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Notation

Income y. (earnings, wealth, consumption...) Belongs to a set
Y= [y,y)⊆ R.

Population proportion q ∈Q := [0,1].

Distribution F. Set of all distribution functions will be
denoted F.

Indicator function ι(·). For logical condition D:

ι(D) =


1 if D is true

0 if D is not true
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Data types

Complete enumeration

Sample: Administrative data
summaries of income distributions in grouped form

official micro-data similar size to sample surveys

very large data sets: complete collections of admin data

only what is legally permissible and convenient

design may not be ideal for economist

Survey data
usually purpose-built

smaller size and worse response rate than administrative-data

may exclude some sections of the population.
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Data design

Simple design

sample designed so each member of the population has equal
probability of being included in sample

ideal case that enables one to focus on the central issues of
statistical inference

but sampling frame could be out of date or exclude part of the
population

Complex design

Clustering observations by geographical location may reduce
the costs of running the survey

Stratification: oversampling certain categories to ensure that
adequate representation of certain types
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Data Problems

Measurement error

similar to measurement error in other contexts

observed income = true income adjusted by error term

model resembles problem of factor-source decomposition

Data contamination

mixture of true distribution and contamination distribution

model resembles problem of subgroup decomposition

Incomplete data
1 Subset of Y is specified: income-boundaries (z,z)
2 Subset of Q is specified: proportions

(
β , β̄

)
in tails
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observed income = true income adjusted by error term

model resembles problem of factor-source decomposition

Data contamination

mixture of true distribution and contamination distribution

model resembles problem of subgroup decomposition

Incomplete data

1 Subset of Y is specified: income-boundaries (z,z)
2 Subset of Q is specified: proportions

(
β , β̄

)
in tails
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Incomplete Data types

Information re Excluded Sample

None
Sample

proportion
Multiple
statistics

limits (z,z) fixed;
(

β , β̄
)

unknown A B C
proportions

(
β , β̄

)
fixed; (z,z) unknown D (E) (F)

A: standard form of truncation

B: “censoring”. Point masses at (z,z) estimate the
population-share of the excluded part.

C: Extension of estimation problem with grouped data

D: Trimming



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Incomplete Data types

Information re Excluded Sample

None
Sample

proportion
Multiple
statistics

limits (z,z) fixed;
(

β , β̄
)

unknown A B C
proportions

(
β , β̄

)
fixed; (z,z) unknown D (E) (F)

A: standard form of truncation

B: “censoring”. Point masses at (z,z) estimate the
population-share of the excluded part.

C: Extension of estimation problem with grouped data

D: Trimming



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Incomplete Data types

Information re Excluded Sample

None
Sample

proportion
Multiple
statistics

limits (z,z) fixed;
(

β , β̄
)

unknown A B C
proportions

(
β , β̄

)
fixed; (z,z) unknown D (E) (F)

A: standard form of truncation

B: “censoring”. Point masses at (z,z) estimate the
population-share of the excluded part.

C: Extension of estimation problem with grouped data

D: Trimming



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Incomplete Data types

Information re Excluded Sample

None
Sample

proportion
Multiple
statistics

limits (z,z) fixed;
(

β , β̄
)

unknown A B C
proportions

(
β , β̄

)
fixed; (z,z) unknown D (E) (F)

A: standard form of truncation

B: “censoring”. Point masses at (z,z) estimate the
population-share of the excluded part.

C: Extension of estimation problem with grouped data

D: Trimming



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Incomplete Data types

Information re Excluded Sample

None
Sample

proportion
Multiple
statistics

limits (z,z) fixed;
(

β , β̄
)

unknown A B C
proportions

(
β , β̄

)
fixed; (z,z) unknown D (E) (F)

A: standard form of truncation

B: “censoring”. Point masses at (z,z) estimate the
population-share of the excluded part.

C: Extension of estimation problem with grouped data

D: Trimming



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Incomplete Data types

Information re Excluded Sample

None
Sample

proportion
Multiple
statistics

limits (z,z) fixed;
(

β , β̄
)

unknown A B C
proportions

(
β , β̄

)
fixed; (z,z) unknown D (E) (F)

A: standard form of truncation

B: “censoring”. Point masses at (z,z) estimate the
population-share of the excluded part.

C: Extension of estimation problem with grouped data

D: Trimming



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Outline

1 Introduction
2 Data
3 Density

Parametric estimation
Kernel method
Finite-mixture models
Finite sample

4 Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample

5 Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing

6 Other problems
Robustness
Incomplete data
Semiparametric modelling

7 Conclusions



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Parametric density estimation

Most of the standard parametric income distributions are special
cases of the Generalized Beta distribution:
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Goodness of Fit

Density based statistic: Pearson chi-squared (χ2)

EDF based statistic:


Kolmogorov-Smirnov
Anderson-Darling
Cramér-von-Mises

Cowell et al. (2011) developed a GoF test based on
axiomatic discussion, with social-welfare foundations:

Gξ =
1

ξ 2−ξ

n

∑
i=1

[[
ui

µu

]ξ [ 2i
n+1

]1−ξ

−1

]
,

where ui = F(y(i); θ̂) and y(i) is the ith smallest observat.

The pearson χ2 statistic has poor finite sample properties
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Histograms

Histogram’s sensitivity to the position and the number of bins
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Naive estimator

Naive estimator of GDP per capita
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Kernel estimator

Kernel estimator of GDP per capita
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Bandwidth selection

The kernel density estimator

f̂ (y) =
1
nh

n

∑
i=1

K
(

y− yi

h

)
is not really affected by the choice of the kernel K(), but it is
sensitive to the choice of the bandwidth h

Bandwidth selection:

Silverman’s rule-of-thumb, ĥopt = 0.9min
(

σ̂ ; q̂3−q̂1
1.349

)
n−

1
5 .

Plug-in method

Cross-validation
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Adaptive kernel

When the concentration of the data is markedly
heterogeneous, a fixed bandwidth may be quite restrictive.

