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Functional Principal Component Analysis (FPCA)

@ Principal Component Analysis or PCA is a dimensionality reduction technique for
data sets with many features or dimensions. In particular PCA is extensively used
for data visualization, by providing a " picture” of high-dimensional data in two or
three dimensions, making it easier to interpret.

@ FPCA deals with functions. See Ramsay and Silverman (2005) and Hsing and
Eubank (2015)

@ We consider a L-centered random function Z on [0; 1]. We wish to obtain the
"best” representation of Z on an orthonormal basis 1) = (¢4)den= of L2[0, 1]:

+o0o

Z = (Z,va)

d=1

(considered bases are not random).
It means that for any other orthonormal basis ¢ = (¢4 )den+ of L2[0, 1]

2
| ==

Vincent Rivoirard AHIDI - Verona - Nov. 2024 3/29

IE[HZ - i(z, Waiba
d=1

|z~ i(z, ¢d>¢de], D e N*.
d=1



FPCA: Mercer theorem

To solve the minimization problem, we consider the covariance kernel associated with Z:
K(s,t) =E[Z(s)Z(t)], 0<s,t<1 (remember E[Z] = 0)
and the covariance operator:
MNe: Lp[0,1] +— ]Lgl[O7 1]

f H/O K(s, ) (s)ds,

The operator Ik is self-adjoint, positive-definite and compact. We can apply the spectral
theorem, from which we deduce:

Theorem (Mercer representation)

Assume that K is a continuous kernel on [0, 1] x [0,1]. Then there exists an orthonormal
basis 1) = (14)aen+ consisting of eigenfunctions of Ik such that the corresponding
sequence of eigenvalues \ = (\d)4en+ is nonnegative. The eigenfunctions corresponding
to non-zero eigenvalues are continuous on [0,1] and K has the representation:

K(s,t) = i Ada(s)va(t), 0<s,t<1.

. d=1 .
where the convergence is absolute and uniform.
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FPCA: Karhunen-Loeve representation

@ Under assumptions of the Mercer theorem,

D 2
‘Z(t) - Z\/Eﬁdiﬁd(t)‘ ] -0, £4= (Z,%a)
pra

lim sup E
D—+00 ¢e(0,1]

Vg

We obtain the Karhunen-Loéve representation:

=3 Vst teo1]

The sequence £ = (£4)aen+ is a sequence of non-correlated centered random
variables of variance 1, called the scores.

@ Assume w.l.o.g. A1 > X2 > -+ > Ay > ---. For any orthonormal basis (¢4)den+

[Hz S(Zv ”’"H ] <E VD € N*.
d=1

Je- Sz 0]
d=

@ The Karhunen-Loéve representation of Z is then the central tool for representation
and visualization of the process Z
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- FucionlPCA
FPCA: Summary

For the analysis of a stochastic process Z on [0, 1] such that
E[IZIF] < oo, ElZ]=0.
we consider its kernel K assumed to be continuous
K(s,t) = E[Z(s)Z(¢)]

Mercer expansion:

K(s, t) = Z Aata(s) 1a(t)

Karhunen-Loéve representation:

+o0
Z(t) =V Aalatha(t)
d=1
where in these decompositions (Ad, 1¥d)den+ are eigenelements of the operator
1
F(F)(t) = / K(s, t)f(s)ds, f € La[0,1]
0
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Functional PCA

lllustration: the Brownian motion on [0, 1]

For the analysis of the Brownian motion, W, on [0, 1], we easily obtain for 0 < s, t <1,

K(s,t) = min(s, t) = Z Aata(s) a(t),

d=1
with
1

A =St
BEEECEDE

ba(t) = V2sin ((d - %)m), d>1

and

w(t)=vay e, = 2) ) ggd_j;):t) |

The sequence £ = (£4)qen~ is a sequence of non-correlated centered random variables of
variance 1 with Gaussian distribution.
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Statistical illustration: analysis of temperature curves. (1)

10 20

Temperature (°C)
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Source: Ramsay and Silverman (2005) and Ramsay, Hooker and Graves (2009)

@ Each curve is the evolution of the mean temperature of a Canadian city. We denote
by Z; the curve corresponding to the i-th city and we model Z1,...,Z, ~iiq4 Z

@ Karhunen-Loéve representation of Z :
Z(t) = E[Z()] + Y VAe&ia(t).
d>1
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Functional PCA

Statistical illustration: analysis of temperature curves (I1)

Z(t) =BZ(6)] + D v Aakathal?) a o/
d>1 * e ) \
= BIZ(0)] + VA&ata (1) + VRabata(t) + 3 VAdkata(t)

For each city 1/,

Zi(t) = E[Z()][+vV A&t () +V it (t)+ | VAd€iaa(t) s

d>3

Every term of the expansion has to be estimated.

