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Introduction

➤ Framework: Bayesian parametric model

πn(θ) =
p(y1, . . . , yn | θ)π(θ)

m(y1, . . . , yn)

where θ ∈ Rd and πn(θ) is intractable

➤ Common to use of Gaussian (or symmetric) deterministic approximations of πn(θ)

=⇒ Gaussianity justified in asymptotic regimes by Bernstein–Von Mises type results (e.g.,
Van der Vaart, 2000)

➤ In non-asymptotic settings the posterior distribution often displays substantial asymmetries



Introduction

➤ Recent research proposes more flexible classes of asymmetric approximating densities

=⇒ model specific solutions, higher computational complexity, fewer theoretical guarantees

➤ Aim: To derive class of asymmetric approximations that is:

1 broadly applicable

2 computationally efficient

3 theoretically supported



Skew-symmetric approximations: derivation

Starting point: approximate the posterior distribution πn(θ) with a generic density f∗
θ̃
(θ), symmetric

about θ̃.
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Figure: Target density and Approximating density



Skew-symmetric approximations: derivation

➤ If the posterior is asymmetric with respect to θ̃ the quality of the approximation will be always
sub-optimal

➤ Would f∗
θ̃
(θ) provide a better approximation of a symmetrized version of πn(θ)?

➤ Many different options but, probably, the most natural (see, e.g., Schuster, 1975) is

π̄n,θ̃(θ) =
πn(θ) + πn(2θ̃ − θ)
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Skew-symmetric approximations: derivation
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(a) Target density and Approximating density
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(b) Target density and Skew-symmetric
approximating density



Skew-symmetric approximations: derivation

➤ Clearly, we aim to approximate πn(θ) not π̄n,θ̃(θ)

➤ Key point: πn(θ) and π̄n,θ̃(θ) are related by

πn(θ) = 2π̄n,θ̃(θ)w
∗
θ̃
(θ − θ̃)

where

w∗
θ̃
(θ − θ̃) =

πn(θ)

πn(θ) + πn(2θ̃ − θ)

does not depend on the normalizing constant



Skew-symmetric approximations

➤ In many Bayesian problems, wθ̃∗(·) is available in closed form

➤ This suggests the approximation

q∗
θ̃
(θ) = 2f∗

θ̃
(θ)w∗

θ̃
(θ − θ̃)

which can be shown to be a proper skew-symmetric density (Azzalini and Capitanio, 2003)

➤ If simulating from f∗
θ̃
(θ) is easy then drawing a sample from q∗

θ̃
(θ) can be done at the same cost of

evaluating w∗
θ̃
(θ − θ̃)



Skew-symmetric approximations: derivation
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(a) Target density and Approximating density
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(b) Target density and Skew-symmetric
approximating density



Skew-symmetric approximations: theory

Theorem (Finite–sample accuracy)

Let πn(θ) be the posterior, f∗
θ̃
(θ) be an approximation symmetric about θ̃ ∈ Θ and

q∗
θ̃
(θ) = 2f∗

θ̃
(θ)w∗

θ̃
(θ − θ̃). Then

D[πn(θ) || q∗θ̃(θ)] ≤ D[πn(θ) || f∗
θ̃
(θ)],

for any θ̃ ∈ Θ and n, where π̄n,θ̃(θ) is the symmetrized posterior and D is either the total variation
distance or any α-divergence.

Asymptotic properties: when f∗
θ̃
(θ) = ϕd(θ; θ̃, J

−1

θ̃
) with Jθ̃ = −(∂2/∂θ∂θ⊤) log πn(θ),

Dtv[πn(θ) || q∗θ̃(θ)] = OP (d
3/n)

up to a logarithmic term



Application: logistic regression

We compare Gaussian and skew-symmetric approximations on 3 Logistic regression models with
Gaussian prior, i.e, πn(θ) = ϕd(θ; 0, σ

2Id)
∏n

i=1 p
yi

i (1− pi)
1−yi , yi ∈ {0, 1}, pi = 1/(1 + exp(−x⊤

i θ))

1 Glioma n = 839 d = 24

2 Musk n = 476 d = 167

3 Sonar n = 208 d = 1831

Symmetric approximations: Gaussian Laplace (2nd order Taylor around posterior mode), Gaussian
variational Bayes and Gaussian expectation propagation

Summary statistics: ratio between mean absolute error in estimating the posterior mean and median
made by the Gaussian approximations and their skew-symmetric counterparts



Application: logistic regression

median.bias bias

Glioma n = 839 d = 24
la/ske-la 2.60 2.40
gvb/ske-gvb 1.59 1.57
ep/ske-ep 5.81 1.68

Musk n = 476 d = 167
la/ske-la 1.20 1.20
gvb/ske-gvb 1.09 1.09
ep/ske-ep 1.17 1.01

Sonar n = 208 d = 1831
la/ske-la 1.13 1.13
ep/ske-ep 1.06 1.10



Conclusions

A general methodological framework for obtaining asymmetric approximations of the the posterior
distribution is introduced

The proposed methods provably perform better than standard symmetric approximations not only
asymptotically but also in finite samples regimes

Ongoing work/ future directions: Develop symmetric approximations directly targeting π̄n,θ̃(θ)
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Skew-symmetric distributions

Definition (skew-symmetric distribution (Azzalini and Capitanio, 2003))

A random variable θ ∈ Rd is skew-symmetric if it has density

2p(θ − ξ)w(θ − ξ),

where ξ ∈ Rd, p(·) is a symmetric density about zero and w : Rd → [0, 1] is a skewness-inducing factor
which satisfies 0 ≤ w(x) ≤ 1 and w(−x) = 1− w(x).