The adaptive kernel estimator is defined as follows:

f̂ (y) =
1
n

n

∑
i=1

1
hλi

K
(

y− yi

hλi

)
,

where λi is a parameter that varies with the local
concentration of the data, λi = [g/f̃ (yi)]

α .
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Adaptive kernel
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Adaptive kernel

Simple kernel
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Finite-mixture models

Under regularity conditions, any distribution can be
consistently estimated by a mixture of Normal distributions

Estimate any income distrib. with a mixture of lognormals :

f (logy;Θ) =
K

∑
k=1

πkΦ(yk; µk,σk)

Interpretation: a (heterogeneous) population can be
decomposed into several distinct (homogeneous) groups

Brings out the link between parametric and nonparametric
estimator (K = 1 and K = n, πk = 1/n)
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Finite-mixture models

Income distribution in the United Kingdom in 1973
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Finite-mixture models with covariates

Covariates can be introduced in probabilities to characterized
group profiles

f (logy|z;Θ) =
K

∑
k=1

πk(zk;αk)Φ(yk; µk,σk)

Covariates can be introduced into the modeling of the
densities in each of the groups, leading us to consider
mixture of regression models

f (logy|x;Θ) =
K

∑
k=1

πkΦ(yk|xk; µk,σk)

Covariates can be introduced in both components
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Finite sample properties

Quality of the fit: MIAE = E
(∫

∞

0

∣∣f̂ (y)− f (y)
∣∣ dy
)
.

Data are drawn from lognormals, Singh-Maddala and
mixtures of two SM distributions.
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Finite sample properties

Standard kernel Adaptive kernel Mixture

Silv. CV Plug-in Silv. CV Plug-in lognormal

Lognormal

σ = 0.5 0.1044 0.1094 0.1033 0.0982 0.1098 0.1028 0.0407

σ = 0.75 0.1326 0.1326 0.1252 0.1098 0.1283 0.1179 0.0407

σ = 1 0.1643 0.1716 0.1522 0.1262 0.1609 0.1362 0.0407

Singh-Maddala

q = 1.7 0.0942 0.1009 0.0951 0.0915 0.0994 0.0934 0.0840

q = 1.2 0.1039 0.1100 0.1048 0.0947 0.1050 0.0994 0.0920

q = 0.7 0.1346 0.1482 0.1326 0.1049 0.1349 0.1175 0.0873

Mixture of two Singh-Maddala

q = 0.8 0.2080 0.1390 0.1328 0.1577 0.1356 0.1224 0.1367

q = 0.6 0.2458 0.1528 0.1463 0.1896 0.1457 0.1293 0.1464

q = 0.4 0.2885 0.1953 0.1733 0.2234 0.1812 0.1450 0.1366

Table: Quality of density estimation (MIAE), n = 500.
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Two key functionals

Used repeatedly in distributional analysis

Quantile functional
Q : F×Q→ Y given by Q(F;q) := inf{y|F(y)≥ q}

yq := Q(F;q)
Examples:

q = 0.5 gives Q(F;0.5), median of distribution F
bottom decile: Q(F;0.1)
upper quartile: b Q(F;0.75),

Cumulation functional
C : F×Q→ Y given by C(F;q) :=

∫ yq
y ydF(y)

cq := C(F;q)
Examples:

c1 = C(F;1) = µ(F), mean of distribution F
cq
c1

=
C(F;q)
C(F;1) , income share of bottom 100q percent
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Two key functionals

Used repeatedly in distributional analysis

Quantile functional
Q : F×Q→ Y given by Q(F;q) := inf{y|F(y)≥ q}

yq := Q(F;q)
Examples:

q = 0.5 gives Q(F;0.5), median of distribution F
bottom decile: Q(F;0.1)
upper quartile: b Q(F;0.75),

Cumulation functional
C : F×Q→ Y given by C(F;q) :=

∫ yq
y ydF(y)

cq := C(F;q)
Examples:

c1 = C(F;1) = µ(F), mean of distribution F
cq
c1

=
C(F;q)
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Welfare functionals

Fundamental assessment tools of distributional analysis

Inequality and poverty indices as special cases

Simplest class:WAD(F) :=
∫

φ (y) dF(y) (up to
transformation involving µ)

for grouped data ∑
m
i=1 f iφ (yi)

GE measures, Atkinson

Slightly broader class:WQAD(F) :=
∫

ϕ (y,µ(F)) dF(y)

includes WAD(F)
RMD, Pietra ratio

Rank-dependence: WRD(F) :=
∫

ψ (y,µ(F),F(y)) dF(y),

Gini
generalised Gini
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The Influence Function

Introducing a fundamental tool

Mixture distributions

point mass at z: H(z) (y) = ι (y≥ z)

the mixture: G = [1−δ ]F+δH(z)

δ : importance of point mass in mixture

How “important” is point mass at z?

define this with reference to a given statistic T

Influence Function: IF(z;T,F) := limδ↓0

[
T(G)−T(F)

δ

]
if differentiable: IF(z;T,F) := ∂

∂δ
T(G)

∣∣∣
δ→0
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IF and AV

A simple decomposition:

T(G) = T(F)+
∫

IF(y;T,F)d(G−F)(y)+ remainder

T(F(n))≈ T(F)+ 1
n ∑

n
i=1 IF(yi;T,F)+ remainder

Lemma
√

n
(

T(F(n))−T(F)
)

is asymptotically normal

asymptotic covariance matrix
∫

IF(y;T,F)IF>(y;T,F)dF(y)

A short-cut to AV formula:

can usually find Z such that: IF(y,T,F) = Z−E(Z)

therefore:
∫

IF(y,T,F)2dF(y) =
∫
(Z−E(Z))2 dF(Z)

v̂ar
(

T(F(n))
)
= 1

n v̂ar(Z) = 1
n2 ∑

n
i=1(Zi− Z̄)2



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

IF and AV

A simple decomposition:

T(G) = T(F)+
∫

IF(y;T,F)d(G−F)(y)+ remainder

T(F(n))≈ T(F)+ 1
n ∑

n
i=1 IF(yi;T,F)+ remainder

Lemma
√

n
(

T(F(n))−T(F)
)

is asymptotically normal

asymptotic covariance matrix
∫

IF(y;T,F)IF>(y;T,F)dF(y)

A short-cut to AV formula:

can usually find Z such that: IF(y,T,F) = Z−E(Z)

therefore:
∫

IF(y,T,F)2dF(y) =
∫
(Z−E(Z))2 dF(Z)

v̂ar
(

T(F(n))
)
= 1

n v̂ar(Z) = 1
n2 ∑

n
i=1(Zi− Z̄)2



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

IF and AV

A simple decomposition:

T(G) = T(F)+
∫

IF(y;T,F)d(G−F)(y)+ remainder

T(F(n))≈ T(F)+ 1
n ∑

n
i=1 IF(yi;T,F)+ remainder

Lemma
√

n
(

T(F(n))−T(F)
)

is asymptotically normal

asymptotic covariance matrix
∫

IF(y;T,F)IF>(y;T,F)dF(y)