We estimate &y = (Z; — E[Z(t)],%4)/v/Ad, by &g = (Zi — Zs, ﬂ;d)/\/}\\»w
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PCA for Point Processes
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PCA for Point Processes

Our contribution: PCA for Point Processes

Earthquakes data Single-Cell Chromatin data Neuronal spike data

City

Date

@ A (temporal) point process N = (N;); is a random countable set of points of R

@ For dimension reduction and vizualization purposes, can we develop a specific
framework for point processes?

@ In the sequel, we assume that we observe n i.i.d. point processes (N*, N?, ..., N")
with the same distribution as N.
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PCA for Point Processes

PCA for point processes: state of the art

Neuronal spike data

Earthquakes data

City

Date

Single-Cell Chromatin data

@ lllian, Benson, Crawford and Staines (2006), Manté, Yao and Degiovanni (2007)
and Wu, Miiller and Zhang (2013) proposed to apply FPCA to the intensity
processes associated with point processes. Note that these intensities are not

observed.

@ Carrizo Vergara (2022) proposed a framework to get series expansions for general

random measures.
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Karhunen-Loeve and Mercer theorems for PP (1)

@ Considering n i.i.d. temporal point processes (N1, Na, ..., N,), observed on the time
interval [0, 1], we set for any Borelian set B,

Mi(B) = Y 1(repy = Card(N; N B) (€ N).
Ten;
Hence, MMy, ..., M, is a sample of random measures with the same distribution as I1.
@ We assume that E[MM%(]0,1])] < 400 and we set for any B and B’,
A(B) =T(B)— m(B), m(B)=E[N(B)]
and
Ca(B x B") = Cov(N(B),N(B")) = E [A(B)A(B')]
@ To use standard tools of fPCA and we introduce for any random measure p
Fﬂ(t):ﬂ([07 t])7 te [07 1]
and
Ka(s,t) = Ca([0,s] x [0, t]) = E[Fa(s)Fa(t)], s,t€[0,1]
@ Assuming that Ka is continuous, Mercer's theorem applies and Ka writes:
Ka(s,t) =Y Nei(s)uy(t), s te€[0,1]
jz1
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Karhunen-Loeve and Mercer theorems for PP (I)

Ka(s,t) =Y Nus(s)y(t), s, t€[0,1]

jz1

We assume that E[N?([0, 1])] < +oo and Ka is continuous. Then

@ There exists a signed measure i that verifies
¥i(t) = p([0, t]) = Fu(t), te€[0,1]

@ Karhunen-Loéve expansion: there exists a sequence {&;}j>1 of uncorrelated real
random variables of mean zero and variance one such that

2

J
J—IlTooE - m—Zﬁjgjuj =0
Jj=1 H—1
© Mercer theorem for Ca: J
im 11Ca — Z Ajj @ pj =0
Jj=1 H—2
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Karhunen-Loeéve and Mercer theorems for PP (1)

@ Convergence in a strong sense: on H ! for KL and 2 for Mercer with

el = SUP{KML) feHgand Y [|daf|? < 1}-

o<k
and
- {f € L2(1) : uf € L2(1) for all |a] < k}

@ Consequence: For l1; the random measure associated with N;,

+o0
Mi(B)=m(B)+ > VN&uw(B), BeB
j=1
or

+o0
n;i([o, t]) = m([o, t])+z \/)‘jgl'JF/«Lj(t): t>0
. j=1
Terminology:
- The p;'s are called the principal measures
- The &;; are the scores associated with the I1;'s. We easily show:
€= <Fuj7FAf>
o \/XJ
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PCA for Point Processes

Principal elements for the Poisson Process

We consider (Ni, Na, ..., N,) ni.i.d. Poisson processes with intensity function w

assumed to be continuous and positive on (0, 1).

Card(N; N[0, t]) = Ni([0, t]) = /t w(u)du + f \/)\TE,-JFuj(t), t €[0,1],

We can derive the kernel expression: Ka(s,t) = [M™* w(u)du, 0 < s,t < 1.