I.i.d samples from 2p(θ − ξ)w(θ − ξ) :

1 θ0 ∼ p(θ − ξ)

2 θ = θ0 with probability w(θ0 − ξ) otherwise θ = 2ξ − θ0



Skew-symmetric approximations: theory

Theorem (Optimality of the skewness–inducing factor)

Let πn(θ) be the posterior density, and f∗
θ̃
(θ) be an already–known approximation of πn(θ) which is

symmetric about θ̃ ∈ Θ. Moreover, let q∗
θ̃
(θ) = 2f∗

θ̃
(θ)w∗

θ̃
(θ − θ̃) and define with

qθ̃(θ) = 2f∗
θ̃
(θ)wθ̃(θ − θ̃) an alternative skew–symmetric perturbation of f∗

θ̃
(θ), where wθ̃(θ − θ̃)

correspond to a generic skewing function such that wθ̃(s) ∈ [0, 1] and wθ̃(−s) = 1− wθ̃(s). Then, for

every wθ̃(θ − θ̃), it holds that

D[πn(θ) || q∗θ̃(θ)] ≤ D[πn(θ) || qθ̃(θ)],

for any θ̃ ∈ Θ and sample size n, where D is either the tv distance (Dtv) or any α–divergence (Dα).



Skew-symmetric approximations: theory

Lemma

Let πn(θ) be the posterior distribution and denote with f∗
θ̃
(θ) an already–available approximation of

πn(θ) which is symmetric about the point θ̃ ∈ Θ. Define the symmetrized posterior density about θ̃ as
π̄n,θ̃(θ) = [πn(θ) + πn(2θ̃ − θ)]/2 and let q∗

θ̃
(θ) = 2f∗

θ̃
(θ)w∗

θ̃
(θ − θ̃). Then

D[π̄n,θ̃(θ) || f
∗
θ̃
(θ)] ≤ D[πn(θ) || f∗

θ̃
(θ)],

and
D[πn(θ) || q∗θ̃(θ)] = D[π̄n,θ̃(θ) || f

∗
θ̃
(θ)],

for any θ̃ ∈ Θ and sample size n, where D is either the tv distance (Dtv) or any α–divergence (Dα).



Skew-symmetric approximations: theory (Pozza et al., 2024+)

➤ The method improves any symmetric approximation. Natural to perturb routinely implemented
approximations such as Laplace, Gaussian Expectation Propagation and Gaussian Variational
Bayes.

➤ Laplace:

➤ Mean = posterior mode θ̂

➤ Covariance matrix = Ω̂ = −(ℓ̃
(2)

θ̂
)−1

gives the skew-symmetric approximation: 2ϕd(θ; θ̂, Ω̂)w
∗
θ̃
(θ − θ̃)

=⇒ Closely related to the asymptotic version given in Durante et al. (2024)

2ϕd(θ; θ̂, Ω̂)Φ
(√2π

12
ℓ̃θ̂,stl(θ − θ̂)s(θ − θ̂)t(θ − θ̂)l

)
(same asymptotic accuracy)



Efficient evaluation skewness-inducing factor

➤ wθ̂(θ) requires two un-normalized posterior evaluations

➤ In many models, the log-likelihood has the form ℓ(θ) =
∑n

i=1 g(x
⊤
i θ) where g is O(1) and x⊤

i θ is
O(d)

Algorithm: Efficient evaluation wθ̂(θ)

Require: ηi,θ̂ = x⊤
i θ̂

For: i = 1, . . . , n do:

ηi = x⊤
i (θ − θ̂)

Return:
∑n

i=1 g(ηi,θ̂ + ηi,θ) and
∑n

i=1 g(ηi,θ̂ − ηi,θ)



Application: logistic regression

median.bias bias median.µ(θ) mean.µ(θ)

Glioma n = 839 d = 24
la/ske-la 2.60 2.40 2.44 2.64
gvb/ske-gvb 1.59 1.57 2.56 2.76
ep/ske-ep 5.81 1.68 3.02 1.96

Musk n = 476 d = 167
la/ske-la 1.20 1.20 1.24 1.30
gvb/ske-gvb 1.09 1.09 1.13 1.13
ep/ske-ep 1.17 1.01 1.41 1.81

Sonar n = 208 d = 1831
la/ske-la 1.13 1.13 1.20 1.27
ep/ske-ep 1.06 1.10 1.26 1.87
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