Skew-symmetric approximations of posterior distributions

Francesco Pozza

Bocconi Institute for Data Science and Analytics

Joint work with: Daniele Durante and Botond Szabo

AHIDI2024-Verona November 8, 2024

・ロト ・回ト ・ヨト ・ヨト ・ヨー うえぐ

Introduction

Framework: Bayesian parametric model

$$\pi_n(\theta) = \frac{p(y_1, \dots, y_n \mid \theta) \pi(\theta)}{m(y_1, \dots, y_n)}$$

where $\theta \in \mathbb{R}^d$ and $\pi_n(\theta)$ is intractable

> Common to use of Gaussian (or symmetric) deterministic approximations of $\pi_n(\theta)$

 \implies Gaussianity justified in asymptotic regimes by Bernstein–Von Mises type results (e.g., Van der Vaart, 2000)

▶ In non-asymptotic settings the posterior distribution often displays substantial asymmetries

- > Recent research proposes more flexible classes of asymmetric approximating densities
 - \implies model specific solutions, higher computational complexity, fewer theoretical guarantees

∃ \0<</p>\0

- > Aim: To derive class of asymmetric approximations that is:
 - broadly applicable
 - e computationally efficient
 - theoretically supported

Starting point: approximate the posterior distribution $\pi_n(\theta)$ with a generic density $f^*_{\tilde{\theta}}(\theta)$, symmetric about $\tilde{\theta}$.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ■ のぐ?

- If the posterior is asymmetric with respect to θ̃ the quality of the approximation will be always sub-optimal
- > Would $f^*_{\tilde{a}}(\theta)$ provide a better approximation of a symmetrized version of $\pi_n(\theta)$?
- > Many different options but, probably, the most natural (see, e.g., Schuster, 1975) is

$$\bar{\pi}_{n,\tilde{\theta}}(\theta) = \frac{\pi_n(\theta) + \pi_n(2\tilde{\theta} - \theta)}{2}$$

(a) Target density and Approximating density

(b) Target density and Skew-symmetric approximating density

> Clearly, we aim to approximate $\pi_n(\theta)$ not $\bar{\pi}_{n,\tilde{\theta}}(\theta)$

Key point: $\pi_n(\theta)$ and $\bar{\pi}_{n,\tilde{\theta}}(\theta)$ are related by

$$\pi_n(\theta) = 2\bar{\pi}_{n,\tilde{\theta}}(\theta) w^*_{\tilde{\theta}}(\theta - \tilde{\theta})$$

where

$$w_{\tilde{\theta}}^*(\theta - \tilde{\theta}) = \frac{\pi_n(\theta)}{\pi_n(\theta) + \pi_n(2\tilde{\theta} - \theta)}$$

does not depend on the normalizing constant

Skew-symmetric approximations

- > In many Bayesian problems, $w_{\tilde{\theta}^*}(\cdot)$ is available in closed form
- This suggests the approximation

$$q^*_{\tilde{\theta}}(\theta) = 2f^*_{\tilde{\theta}}(\theta)w^*_{\tilde{\theta}}(\theta - \tilde{\theta})$$

which can be shown to be a proper skew-symmetric density (Azzalini and Capitanio, 2003)

▶ If simulating from $f^*_{\tilde{\theta}}(\theta)$ is easy then drawing a sample from $q^*_{\tilde{\theta}}(\theta)$ can be done at the same cost of evaluating $w^*_{\tilde{\theta}}(\theta - \tilde{\theta})$

(a) Target density and Approximating density

(b) Target density and Skew-symmetric approximating density

Skew-symmetric approximations: theory

Theorem (Finite-sample accuracy)

Let $\pi_n(\theta)$ be the posterior, $f^*_{\tilde{\theta}}(\theta)$ be an approximation symmetric about $\tilde{\theta} \in \Theta$ and $q^*_{\tilde{\theta}}(\theta) = 2f^*_{\tilde{\theta}}(\theta)w^*_{\tilde{\theta}}(\theta - \tilde{\theta})$. Then

 $\mathcal{D}[\pi_n(\theta) \mid\mid q^*_{\tilde{\theta}}(\theta)] \le \mathcal{D}[\pi_n(\theta) \mid\mid f^*_{\tilde{\theta}}(\theta)],$

for any $\bar{\theta} \in \Theta$ and n, where $\bar{\pi}_{n,\tilde{\theta}}(\theta)$ is the symmetrized posterior and \mathcal{D} is either the total variation distance or any α -divergence.