0

We take j > 1.
@ Homogeneous Poisson process: If w is constant: w = wy

Wo

,\,—:ﬂZU et Fu(t) = V2sin((j — 1/2)t), te€]0,1]

@ /nhomogeneous Poisson process: If w is not constant, we have for j > 1:

PV (fol \ W(u)du)2

A Fy; has at least j zeros on [0,1).
o
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Principal elements for Hawkes processes (1)

We consider (Ni, Ny, ..., N,) ni.i.d. Hawkes processes with intensity function

t

w(t) = wo —I—a/ Cep(<B(t— )N = ta Y exp(—A(t— T)).

e TEN, T<t

with wo >0 and 0 < a < 3. Letwlzgfoazl_wTo/ﬁ_

Card(N; N[0, t]) = N;([0, t]) = wit + f VA Fu (1), t €[0,1],

Assume o < 8 and

a(28 — ) 3—2e (B=)/2 _ g=(B=2)
2 1.
b —a ( + B —a ) <

There exist C; and G, two constants not depending on j such that fro any j > 1,

m2(j —1/2)°
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Principal elements for Hawkes processes (1)

We consider (Ni, Ny, ..., N,) ni.i.d. Hawkes processes with intensity function

w(t) = wo + a/ i exp(—B(t —s))dNs = wo + Z exp(—B(t — T)),

- TeEN, T<t

t

with wo >0 and 0 < o < . Let wi = 2 = 5.

+oo
Card(N; N[0, ]) = Mi([0, t]) = wat + Y \/N&ijFu(t), t €0,1],

Assume o < B and

_ _ 2= (B=a)/2 _ —(B—0)
a(2f — o) (2+3 2e e )<1

B—a B—a
————
=Bx =0, r=a/p <24

There exist C; and C, two constants not depending on j such that fro any j > 1,

w <G sup |Fu(t) — V2sin(r(j — 1/2)t)| < Gj !
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PCA for Point Processes

Principal elements for Hawkes processes (1)

eigenfun

Eigenfunctions for Hawkes Processes with different transfert functions.
Dotted lines: asymptotic eigenfunctions t — v/2sin(7(j — 1/2)t)).
First row: o = 0.13; Second row: « = 0.583; Third row: o = 0.93
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Principal elements for Hawkes processes (I11)

B —— 001 —— 01 —— 1 — 10

a=0.1p a=0.3p a=0.5p a=0.7f a=0.9p

Jog A,

s

log (wn (G — 7/2)%)

Figure: Eigenvalues (log-scale) for Hawkes Processes over 50 replicated. Each dot
corresponds to a value of j € {1,...,50}. The empirical average is plotted vs the
expected theoretical asymptotic regime of eigenvalues in wi/(jm — 7/2)?, as expected.
The black line corresponds to the first bisector, so that the points align if the empirical
convergence matches the theoretical regime.

Each column corresponds to a value of r = g: r=01r=03r=05r=07r=09
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Sketch of the proofs

To determine the (), F,;;)'s, remember that

KA(S7 t) = Z)‘jz/}j(s)djj(t)v s,te [07 1]

jz1

and F,; = 1;. So, we use the covariance operator I'a associated with Ka:

ra(F)() = /01 Ka(-, t)f(t)dt, fel?

whose eigenelements are the (), Fy,;)'s. We finally show:

We set H;(t) = [} Fy;(s)ds, t € [0,1]. Then, (\;, Fy;)j>1 are the eigenelements of the
operator ['a if and only if (A, H;j)j>1 are solutions of the following system:
1

=y (t) = w(t)y(t) —i—/ M(s,t)y(s)ds, te(0,1),
y(1)=0, y'(0)=0.

