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Introduction

» Framework: Bayesian parametric model

_ p(yh < Yn | 9)7‘((0)
mn(6) = m(Y1, - Yn)

where 6 € R? and ,(0) is intractable

» Common to use of Gaussian (or symmetric) deterministic approximations of 7, (6)

— Gaussianity justified in asymptotic regimes by Bernstein—Von Mises type results (e.g.,
Van der Vaart, 2000)

» In non-asymptotic settings the posterior distribution often displays substantial asymmetries



Introduction

» Recent research proposes more flexible classes of asymmetric approximating densities
= model specific solutions, higher computational complexity, fewer theoretical guarantees
» Aim: To derive class of asymmetric approximations that is:

@ broadly applicable
@ computationally efficient

© theoretically supported



Skew-symmetric approximations: derivation

Starting point: approximate the posterior distribution 7,,(0) with a generic density f(6), symmetric
about 6.




Skew-symmetric approximations: derivation

» If the posterior is asymmetric with respect to 0 the quality of the approximation will be always
sub-optimal

» Would fg(ﬁ) provide a better approximation of a symmetrized version of 7,,(60)?

» Many different options but, probably, the most natural (see, e.g., Schuster, 1975) is

_ m(0) + (20 - 6)



Skew-symmetric approximations: derivation
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Skew-symmetric approximations: derivation

» Clearly, we aim to approximate 7,(¢) not 7, 5(f)

» Key point: 7,(0) and 7, 5(6) are related by

7(6) = 27, 4(6)u (0 — 6)
where )
WO ) = e (28— 6)

does not depend on the normalizing constant



Skew-symmetric approximations

» In many Bayesian problems, w;. (-) is available in closed form

» This suggests the approximation

q5(0) = 2f5(0)wz(6 — 0)
which can be shown to be a proper skew-symmetric density (Azzalini and Capitanio, 2003)

> If simulating from f5(0) is easy then drawing a sample from ¢3(6) can be done at the same cost of

evaluating w3 (0 — 0)



Skew-symmetric approximations: derivation
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Skew-symmetric approximations: theory

Theorem (Finite—sample accuracy)

Let 7, (6) be the posterior, f5(0 ) be an approximation symmetric about § € © and
q;(0) = 2f5(0)w;(0 — 0). Then

Dimn(0) || ¢5(0)] < D[mn(6) 1| f5(0)],

for any 6 € © and n, where 7, 5(0) is the symmetrized posterior and D is either the total variation
distance or any «a-divergence.

Asymptotic properties: when f7(0) = ba(6;90, ng) with J; = —(82/9000 ") log m,,(6),

Div[ma(0) | 45(0)] = Op(d®/n)

up to a logarithmic term



Application: logistic regression

We compare Gaussian and skew-symmetric approximations on 3 Logistic regression models with
Gaussian prior, i.e, m,(0) = ¢q(0;0,0%14) [Ti—, P! (1 — pi)* =%, y; € {0,1}, p; = 1/(1 + exp(—z, 0))

Q Glioman=839d=24
@ Musk n =476 d = 167
© Sonar n =208 d = 1831

Symmetric approximations: Gaussian Laplace (2nd order Taylor around posterior mode), Gaussian
variational Bayes and Gaussian expectation propagation

Summary statistics: ratio between mean absolute error in estimating the posterior mean and median
made by the Gaussian approximations and their skew-symmetric counterparts



Application: logistic regression

MEDIAN.BIAS  BIAS
Glioma n =839 d = 24

LA /SKE-LA 2.60 2.40
GVB/SKE-GVB 1.59 1.57
EP/SKE-EP 5.81 1.68
Musk n =476 d = 167

LA /SKE-LA 1.20 1.20
GVB/SKE-GVB 1.09 1.09
EP/SKE-EP 1.17 1.01
Sonar n = 208 d = 1831

LA/SKE-LA 1.13 1.13
EP/SKE-EP 1.06 1.10



Conclusions

@ A general methodological framework for obtaining asymmetric approximations of the the posterior
distribution is introduced