A short-cut to AV formula:

can usually find Z such that: IF(y,T,F) = Z−E(Z)

therefore:
∫

IF(y,T,F)2dF(y) =
∫
(Z−E(Z))2 dF(Z)

v̂ar
(

T(F(n))
)
= 1

n v̂ar(Z) = 1
n2 ∑

n
i=1(Zi− Z̄)2



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

IF and AV
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IF: Application to basics 1

To apply the IF method:

evaluate Q or C for the mixture distribution

differentiate wrt δ

let δ go to zero

Quantile (mixture): Q(G,q) = Q
(

F, q−ι(yq≥z)δ
1−δ

)
yq = Q(F,q) is qth quantile for the (unmixed) distribution
IF(z;Q(·,q),F) = q−ι(Q(F;q)≥z)

f (Q(F;q)) =
q−ι(yq≥z)

f (yq)

Cumulation (mixture): C(G;q) = [1−δ ]
∫ Q(G,q)

y ydF(y)+δ z

differentiating wrt δ and setting δ = 0 we get

qQ(F,q)−C(F,q)+ ι(q≥ F(z))[z−Q(F,q)]

IF(z;C(·,q),F) = qyq− cq + ι(yq ≥ z)[z− yq]
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IF: Application to basics 2

ŴQAD := WQAD(F(n)) = 1
n ∑

n
i=1 ϕ (yi, µ̂)

sample mean: µ̂ := µ

(
F(n)

)
= 1

n ∑
n
i=1 yi.

Same procedure as before

evaluate WQAD for the mixture distribution
differentiate wrt δ

let δ go to zero

IF(z;WQAD,F) = ϕ (z,µ(F))−WQAD(F)+ [z−µ(F)]
∫

ϕµ (z,µ(F)) dF(z)

where ϕµ denotes the partial derivative
IF(y,WQAD,F) = Z−E(Z)
where Z = ϕ (y,µ(F))+ y

∫
ϕµ (y,µ(F)) dF(y)

AV of
√

n(ŴQAD−WQAD) is the variance of Z.

Provides key to large class of indices used in economics
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ŴQAD := WQAD(F(n)) = 1
n ∑

n
i=1 ϕ (yi, µ̂)

sample mean: µ̂ := µ

(
F(n)

)
= 1

n ∑
n
i=1 yi.

Same procedure as before

evaluate WQAD for the mixture distribution
differentiate wrt δ

let δ go to zero

IF(z;WQAD,F) = ϕ (z,µ(F))−WQAD(F)+ [z−µ(F)]
∫

ϕµ (z,µ(F)) dF(z)

where ϕµ denotes the partial derivative
IF(y,WQAD,F) = Z−E(Z)
where Z = ϕ (y,µ(F))+ y

∫
ϕµ (y,µ(F)) dF(y)

AV of
√
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IF: Application to basics 2

ŴQAD := WQAD(F(n)) = 1
n ∑

n
i=1 ϕ (yi, µ̂)

sample mean: µ̂ := µ

(
F(n)

)
= 1

n ∑
n
i=1 yi.

Same procedure as before

evaluate WQAD for the mixture distribution
differentiate wrt δ

let δ go to zero

IF(z;WQAD,F) = ϕ (z,µ(F))−WQAD(F)+ [z−µ(F)]
∫

ϕµ (z,µ(F)) dF(z)

where ϕµ denotes the partial derivative
IF(y,WQAD,F) = Z−E(Z)
where Z = ϕ (y,µ(F))+ y

∫
ϕµ (y,µ(F)) dF(y)

AV of
√

n(ŴQAD−WQAD) is the variance of Z.

Provides key to large class of indices used in economics
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Application: GE class

Iξ

GE(F) =
1

ξ 2−ξ

[∫ y
y

[
y

µ(F)

]ξ

dF(y)−1
]

I0
GE(F) =−

∫ y
y log

(
y

µ(F)

)
dF(y)

I1
GE(F) =

∫ y
y

y
µ(F) log

(
y

µ(F)

)
dF(y)

We have ϕ (y,µ(F)) = 1
ξ 2−ξ

[[
y

µ(F)

]ξ

−1
]

ϕµ (y,µ(F)) =
−ξ

ξ 2−ξ

[
yξ

µ(F)ξ+1

]
=− ξ

µ

(
ϕ (y,µ(F))+ 1

ξ 2−ξ

)
v̂ar(Îξ

GE) =
1
n2 ∑

n
i=1(Zi− Z̄)2 where Zi is

(ξ 2−ξ )−1(yi/µ̂)ξ −ξ (yi/µ̂)
[
Îξ

GE +(ξ 2−ξ )−1
]

for ξ 6= 0,1
(yi/µ̂)− logyi
(yi/µ̂)

[
log(yi/µ̂)− Î1

GE−1
]
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GE) =
1
n2 ∑

n
i=1(Zi− Z̄)2 where Zi is

(ξ 2−ξ )−1(yi/µ̂)ξ −ξ (yi/µ̂)
[
Îξ
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Application: Gini

Gini has multiple equivalent forms

From the Lorenz curve
IGini(F) = 1−2

∫ 1
0 L(F;q)dq

We can use results on C(·;q)

Standard form for IF(z; IGini,F):

1− IGini(F)− 2C(F;F(z))
µ(F) + z 1−IGini(F)−2[1−F(z)]

µ(F)

Alternative form

note E[C(F;F(z))] = E[z [1−F(z)]] = 1−IGini(F)
2 µ(F)

let Z = [1− IGini(F)]z−2[C(F;F(z))+ z(1−F(z))]

then IF(z; IGini,F) = (Z−E(Z))/µ(F)

var
(√

n(IGini(F(n))− IGini(F))
)
= var(Z)/µ(F)2
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Application: Gini

Gini has multiple equivalent forms

From the Lorenz curve
IGini(F) = 1−2

∫ 1
0 L(F;q)dq

We can use results on C(·;q)

Standard form for IF(z; IGini,F):

1− IGini(F)− 2C(F;F(z))
µ(F) + z 1−IGini(F)−2[1−F(z)]

µ(F)