Asymptotic properties: when $f_{\tilde{\theta}}^*(\theta) = \phi_d(\theta; \tilde{\theta}, J_{\tilde{\theta}}^{-1})$ with $J_{\tilde{\theta}} = -(\partial^2/\partial\theta\partial\theta^{\top})\log \pi_n(\theta)$, $\mathcal{D}_{\text{TV}}[\pi_n(\theta) \mid\mid q_{\tilde{\theta}}^*(\theta)] = O_P(d^3/n)$

up to a logarithmic term

Application: logistic regression

We compare Gaussian and skew-symmetric approximations on 3 Logistic regression models with Gaussian prior, i.e, $\pi_n(\theta) = \phi_d(\theta; 0, \sigma^2 \mathbb{I}_d) \prod_{i=1}^n p_i^{y_i} (1-p_i)^{1-y_i}$, $y_i \in \{0, 1\}$, $p_i = 1/(1 + \exp(-x_i^\top \theta))$

- **9** Glioma $n = 839 \ d = 24$
- **2** Musk $n = 476 \ d = 167$
- **§** Sonar $n = 208 \ d = 1831$

Symmetric approximations: Gaussian Laplace (2nd order Taylor around posterior mode), Gaussian variational Bayes and Gaussian expectation propagation

Summary statistics: ratio between mean absolute error in estimating the posterior mean and median made by the Gaussian approximations and their skew-symmetric counterparts

Application: logistic regression

	MEDIAN.BIAS	BIAS
Glioma $n = 839 \ d = 24$		
LA/SKE-LA	2.60	2.40
GVB/SKE-GVB	1.59	1.57
EP/SKE-EP	5.81	1.68
Musk $n = 476 \ d = 167$		
LA/SKE-LA	1.20	1.20
GVB/SKE-GVB	1.09	1.09
EP/SKE-EP	1.17	1.01
Sonar $n = 208 \ d = 1831$		
LA/SKE-LA	1.13	1.13
EP/SKE-EP	1.06	1.10

- A general methodological framework for obtaining asymmetric approximations of the the posterior distribution is introduced
- The proposed methods provably perform better than standard symmetric approximations not only asymptotically but also in finite samples regimes
- Ongoing work/ future directions: Develop symmetric approximations directly targeting $\bar{\pi}_{n,\tilde{\theta}}(\theta)$

References

- Azzalini, A. and A. Capitanio (2003). "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution". In: *Journal of the Royal Statistical Society: Series B* (Statistical Methodology) 65.2, pp. 367–389.
- Durante, D., F. Pozza, and B. Szabo (2024). "Skewed Bernstein-von Mises theorem and skew-modal approximations". In: Annals of Statistics (forthcoming), arXiv preprint arXiv:2301.03038.
- Pozza, F., D. Durante, and B. Szabo (2024+). "Skew-symmetric approximations of posterior distributions". In: arXiv preprint arXiv:2409.14167.
- Schuster, E. F. (1975). "Estimating the distribution function of a symmetric distribution". In: *Biometrika* 62.3, pp. 631–635.
- 🔋 Van der Vaart, A. W. (2000). Asymptotic Statistics. Vol. 3. Cambridge University Press.

Definition (skew-symmetric distribution (Azzalini and Capitanio, 2003))

A random variable $heta \in \mathbb{R}^d$ is skew-symmetric if it has density

 $2p(\theta - \xi)w(\theta - \xi),$

where $\xi \in \mathbb{R}^d$, $p(\cdot)$ is a symmetric density about zero and $w : \mathbb{R}^d \to [0,1]$ is a skewness-inducing factor which satisfies $0 \le w(x) \le 1$ and w(-x) = 1 - w(x).

I.i.d samples from $2p(\theta - \xi)w(\theta - \xi)$:

 $\bullet \quad \theta_0 \sim p(\theta - \xi)$

2 $\theta = \theta_0$ with probability $w(\theta_0 - \xi)$ otherwise $\theta = 2\xi - \theta_0$

・ロト・西ト・山田・山田・山口・

Theorem (Optimality of the skewness-inducing factor)

Let $\pi_n(\theta)$ be the posterior density, and $f^*_{\tilde{\theta}}(\theta)$ be an already-known approximation of $\pi_n(\theta)$ which is symmetric about $\tilde{\theta} \in \Theta$. Moreover, let $q^*_{\tilde{\theta}}(\theta) = 2f^*_{\tilde{\theta}}(\theta)w^*_{\tilde{\theta}}(\theta - \tilde{\theta})$ and define with $q_{\tilde{\theta}}(\theta) = 2f^*_{\tilde{\theta}}(\theta)w^*_{\tilde{\theta}}(\theta - \tilde{\theta})$ an alternative skew-symmetric perturbation of $f^*_{\tilde{\theta}}(\theta)$, where $w_{\tilde{\theta}}(\theta - \tilde{\theta})$ correspond to a generic skewing function such that $w_{\tilde{\theta}}(s) \in [0,1]$ and $w_{\tilde{\theta}}(-s) = 1 - w_{\tilde{\theta}}(s)$. Then, for every $w_{\tilde{\theta}}(\theta - \tilde{\theta})$, it holds that

$$\mathcal{D}[\pi_n(\theta) \mid\mid q^*_{\tilde{\theta}}(\theta)] \le \mathcal{D}[\pi_n(\theta) \mid\mid q_{\tilde{\theta}}(\theta)],$$

for any $\tilde{\theta} \in \Theta$ and sample size n, where \mathcal{D} is either the TV distance (\mathcal{D}_{TV}) or any α -divergence (\mathcal{D}_{α}) .