@ The proposed methods provably perform better than standard symmetric approximations not only
asymptotically but also in finite samples regimes

e Ongoing work/ future directions: Develop symmetric approximations directly targeting 7‘rn79~(9)
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Skew-symmetric distributions

Definition (skew-symmetric distribution (Azzalini and Capitanio, 2003))

A random variable # € R? is skew-symmetric if it has density

2p(0 — Huw (0 =),

where ¢ € R?, p(-) is a symmetric density about zero and w : RY — [0, 1] is a skewness-inducing factor
which satisfies 0 < w(z) <1 and w(—z) =1 — w(x).

v

Li.d samples from 2p(6 — &)w(0 — &) :
Q 0y ~p(0—¢)
@ 9 = 6y with probability w(fy — &) otherwise § = 2 — 6,



Skew-symmetric approximations: theory

Theorem (Optimality of the skewness—inducing factor)

Let 7,(0) be the posterior density, and f(6) be an already—known approximation of m,(0) which is
symmetric about § € ©. Moreover, let q5(0) = 2f5(6)w;(0 — 6) and define with

q5(0) = 2f5(0)ws(0 — 6) an alternative skew—symmetric perturbation of f5(0), where ws(6 — 6)
correspond to a generic skewing function such that w(s) € [0,1] and wz(—s) =1 — wy(s). Then, for
every wy(0 — 0), it holds that

Dlmn(0) [ ¢5(0)) < Dlmn (0) || 45(0)],

for any 6 € © and sample size n, where D is either the TV distance (Dyy) or any a~divergence (D).




Skew-symmetric approximations: theory

Lemma
Let 7, (0) be the posterior distribution and denote with f(0) an already-available approximation of
7, (0) which is symmetric about the point 6 € ©. Define the symmetrized posterior density about 6 as
7,.5(0) = [mn(0) + 7m0 (20 — 0)]/2 and let q;(0) = 2f5(0)wj;(0 — 0). Then

D[, 5(0) || f5(0)] < Dlma(8) || f5(0)],
and

D[mn(8) || 45(0)] = Dlm,, 5(0) [| £7(0)],

for any 6 € © and sample size n, where D is either the TV distance (Dyy) or any a~divergence (D).




Skew-symmetric approximations: theory (Pozza et al., 2024+ )

» The method improves any symmetric approximation. Natural to perturb routinely implemented
approximations such as Laplace, Gaussian Expectation Propagation and Gaussian Variational
Bayes.

» Laplace:
» Mean = posterior mode 0
» Covariance matrix = () = —(222))_1
gives the skew-symmetric approximation: 2¢4(6; 6, Q)wg(H —0)

— Closely related to the asymptotic version given in Durante et al. (2024)

264(0: 0, Q)é(gz@m(e —0)s(6— 0),(0 — é)l)

(same asymptotic accuracy)



Efficient evaluation skewness-inducing factor

» w,(0) requires two un-normalized posterior evaluations

» In many models, the log-likelihood has the form £(6) = 3" | g(x] 6) where g is O(1) and 2, 0 is
0(d)

Algorithm: Efficient evaluation w;(6)
Require: 7, ; = z] 0
For: i =1,...,n do:
m= ] (0~ é)
Return: 3°7 | g(n, 5 +ni6) and 35021 g(n; 5 — i)




Application: logistic regression

MEDIAN.BIAS ~ BIAS MEDIAN.u(6) MEAN.u(0)

Glioman =839 d =24

LA/SKE-LA 2.60 2.40 2.44 2.64
GVB/SKE-GVB 1.59 1.57 2.56 2.76
EP /SKE-EP 5.81 1.68 3.02 1.96
Musk n = 476 d = 167

LA/SKE-LA 1.20 1.20 1.24 1.30
GVB/SKE-GVB 1.09 1.09 1.13 1.13
EP /SKE-EP 1.17 1.01 1.41 1.81
Sonar n = 208 d = 1831

LA/SKE-LA 1.13 1.13 1.20 1.27
EP/SKE-EP 1.06 1.10 1.26 1.87
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