Alternative form

note E[C(F;F(z))] = E[z [1−F(z)]] = 1−IGini(F)
2 µ(F)

let Z = [1− IGini(F)]z−2[C(F;F(z))+ z(1−F(z))]

then IF(z; IGini,F) = (Z−E(Z))/µ(F)

var
(√

n(IGini(F(n))− IGini(F))
)
= var(Z)/µ(F)2



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Application: Gini

Gini has multiple equivalent forms

From the Lorenz curve
IGini(F) = 1−2

∫ 1
0 L(F;q)dq

We can use results on C(·;q)

Standard form for IF(z; IGini,F):

1− IGini(F)− 2C(F;F(z))
µ(F) + z 1−IGini(F)−2[1−F(z)]

µ(F)

Alternative form

note E[C(F;F(z))] = E[z [1−F(z)]] = 1−IGini(F)
2 µ(F)

let Z = [1− IGini(F)]z−2[C(F;F(z))+ z(1−F(z))]

then IF(z; IGini,F) = (Z−E(Z))/µ(F)

var
(√

n(IGini(F(n))− IGini(F))
)
= var(Z)/µ(F)2



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Application: Gini

Gini has multiple equivalent forms

From the Lorenz curve
IGini(F) = 1−2

∫ 1
0 L(F;q)dq

We can use results on C(·;q)

Standard form for IF(z; IGini,F):

1− IGini(F)− 2C(F;F(z))
µ(F) + z 1−IGini(F)−2[1−F(z)]

µ(F)

Alternative form

note E[C(F;F(z))] = E[z [1−F(z)]] = 1−IGini(F)
2 µ(F)

let Z = [1− IGini(F)]z−2[C(F;F(z))+ z(1−F(z))]

then IF(z; IGini,F) = (Z−E(Z))/µ(F)

var
(√

n(IGini(F(n))− IGini(F))
)
= var(Z)/µ(F)2



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Application: Gini

Gini has multiple equivalent forms

From the Lorenz curve
IGini(F) = 1−2

∫ 1
0 L(F;q)dq

We can use results on C(·;q)

Standard form for IF(z; IGini,F):

1− IGini(F)− 2C(F;F(z))
µ(F) + z 1−IGini(F)−2[1−F(z)]

µ(F)

Alternative form

note E[C(F;F(z))] = E[z [1−F(z)]] = 1−IGini(F)
2 µ(F)

let Z = [1− IGini(F)]z−2[C(F;F(z))+ z(1−F(z))]

then IF(z; IGini,F) = (Z−E(Z))/µ(F)

var
(√

n(IGini(F(n))− IGini(F))
)
= var(Z)/µ(F)2



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Application: Gini

Gini has multiple equivalent forms

From the Lorenz curve
IGini(F) = 1−2

∫ 1
0 L(F;q)dq

We can use results on C(·;q)

Standard form for IF(z; IGini,F):

1− IGini(F)− 2C(F;F(z))
µ(F) + z 1−IGini(F)−2[1−F(z)]

µ(F)

Alternative form

note E[C(F;F(z))] = E[z [1−F(z)]] = 1−IGini(F)
2 µ(F)

let Z = [1− IGini(F)]z−2[C(F;F(z))+ z(1−F(z))]

then IF(z; IGini,F) = (Z−E(Z))/µ(F)

var
(√

n(IGini(F(n))− IGini(F))
)
= var(Z)/µ(F)2



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Application: Gini

Gini has multiple equivalent forms

From the Lorenz curve
IGini(F) = 1−2

∫ 1
0 L(F;q)dq

We can use results on C(·;q)

Standard form for IF(z; IGini,F):

1− IGini(F)− 2C(F;F(z))
µ(F) + z 1−IGini(F)−2[1−F(z)]

µ(F)

Alternative form

note E[C(F;F(z))] = E[z [1−F(z)]] = 1−IGini(F)
2 µ(F)

let Z = [1− IGini(F)]z−2[C(F;F(z))+ z(1−F(z))]

then IF(z; IGini,F) = (Z−E(Z))/µ(F)

var
(√

n(IGini(F(n))− IGini(F))
)
= var(Z)/µ(F)2



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Application: Gini

Gini has multiple equivalent forms

From the Lorenz curve
IGini(F) = 1−2

∫ 1
0 L(F;q)dq

We can use results on C(·;q)

Standard form for IF(z; IGini,F):

1− IGini(F)− 2C(F;F(z))
µ(F) + z 1−IGini(F)−2[1−F(z)]

µ(F)

Alternative form

note E[C(F;F(z))] = E[z [1−F(z)]] = 1−IGini(F)
2 µ(F)

let Z = [1− IGini(F)]z−2[C(F;F(z))+ z(1−F(z))]

then IF(z; IGini,F) = (Z−E(Z))/µ(F)

var
(√

n(IGini(F(n))− IGini(F))
)
= var(Z)/µ(F)2



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Outline

1 Introduction
2 Data
3 Density

Parametric estimation
Kernel method
Finite-mixture models
Finite sample

4 Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample

5 Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing

6 Other problems
Robustness
Incomplete data
Semiparametric modelling

7 Conclusions



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Application: ASP class

P(F) :=
∫

p(y,ζ (F)) dF(y)
p is non-increasing in y; is zero for y≥ ζ (F)
large class of poverty measures

example: Pξ

FGT(F) =
∫ ζ0

0

(
ζ0−y

ζ0

)ξ

dF(y) ξ ≥ 0

IF(z;P,F) = p(z,ζ (F))−P(F)+
∫

pζ (y,ζ ) dF(y)IF(z;ζ ,F)
Case 1: ζ (F) = ζ0:

IF(y;P,F) = Z−E(Z)
Z = p(y,ζ0)

AV is
∫

p(z,ζ0)
2 dF(z)−P(F)2

Case 2: ζ (F) = ζ0 + γyq

IF(z;ζ ,F) = γ
q−ι(yq≥z)

f (yq)

Case 3: ζ (F) = ζ0 + γµ(F)

IF(z;ζ ,F) = γ
q−ι(yq≥z)

f (yq)
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Application: Sen poverty index

PSen (F) = P0
FGTIp

Gini +P1
FGT(1− Ip

Gini)

PSen(F) = 2
ζ0F(ζ0)

∫ ζ0
0 (ζ0− y)(F(ζ0)−F(y))dF(y)

Consistent estimate:

P̂Sen := PSen

(
F(n)

)
= 2

nnpζ0
∑

np
i=1(ζ0− y(i))

(
np− i+ 1

2

)
F(y(i)) estimated by F(n)(y(i)) =

2i−1
2n

IF(z,PSen,F) = 2
ζ0F(ζ0)

(Z−E(Z))
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Finite sample properties

Theil Gini SST
asym boot asym boot asym boot

Lognormal
σ = 0.5 0.927 0.936 0.942 0.943 0.926 0.952
σ = 1.0 0.871 0.913 0.922 0.936 0.945 0.940
σ = 1.5 0.746 0.854 0.876 0.920 0.964 0.937
Singh-Maddala
q = 1.7 0.915 0.931 0.945 0.944 0.945 0.950
q = 1.2 0.856 0.905 0.925 0.934 0.945 0.951
q = 0.7 0.647 0.802 0.847 0.906 0.939 0.946

Table: Coverage of asymptotic and bootstrap confidence intervals at the
95% level for the Theil, Gini and SST indices, n = 500.