Skew-symmetric approximations: theory

Lemma

Let $\pi_n(\theta)$ be the posterior distribution and denote with $f^*_{\tilde{\theta}}(\theta)$ an already-available approximation of $\pi_n(\theta)$ which is symmetric about the point $\tilde{\theta} \in \Theta$. Define the symmetrized posterior density about $\tilde{\theta}$ as $\bar{\pi}_{n,\tilde{\theta}}(\theta) = [\pi_n(\theta) + \pi_n(2\tilde{\theta} - \theta)]/2$ and let $q^*_{\tilde{\theta}}(\theta) = 2f^*_{\tilde{\theta}}(\theta)w^*_{\tilde{\theta}}(\theta - \tilde{\theta})$. Then

 $\mathcal{D}[\bar{\pi}_{n,\tilde{\theta}}(\theta) \mid\mid f^*_{\tilde{\theta}}(\theta)] \leq \mathcal{D}[\pi_n(\theta) \mid\mid f^*_{\tilde{\theta}}(\theta)],$

and

$$\mathcal{D}[\pi_n(\theta) \mid\mid q^*_{\tilde{\theta}}(\theta)] = \mathcal{D}[\bar{\pi}_{n,\tilde{\theta}}(\theta) \mid\mid f^*_{\tilde{\theta}}(\theta)],$$

for any $\tilde{\theta} \in \Theta$ and sample size n, where \mathcal{D} is either the TV distance (\mathcal{D}_{TV}) or any α -divergence (\mathcal{D}_{α}) .

Skew-symmetric approximations: theory (Pozza et al., 2024+)

- The method improves any symmetric approximation. Natural to perturb routinely implemented approximations such as Laplace, Gaussian Expectation Propagation and Gaussian Variational Bayes.
- ► Laplace:
 - > Mean = posterior mode $\hat{\theta}$
 - > Covariance matrix = $\hat{\Omega} = -(\tilde{\ell}^{(2)}_{\hat{\theta}})^{-1}$

gives the skew-symmetric approximation: $2\phi_d(\theta; \hat{\theta}, \hat{\Omega}) w^*_{\tilde{\theta}}(\theta - \tilde{\theta})$

 \implies Closely related to the asymptotic version given in Durante et al. (2024)

$$2\phi_d(\theta;\hat{\theta},\hat{\Omega})\Phi\Big(\frac{\sqrt{2\pi}}{12}\tilde{\ell}_{\hat{\theta},stl}(\theta-\hat{\theta})_s(\theta-\hat{\theta})_t(\theta-\hat{\theta})_l\Big)$$

(same asymptotic accuracy)

Efficient evaluation skewness-inducing factor

> $w_{\hat{\theta}}(\theta)$ requires two un-normalized posterior evaluations

► In many models, the log-likelihood has the form $\ell(\theta) = \sum_{i=1}^{n} g(x_i^{\top}\theta)$ where g is O(1) and $x_i^{\top}\theta$ is O(d)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Algorithm: Efficient evaluation $w_{\hat{\theta}}(\theta)$ Require: $\eta_{i,\hat{\theta}} = x_i^{\top} \hat{\theta}$ For: i = 1, ..., n do: $\eta_i = x_i^{\top}(\theta - \hat{\theta})$ Return: $\sum_{i=1}^n g(\eta_{i,\hat{\theta}} + \eta_{i,\theta})$ and $\sum_{i=1}^n g(\eta_{i,\hat{\theta}} - \eta_{i,\theta})$

Application: logistic regression

	MEDIAN.BIAS	BIAS	MEDIAN. $\mu(heta)$	MEAN. $\mu(heta)$
Glioma $n = 839 \ d = 24$				
LA/SKE-LA	2.60	2.40	2.44	2.64
GVB/SKE-GVB	1.59	1.57	2.56	2.76
EP/SKE-EP	5.81	1.68	3.02	1.96
Musk $n = 476 \ d = 167$				
LA/SKE-LA	1.20	1.20	1.24	1.30
GVB/SKE-GVB	1.09	1.09	1.13	1.13
EP/SKE-EP	1.17	1.01	1.41	1.81
Sonar $n = 208 \ d = 1831$				
LA/SKE-LA	1.13	1.13	1.20	1.27
EP/SKE-EP	1.06	1.10	1.26	1.87