equilibrium for a given economy





Segregated vs. unsegregated equilibria

- When the window size ε becomes very small, households at a cut *j* see approximately *equal* numbers of skilled and unskilled individuals, independently of *f*(*j*)
- Then *any* purely segregated equilibrium, no matter what its spatial structure, must generate an aggregate quantity of skills λ s.t.

 $v(w_s(\lambda)) - v(w_n(\lambda)) = c(\eta/2 + (1-\eta)\lambda)$

<u>Result</u>

Let $\varepsilon \approx 0$. If the production technology exhibits sufficiently big skill bias, then there exists an unsegregated equilibrium which has a higher skill level than any segregated equilibrium; for sufficiently low skill bias, every segregated equilibrium has higher skills than any unsegregated one

IV. Decreased local-ness of interactions

- "Globalization" can be reflected by
 - greater weight on global vis-à-vis local interactions, i.e., $\eta \downarrow$,
 - wider local neighborhoods, i.e., $\epsilon\uparrow$, or
 - lower geographical mobility costs (initially assumed to be prohibitive)
- Neither affects the macro properties of unsegregated equilibria; we concentrate on implications for regular segregated equilibria
- Note: a rise in the aggregate skill ratio λ is associated with
 - higher per capita income
 - lower wage inequality between skilled and unskilled
 - lower skill acquisition costs for all individuals

and hence greater welfare

(for any quasiconcave Bergson-Samuelson function defined on individual payoffs)

Greater weight on global skill ratio

Result:

For ϵ sufficiently small, an increase in global interactions measured by a fall in η

- improves welfare if the equilibrium is *majority skilled* ($\lambda > \frac{1}{2}$)
- reduces welfare if the equilibrium is *minority skilled* ($\lambda < \frac{1}{2}$)
- Intuition:
 - If agents' local window is small relative to the economy ($\varepsilon \approx 0$), border agents perceive an approximately equal skill mix ($\mu_i \approx \frac{1}{2}$)
 - The equilibrium skill ratio λ then is approximately described by

$$v(w_s(\lambda)) - v(w_u(\lambda)) = c(\eta/2 + (1-\eta)\lambda)$$

- If $\lambda > \frac{1}{2}$, then a decrease in η raises learning effectiveness and lowers costs for marginal agents at the borders

Wider local neighborhoods

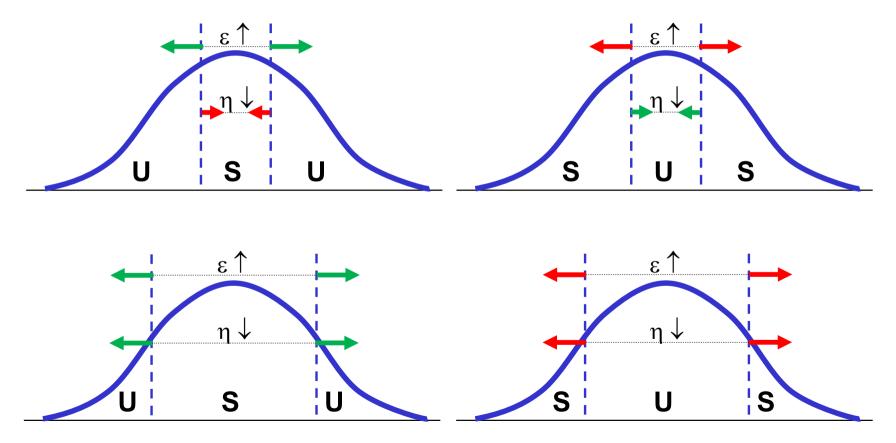
Proposition:

An increase in global interactions measured by an increase in $\boldsymbol{\epsilon}$

- improves welfare if the equilibrium is *city skilled*, and
- reduces welfare if the equilibrium is *city unskilled*
- Intuition:
 - Let the equilibrium be city skilled; as ϵ increases, perceived local skill share μ_j must increase as relatively more (skilled) agents near the city are added to border agents' "window"
 - This raises learning effectiveness, and lowers costs for marginal agents

Illustration

• Both aspects of "globalization" can increase or decrease skills and inequality; they may reinforce or cancel each other:

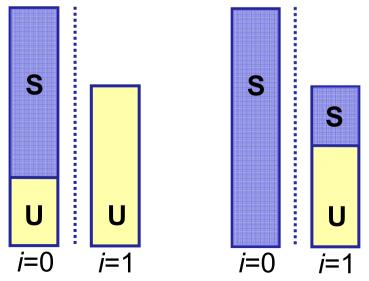


Lower mobility costs

- Suppose agents can move from one location to any other at cost $\boldsymbol{\sigma}$
- An equilibrium must satisfy the additional condition that
 - 4. no agent prefers to relocate
- As σ is lowered from a high initial value, segregated equilibria with more wage inequality are successively eliminated:
 - Agents in the interior of an unskilled interval start having an incentive to move to the interior of a skilled interval
- If σ is sufficiently small, *no* segregated can society satisfy 1.-4., i.e., there is no segregated equilibrium; in contrast, an unsegregated equilibrium must always exist
- The move from a segregated society to an unsegregated one increases welfare iff the segregated equilibrium is majority skilled (similar to η↓-case)

Two social groups

- As an alternative to a convex location space with overlapping neighborhoods, consider two discrete "locations" *i* = 0 or 1, corresponding to two social groups (e.g., natives vs. immigrants) (Bowles-Loury-Sethi 2009)
- "Segregated" equilibria correspond to societies with $\mu_0 \neq \mu_1$
- We assume $\mu_0 > \mu_1$ and distinguish equilibria in which
 - all immigrants are unskilled (\Rightarrow the "marginal agent" is a native)
 - all natives are skilled (\Rightarrow the "marginal agent" is an immigrant)

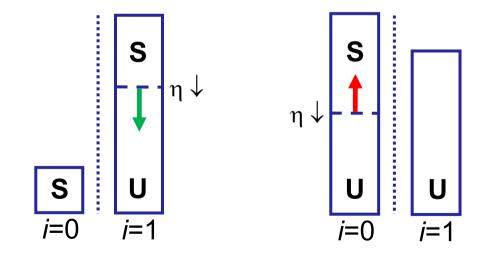


Greater weight on global skill ratio

<u>Result:</u>

In the case of two social groups, an increase in global interactions measured by a fall in η

- improves welfare if the equilibrium is native skilled
- reduces welfare if the equilibrium is *immigrant unskilled*



Conclusion

- The considered models illustrate that
 - unsegregated and segregated equilibria co-exist
 - the spatial structure of segregated equilibria is highly restricted by the interaction of economy-wide pecuniary and local social externalities
 - different segregation patterns give rise to different skill levels, per capita incomes, wage inequality, and welfare
 - effects on poverty, inequality and welfare of changes in the "local-ness" of social interactions depend critically on (a) what exactly changes and (b) the properties of the initial equilibrium
- Future research:
 - Policies (redistribution, local subsidies, ...) (Mookherjee-Ray 2008)
 - Agent heterogeneity, more occupations
 - Robustness of equilibria w.r.t. to perturbations
 - Endogenous housing market
 - Other topologies