Inequality indices: unreliable CI with heavy-tailed distributions!
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Inference with heavy-tailed distributions

asym boot varstab semip mixture
Lognormal
σ = 0.5 0.927 0.936 0.939 0.937 0.942
σ = 1.0 0.871 0.913 0.907 0.921 0.946
σ = 1.5 0.746 0.854 0.850 0.915 0.944
Singh-Maddala
q = 1.7 0.915 0.931 0.933 0.926 0.928
q = 1.2 0.856 0.905 0.899 0.905 0.912
q = 0.7 0.647 0.802 0.796 0.871 0.789

Table: Coverage of asymptotic and bootstrap confidence intervals at the
95% level for the Theil index, for several bootstrap approaches, n = 500.
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Testing equality of inequality measures

Null hypothesis:
H0 : Wx = Wy

Independent samples: X = {x1, . . . ,xn},Y = {y1, . . . ,ym}
Test statistic:

τ = (Ŵx− Ŵy)/[v̂ar(Ŵx)+ v̂ar(Ŵy)]
1/2

Monte Carlo permutation tests:

Fx = Fy: exact inference!!1

Fx 6= Fy: not valid

Dufour et al. (2013) propose a new bootstrap method:

with exact inference when Fx = Fy
valid when Fx 6= Fy

1even with very heavy-tailed distr. and very small samples
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Standard bootstrap

With independent samples, we test H0 : Wx = Wy with

τ = (Ŵx− Ŵy)/[v̂ar(Ŵx)+ v̂ar(Ŵy)]
1/2

Bootstrap samples:

X?: resample with replacement n observations from X.
Y?: resample with replacement m observations from Y .

Bootstrap test:

τ
?
b = [Ŵx?b− Ŵy?b− (Ŵx− Ŵy)]/[v̂ar(Ŵx?b)+ v̂ar(Ŵy?b)]

1/2

Bootstrap distribution:

EDF of the B bootstrap statistics, τ?
b for b = 1, . . . ,B
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New bootstrap method

Dufour et al (2013) propose generating bootstrap samples

X??: resample with replacement n observations from Z.
Y??: resample with replacement m observations from Z.

Z =

{
x1

x̄
, . . . ,

xn

x̄
,
y1

ȳ
, . . . ,

ym

ȳ

}
where x̄ and ȳ are sample means. The bootstrap test is

τ
??
b = [Ŵx??b

− Ŵy??b
]/[v̂ar(Ŵx??b

)+ v̂ar(Ŵy??b
)]1/2

This bootstrap procedure is

closely related to permutation test when Fx = Fy
still valid when Fx 6= Fy
respects the null hypothesis (Golden Rule)
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Finite sample properties

αx−αy asym boot bootH0

0.00 0.0770 0.0614 0.0500
0.58 0.0796 0.0612 0.0496
0.96 0.0825 0.0639 0.0510
1.23 0.0865 0.0668 0.0539
1.57 0.0956 0.0719 0.0586
1.97 0.1138 0.0824 0.0705
2.57 0.1289 0.0911 0.0805

Table: Rejection frequencies for the Gini index,
H0 : IGini(Fx) = IGini(Fy), as Fx moves away from Fy (as αx−αy
increases), at nominal level 0.05, n = 50.
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First-order Dominance

“F first-order dominates G”
∀q ∈Q : Q(F,q)≥ Q(G,q)
∃q ∈Q : Q(F,q)> Q(G,q)

Pen’s Parade

“W (F)≥W (G), for any W ∈W1”
W1 := {W|W(F) =

∫
φ (y) dF (y) , φ ′ (y)> 0}
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Second-order Dominance

“F second-order dominates G”
∀q ∈Q : C(F,q)≥ C(G,q)
∃q ∈Q : C(F,q)> C(G,q)

Generalised Lorenz Curve

“W (F)≥W (G), for any W ∈W2”
W2 := {W|W(F) =

∫
φ (y) dF (y) , φ ′ (y)> 0,φ ′′ (y)≤ 0}
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Generalised Lorenz Curve

“W (F)≥W (G), for any W ∈W2”
W2 := {W|W(F) =
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Second-order: extensions

Second-order comparisons scale independent?
for any λ > 0 distribution of y and of y/λ are equivalent

Relative LC: L(F;q) := C(F;q)
µ(F) = C(F;q)

C(F;1)

Second-order comparisons translation independent?
for any δ ∈ R distribution of y and of y+δ are equivalent

Absolute LC: A(F;q) := C(F;q)−qµ(F).
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Dominance (general)

Define Ds
F(y) := 1

(s−1)!

∫ y
0 (y− t)s−1 dF(t)

General s-order dominance:

∀y ∈ R : Ds
F(y)≤ Ds

G(y)
∃y ∈ R : Ds

F(y)< Ds
G(y)

Contains earlier dominance concepts

s = 1: first-order dominance
s = 2: second-order dominance

Ds
F(ζ0) is equal to the FGT poverty index, up to a scale factor

If, for all [ζ−0 ;ζ
+
0 ], Ds

F(ζ0)< Ds
G(ζ0):

then poverty lower in F than in G.
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Implementation: basics

1 Choose a finite collection of population proportions Θ⊂Q
2 For each q ∈Θ compute sample quantiles, cumulations:

let κ(n,q) be largest integer ≤ nq−q+1

quantiles: ŷq := Q
(

F(n);q
)
= y(κ(n,q))

cumulations: ĉq := C
(

F(n);q
)
= 1

n ∑
κ(n,q)
i=1 y(i)

3 Compute the variances and covariances of

sample quantiles (first-order)
income cumulations (second order)