- For the Poisson process, w is the intensity of the process and M = 0.
- For the Hawkes process with exponential self-exciting function, w(t) = wi and M is an
exponential convolution kernel.

o
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Estimation of eigenelements
Recall that the (\j,;);j>1s are the eigenelements of ['a, with
1
Fa(f)(s) = / Ka(s, t)f(t)dt, A(B)=nN(B)—E[N(B)]
0

and
Ka(s,t) = Ca([0,s] x [0,t]), Ca(B x B') = Cov(M(B),N(B")).
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Estimation of eigenelements

Recall that the (\j,;);j>1s are the eigenelements of ['a, with

Fa(f)(s) = /0 Ka(s, t)f(t)dt, A(B)=TN(B)—-E[N(B)]

and
Ka(s,t) = Ca([0,s] x [0,t]), Ca(B x B') = Cov(MN(B),N(B)).
We set

n

~ 1

n

—~ ~ ~ 1 . N
Ki(s, t) = Cx([0, s]x[0, t]), CZ(BXB/):;Z > Lyr.resxsy—m(B)xm(B')
i=1 T,T'EN;
and finally
1
FL(F)(s) :/ R (s, t)f(t)dt.
0

Eigenelements of ' are estimated by eigenelements of Fg.
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Estimation of eigenelements

Recall that the (\j,;);j>1s are the eigenelements of ['a, with

Fa(f)(s) = /0 Ka(s, t)f(t)dt, A(B)=TN(B)—-E[N(B)]

and
Ka(s,t) = Ca([0,s] x [0,t]), Ca(B x B') = Cov(MN(B),N(B)).
We set
P
Ki(s,t) = C5([0,s]x[0,t]), Cx(BxB') Z ST 1yrmesxey—m(B)xm(B')
i=1 T, T'eN;
and finally

Fz(f)(s):/0 Ry (s, t)F(t)dt

Eigenelements of ' are estimated by eigenelements of Fg.
- Can we compute eigenelements of FB?
- Do these estimates achieve optimal rates?
21/29



Computing eigenelements of I'§

@ Consider all occurrences sorted in non-decreasing order:

T:ON,-U{O;l} - {0, T, Tz,--~71}
i=1

@ We build the histogram system associated with this grid:

1
e(t) = ———1 (), £=1,...,|T|,
Z( ) \/ﬁ [TZ—IVTZ)( ) | |
Qo Let
AA = /r\'\ ’ .
Ca (< ac e >)15e,wgm

e The matrix 63 is constructed explicitly from the data.

e The eigenvalues of (AJB coincide with the ones of Fﬁ'

e The eigenfunction 1/71 of F& is constructed explicitly from the eigenvector
associated to the j-th largest eigenvalue of (?3:

[T

b= Ve
=1
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PCA for Point Processes

Convergence rates

Assume C4 = E [||Fa||*] < +oo and the eigenvalues ();); are simple. Then, we

have:
(@

= [SUP % - /\jlz] <4
j21 n

Forallj > 1,
A, .
E [|14; — sign((dy, v)l1?] < 320722,

where (Sj = min{)\j — )\jfl; )\j — )\J'Jrl} fOI‘j > 2 and (51 = )\1 — )\2.

& . ~ G
B[l — sign((¥5, ¥ ull3-1 0] < 320, °—
i o WFa) o WiFa) ~
We estimate the scores & ; = i&j by &j = 75 if A >0
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PCA for Point Processes

Application to the exploration of earthquakes

A

City

201 2016 2018 200 2022

Date

Earthquake occurrences in Turkey and neighboring regions of Greece, recorded between
January 2013 and January 2023 in 195 cities. Each line corresponds to a city and each

dot to an earthquake occurrence.

Source : http://wuw.koeri.boun.edu.tr/sismo/2/earthquake-catalog/
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PCA for Point Processes

Study of axis 1

~ ~
(1 Scores &; 1
)
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Breakpoint dates (grey vertical lines) correspond to 2017.07.16 and 2020.11.01.
Scores on [i; are highly correlated with the total number of events of the process.
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Study of axes 2-5
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Application to the genomic data
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G-quadruplexes are secondary structures in DNA or RNA and serve specific
functional purposes. The DNA is split so that each line represents a replication
origin and each point an occurence of a G-quadruplex.
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PCA for Point Processes

Eigenfunctions are oscillating functions

— j=2

o .
10 — j=4

. e — — j=5

Biological single cell data Neuronal spike data
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PCA for Point Processes

Conclusions

@ Conclusions:

We provide a framework to perform PCA for Point Processes
Karhunen-Loéve and Mercer theorems for Point Processes are established
Principal measures for Poisson and Hawkes processes are studied

Parametric convergence rates for the estimators of principal measures are
obtained

@ Reference: PicarDp F., RIVOIRARD V., ROCHE A. AND PANARETOS V. (2024) PCA for
Point Processes. In revision. arXiv:2404.19661

Thank you for your attention.
Questions and remarks are welcomed!
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