4 Specify carefully the ranking hypothesis to be tested
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(

F(n);q
)
= 1

n ∑
κ(n,q)
i=1 y(i)

3 Compute the variances and covariances of

sample quantiles (first-order)
income cumulations (second order)

4 Specify carefully the ranking hypothesis to be tested



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Implementation: basics

1 Choose a finite collection of population proportions Θ⊂Q
2 For each q ∈Θ compute sample quantiles, cumulations:

let κ(n,q) be largest integer ≤ nq−q+1

quantiles: ŷq := Q
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Covariances, Parade and GLC

For any q,q′ ∈Q, compute covariances of ordinates
√

nŷq,
√

nŷq′asymp normally distributed, cov is q[1−q′]
f (yq)f (yq′ )√

nĉq,
√

nĉq′ asymp normally distributed; cov is:
ωqq′ := sq +[qyq− cq]

[
yq′ −q′yq′ + cq′

]
− yqcq, q≤ q′

S(F;q) :=
∫ yq

y y2 dF(y) =: sq

ŝq := S
(

F(n);q
)
= 1

n ∑
κ(n,q)
i=1 y2

(i)

Derivation:
ωqq′ =

∫
IF(z;C(F;q),F)IF(z;C(F;q′),F)dF(z))
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nŷq′asymp normally distributed, cov is q[1−q′]
f (yq)f (yq′ )√

nĉq,
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nŷq,
√
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nŷq,
√
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Covariances, GLC (2)

We can also use the “short form” of the IF method:

IF(z;C(F,q),F) = Zq−E(Zq)
Zq = [z− yq]ι(z≤ yq).

Asymptotic covariance of
√

nĉq and
√

nĉq′ :

ωqq′ = cov(Zq,Zq′)

ĉov(ĉq, ĉq′) =
1
n ω̂qq′ =

1
n2 ∑

n
i=1(Ziq− Z̄q)(Ziq′ − Z̄q′)

Ziq = [yi− ŷq] ι(yi ≤ ŷq)

Consistent estimate:
ω̂qq′ := ŝq +[qŷq− ĉq]

[
ŷq′−q′ŷq′+ ĉq′

]
− ŷqĉq
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Consistent estimate:
ω̂qq′ := ŝq +[qŷq− ĉq]
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Dominance: an intuitive application
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(a) generalised Lorenz curves

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ĈG(q) − ĈF(q)
95% CI

0.0 0.2 0.4 0.6 0.8 1.0
−0

.02
0.0

0
0.0

2
0.0

4

(b) relative Lorenz curves

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●●●

●

●

●

●

●

L̂G(q) − L̂F(q)
95% CI

Difference between two empirical Lorenz curves, n = 5 000



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Dominance: an intuitive application

Distribution F Distribution G
Index CI95% Index CI95%

Poverty measures*
P0

FGT 0.1134 [0.1046;0.1222] 0.0260 [0.0216;0.0304]

P1
FGT 0.0299 [0.0270;0.0329] 0.0053 [0.0042;0.0065]

PSen 0.0426 [0.0385;0.0466] 0.0077 [0.0061;0.0093]

PSST 0.0579 [0.0523;0.0635] 0.0106 [0.0083;0.0129]

Generalised Entropy measures
I−1
GE 0.1803 [0.1694;0.1913] 0.1568 [0.1468;0.1667]

I0
GE 0.1416 [0.1351;0.1481] 0.1420 [0.1324;0.1516]

I1
GE 0.1360 [0.1289;0.1430] 0.1570 [0.1411;0.1729]

I2
GE 0.1548 [0.1431;0.1665] 0.2266 [0.1798;0.2734]

IGini 0.2849 [0.2785;0.2913] 0.2909 [0.2816;0.3001]

* The poverty line is half the median of the sample drawn from

distribution F: ζ0 = 0.07565776.

Table: Inequality and poverty measures, with confidence intervals at
95%, computed from two samples of 5 000 observations drawn
independently from F and G.



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Outline

1 Introduction
2 Data
3 Density

Parametric estimation
Kernel method
Finite-mixture models
Finite sample

4 Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample

5 Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing

6 Other problems
Robustness
Incomplete data
Semiparametric modelling

7 Conclusions



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

The null hypothesis: dominance or non-dominance

Tests of dominance and non-dominance. The first quadrant, I,
corresponds to dominance of G by F in the sample (grey area).
The quadrants II, III and IV correspond to non-dominance.
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Hypothesis testing

Under the null of dominance (F dominates G), we have

H0 : Ds
F(y)≤ Ds

G(y), for all y ∈ Y,
H1 : Ds

F(y)> Ds
G(y), for some y ∈ Y.

Test based on the supremum of individual differences:

τ = supy∈Y
(
D̂s

F(y)− D̂s
G(y)

)
.

Under the null of non-dominance (F does not dominate G):

H0 : Ds
F(y)≥ Ds

G(y), for some y ∈ Y,
H1 : Ds

F(y)< Ds
G(y), for all y ∈ Y.

Test based on the infinum of individual differences:

τ
′ = infy∈Yr

(
D̂s

G(y)− D̂s
F(y)

)
.
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Robustness (1)

Suppose true distribution is mixed with contamination

point mass at z: H(z) (y) = ι (y≥ z)
the mixture: G = [1−δ ]F+δH(z)

δ : “size” of contamination

Use IF to see effect of infinitesimal contamination at z

1 Example: the mean

µ (G) = µ

(
[1−δ ]F+δH(z)

)
= [1−δ ]µ (F)+δ µ

(
H(z)

)
µ (G) = [1−δ ]µ (F)+δ z

IF(z; µ,F) = z−µ (F)

2 Example: the median

IF(z;Q(·,0.5) ,F) = q−ι(q≥F(z))
f (Q(F,0.5)) = q−ι(y0.5≥z)

f (y0.5)
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Robustness (2)

Inequality and poverty indices respond differently to
contamination
Consider two important members of WQAD class

IF in general case:
ϕ (z,µ(F))−WQAD(F)+ [z−µ(F)]

∫
ϕµ (z,µ(F)) dF(z)

Inequality
Compute IF for GE:

ϕ (z,µ(F)) = [z/µ(F)]ξ−1
ξ 2−ξ

unbounded for all values of ξ

also unbounded effect on mean

Poverty
take ASP case (fixed poverty line ζ0):
IF(z;P,F) = p(z,ζ0)−P(F)

example (FGT): p(z,ζ0) = [max(1− z/ζ0,0)]
ξ
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Robustness (2)

Inequality and poverty indices respond differently to
contamination
Consider two important members of WQAD class

IF in general case:
ϕ (z,µ(F))−WQAD(F)+ [z−µ(F)]

∫
ϕµ (z,µ(F)) dF(z)

Inequality
Compute IF for GE:

ϕ (z,µ(F)) = [z/µ(F)]ξ−1
ξ 2−ξ

unbounded for all values of ξ

also unbounded effect on mean

Poverty
take ASP case (fixed poverty line ζ0):
IF(z;P,F) = p(z,ζ0)−P(F)

example (FGT): p(z,ζ0) = [max(1− z/ζ0,0)]
ξ
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Robustness (3)

Use parametric f (y;θ)for part of the income distribution?

MLE are efficient but usually non-robust

M-estimators characterised by
∑

n
i=1 ψ(yi;θ) = 0,ψ :R×Rp→ Rp

OBRE defined as solution in θ of

∑
n
i=1 ψ(xi;θ) = ∑

n
i=1 [s(xi;θ)−a(θ)] ·Wc(xi;θ) = 0

c≥√p, fixed a bound on the IF

weights: Wc(x;θ) = min
{

1 ; c
‖A(θ)[s(x;θ)−a(θ)]‖

}
scores function, s(x;θ) = ∂/∂θ log f (x;θ)

p×p matrix A(θ) and a(θ) ∈ Rp :

E
[
ψ(x;θ)ψ(x;θ)T

]
=
[
A(θ)TA(θ)

]−1; E [ψ(x;θ)] = 0
c: regulator between efficiency (high) and robustness (low)
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Censoring and Truncation

Empirical distribution is random

Fixed boundaries (z,z) on excluded portion

Therefore size of excluded portions (β ,1− β̄ ) is random
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Censoring and Truncation

A: replace support (y,y) by narrower truncation limits (z,z)

then as full info

B: Censoring with minimal information

if we do not use the observed point masses at z and z, this
could be just treated as case A

need: n (the full sample size), n ( #observations equal to z)
and n (#observations equal to z)

C: Censoring with rich information

carry out inference on Lorenz-curve ordinates and some
welfare indices
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Censoring, Case C

Need to modify statistics to take account of missing portions

At the bottom of the distribution:

ĉlow := 1
n ∑

n
i=1 y(i)

ŝlow := 1
n ∑

n
i=1 y2

(i)

At the top of the distribution:

ĉhigh := 1
n ∑

n
n−n+1 y(i)

ŝhigh := 1
n ∑

n
n−n+1 y2

(i)

Asymptotic covariance:

ω̂qq′ := ŝq +[qŷq− ĉq]
[
ŷq′ −q′ŷq′ + ĉq′

]
− ŷqĉq

ĉq := ĉlow + 1
n ∑

κ(n,q)
i=κ(n,β )+1 y(i)

ŝq := ŝlow + 1
n ∑

κ(n,q)
i=κ(n,β )+1 y2

(i)
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ŝhigh := 1
n ∑

n
n−n+1 y2

(i)

Asymptotic covariance:

ω̂qq′ := ŝq +[qŷq− ĉq]
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Trimming

Fixed proportion of the sample discarded
remove outliers for robustness reasons?

proportions (β ,1− β̄ ) removed from the (bottom, top)
yβ and y

β
are random



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Trimming

Fixed proportion of the sample discarded
remove outliers for robustness reasons?

proportions (β ,1− β̄ ) removed from the (bottom, top)
yβ and y

β
are random



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Trimming

Fixed proportion of the sample discarded

remove outliers for robustness reasons?

proportions (β ,1− β̄ ) removed from the (bottom, top)
yβ and y

β
are random



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Trimming

Fixed proportion of the sample discarded
remove outliers for robustness reasons?

proportions (β ,1− β̄ ) removed from the (bottom, top)
yβ and y

β
are random



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Trimming

Fixed proportion of the sample discarded
remove outliers for robustness reasons?

proportions (β ,1− β̄ ) removed from the (bottom, top)
yβ and y

β
are random



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Trimming: inference

Inference on full distribution, known proportions trimmed

The trimmed distribution

F̃β (y) :=



0 if y < Q(F,β )

b
[
F(y)−β

]
if Q(F,β )≤ y < Q(F,β )

1 if y≥ Q(F,β )

.

b := 1/
[
β̄ −β

]
Key statistics:

income cumulations cβ ,q := C(F̃β ;q) = b
∫ yq

yβ
ydF(y)

mean µβ := µ(F̃β )

sβ ,q := S(F̃β ;q) := b
∫ yq

yβ
y2 dF(y)
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Trimming: GLC (1)

Drawing GLC is easy because

C(F̃β ;q) = b
[
C(F;q)−C(F;β )

]
For inference on GLC or RLC again use the IF method

Need to evaluate
∫

IF(z;C(·;q), F̃β )IF(z;C(·;q′), F̃β )dF(z)

IF(z;C(·;q), F̃β ) =

−cβ ,q +b
[
qyq−βyβ + ι(yq ≥ z)[z− yq]− ι(yβ ≥ z)[z− yβ ]

]
=−cβ ,q +b

[
qyq−βyβ − ι(yq ≥ z)yq + ι(yβ ≥ z)yβ

]
+

b
[
ι(yq ≥ z)− ι(yβ ≥ z)

]
So the asymptotic covariance of

√
nĉβ ,q,

√
nĉβ ,q′ (q≤ q′ ) is

ϖqq′ = b2
[
ωqq′ +ωββ −ωβq−ωβq′

]
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Trimming: GLC (2)

To implement we need the sample analogues

Sample estimates of cumulations

µ̂β := µ(F̃(n)
β

) = b
n ∑

n
i=1 y(i)ι

(
κ(n,β )+1 < i < κ(n,β )

)
Covariance of

√
nĉβ ,q,

√
nĉβ ,q′ (q≤ q′ ) estimated by

ϖ̂qiqj =
[
qiy(i)−βy(1)−∑

i
k=1

y(k)
bnβ

]
×[

[1−qj]y(j)−
[
1−β

]
y(1)+∑

j
k=1

y(k)
bnβ

]
−∑

i
k=1

y(i)y(k)−y2
(k)

bnβ
+

y(1)
[
qiy(i)−βy(i)−∑

i
k=1

y(i)
bnβ

]
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Trimming: QAD Welfare

WQAD(F̃β ) = b
∫

ϕ
(
x,µ(F̃β )

)
dF(x)

ŵQAD,β := WQAD(F̃
(n)
β

) := b
n ∑

n
i=1 ϕ

(
y(i), µ̂β

)
ι(κ(n,β )+1 <

i < κ(n,β ))

IF(z;WQAD, F̃β ) = bϕ

(
max

(
yβ ,min(z,y

β
)
)
,µ(F̃β )

)
−

WQAD(F̃β )+bIF(z,C(·;β ), F̃β )
∫ Q(F,β )

Q(F,β ) ϕµ

(
x,µ(F̃β )

)
dF(x)

Estimate of AV of
√

nWQAD(F̃
(n)
β

) found by computing the
mean of squares of IF(z;WQAD, F̃β ), z = yi, i = 1, . . . ,n.

F∗
β
(y) = F(y), Q(F,β )≤ y < Q(F,β )

The asymptotic variance of
√

nWQAD(F̃
(n)
β

)

b2var(ϕ
(
x,µ(F̃β )

)
;F∗

β
)+

2b3cov
(

x,ϕ
(
x,µ(F̃β )

)
;F∗

β

)∫ Q(F,β )
Q(F,β ) ϕµ

(
x,µ(F̃β )

)
dF(x)+

b4var(x;F∗
β
)
[∫ Q(F,β )

Q(F,β ) ϕµ

(
x,µ(F̃β )

)
dF(x)

]2
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ŵQAD,β := WQAD(F̃
(n)
β

) := b
n ∑

n
i=1 ϕ

(
y(i), µ̂β

)
ι(κ(n,β )+1 <

i < κ(n,β ))

IF(z;WQAD, F̃β ) = bϕ

(
max

(
yβ ,min(z,y

β
)
)
,µ(F̃β )

)
−

WQAD(F̃β )+bIF(z,C(·;β ), F̃β )
∫ Q(F,β )

Q(F,β ) ϕµ

(
x,µ(F̃β )

)
dF(x)

Estimate of AV of
√

nWQAD(F̃
(n)
β

) found by computing the
mean of squares of IF(z;WQAD, F̃β ), z = yi, i = 1, . . . ,n.

F∗
β
(y) = F(y), Q(F,β )≤ y < Q(F,β )

The asymptotic variance of
√

nWQAD(F̃
(n)
β

)

b2var(ϕ
(
x,µ(F̃β )

)
;F∗

β
)+

2b3cov
(

x,ϕ
(
x,µ(F̃β )

)
;F∗

β

)∫ Q(F,β )
Q(F,β ) ϕµ

(
x,µ(F̃β )

)
dF(x)+

b4var(x;F∗
β
)
[∫ Q(F,β )

Q(F,β ) ϕµ

(
x,µ(F̃β )

)
dF(x)

]2



Stat methods

FAC-EF

Introduction

Data

Density
Parametric estimation

Kernel method

Finite-mixture models

Finite sample

Welfare indices
Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons
Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems
Robustness

Incomplete data

Semiparametric
modelling

Conclusions

Trimming: QAD Welfare

WQAD(F̃β ) = b
∫

ϕ
(
x,µ(F̃β )

)
dF(x)
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Trimming: Gini
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β
cβ ,q dq
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−2µβ
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β
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Semi-parametric modelling

An approach to robustness / incomplete information

Semi -parametric model:

apply to proportion β ∈Q of upper incomes
use EDF for remaining 1−β of lower incomes

Main issues
1 What parametric model should be used for the tail?
2 How should the model be estimated?
3 How should the proportion β be chosen?
4 What implications for welfare indices, dominance criteria?
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Semi-parametric distribution

Pareto model has two parameters:

y0 determined by quantile Q(F;1−β )

dispersion parameter α estimated from the data

The semi-parametric distribution :

F̃(y) =


F(y) y≤ Q(F;1−β )

1−β

(
y

Q(F;1−β )

)−α

y > Q(F;1−β )

Density

f̃ (y;α) = βαQ(F;1−β )α y−α−1

f̃ (y1−β ;α) = βα

y1−β
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Parade and Lorenz Curves

Quantile functional Q(F̃;q) =
Q(F;q) q≤ 1−β

Q(F;1−β )
(

1−q
β

)−1/α̂(F̃)
q > 1−β

Cumulative-income functional C(F̃;q) =

∫ Q(F;q)
z ydF(y) q≤ 1−β

C(F̃;q1−β )+β
α̂(F̃)

1−α̂(F̃)
Q(F;1−β )

×

[(
1−q

β

) α̂(F̃)−1
α̂(F̃) −1

]
q > 1−β

.

From this we can derive:
mean µ(F̃) = C(F̃;q1−β )−βQ(F;1−β ) α̂(F̃)

1−α̂(F̃)

semi-parametric RLC: graph of L(F̃;q) = C(F̃;q)
µ(F̃)
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Semi-parametric: estimation method

Fit Pareto to top ten percent of UK net worth

broken line – OLS
solid line – OBRE
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Density estimation, parametric

GB2 distribution encompasses all the standard parametric
distribution for income distribution

A “good” goodness-of-fit criterion is important:

do use the Anderson-Darling statistic, the Cramér-von-Mises
statistic
do use the Cowell-Davidson-Flachaire measure
do not use the χ2 statistic
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Density estimation, semi/non-parametric

Standard kernel-density methods very sensitive to the choice
of the bandwidth

Standard approach (the Silverman rule-of-thumb) is known
to

oversmooth in parts of the distribution where the data are
dense
undersmooth where the data are sparse

Standard approach may not be suitable for income
distributions

typically heavy-tailed

More appropriate method
adaptive kernel
mixture model
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Welfare measures

A global approach to the derivation of variance expressions

all inequality measures
all poverty measures
ordinates of Lorenz curves etc

Method uses the Influence Function to provide a shortcut to
the formulas

Necessary to analyse the tails

plot of Hill estimators
use appropriate methods with heavy-tailed distributions
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Distributional comparisons

Adopt a unified simple approach

apply to the variance and covariance formulas
makes use of the Influence Function
just as with welfare measures

A plot of Lorenz curve differences can provide useful
information

even where Lorenz curves cross
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Data problems

Careful modelling is essential to understand what can be
done

in the case of possible data-contamination
in the case of incomplete data

Again Influence Function is a valuable tool

Try to“patch” an empirical distribution with a parametric
model?

useful for the upper tail

Special attention to the way the parameters of the model are
to be estimated
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