Fundamental Limits of Membership Inference Attacks on Machine Learning Models

Eric Aubinais

Supervisors Elisabeth Gassiat Pablo Piantanida

AHIDI2024, November 2024

• **Data :** Let $\mathcal{D}_n := \{z_1, \cdots, z_n\}$; $z_j \stackrel{i.i.d.}{\sim} P$ on some space \mathcal{Z} .

- Classification : $\mathcal{Z} := \mathbb{R}^d \times \{1, \cdots, K\}$
- Regression : $\mathcal{Z} := \mathbb{R}^d \times \mathbb{R}$
- Generative : $\mathcal{Z} := \mathbb{R}^d$

4 1 1 4 1 1 1

- **Data :** Let $\mathcal{D}_n := \{z_1, \cdots, z_n\}$; $z_j \stackrel{i.i.d.}{\sim} P$ on some space \mathcal{Z} .
 - Classification : $\mathcal{Z} := \mathbb{R}^d \times \{1, \cdots, K\}$
 - Regression : $\mathcal{Z} := \mathbb{R}^d \times \mathbb{R}$
 - Generative : $\mathcal{Z} := \mathbb{R}^d$
- **Model** : Let $\mathcal{F} := \{\Psi_{\theta}; \theta \in \Theta\}$, Θ being the set of parameters.
 - \mathcal{F} is the set of predictors.

- **Data :** Let $\mathcal{D}_n := \{z_1, \cdots, z_n\}$; $z_j \stackrel{i.i.d.}{\sim} P$ on some space \mathcal{Z} .
 - Classification : $\mathcal{Z} := \mathbb{R}^d \times \{1, \cdots, K\}$
 - Regression : $\mathcal{Z} := \mathbb{R}^d \times \mathbb{R}$
 - Generative : $\mathcal{Z} := \mathbb{R}^d$
- Model : Let $\mathcal{F} := \{ \Psi_{\theta}; \theta \in \Theta \}$, Θ being the set of parameters.
 - \mathcal{F} is the set of predictors.
- Algorithm : Let $\mathcal{A} : \mathcal{M} \to \mathcal{P}(\Theta)$.
 - A is the learning algorithm.
 - $\hat{\theta}_n \sim \mathcal{A}(\hat{P}_n)$ is the learned parameter.

- **Data :** Let $\mathcal{D}_n := \{z_1, \cdots, z_n\}$; $z_j \stackrel{i.i.d.}{\sim} P$ on some space \mathcal{Z} .
 - Classification : $\mathcal{Z} := \mathbb{R}^d \times \{1, \cdots, K\}$
 - Regression : $\mathcal{Z} := \mathbb{R}^d \times \mathbb{R}$
 - Generative : $\mathcal{Z} := \mathbb{R}^d$
- Model : Let $\mathcal{F} := \{ \Psi_{\theta} ; \theta \in \Theta \}$, Θ being the set of parameters.
 - \mathcal{F} is the set of predictors.
- Algorithm : Let $\mathcal{A} : \mathcal{M} \to \mathcal{P}(\Theta)$.
 - A is the learning algorithm.
 - $\hat{\theta}_n \sim \mathcal{A}(\hat{P}_n)$ is the learned parameter.

MIA game

Only having access to $\hat{\theta}_n$, how well can we detect whether a test point $\tilde{z} \in \mathcal{Z}$ was part of \mathcal{D}_n ?

b 4 E b 4 E b

Definition

Membership Inference Attack

Any measurable function $\phi: \Theta \times \mathcal{Z} \rightarrow \{0,1\}$ is called an **MIA**.

- ϕ can be randomized.
- ϕ may have access to additional information.

• • = • • = •

Definition

Membership Inference Attack

Any measurable function $\phi: \Theta \times \mathcal{Z} \rightarrow \{0,1\}$ is called an **MIA**.

- ϕ can be randomized.
- ϕ may have access to additional information.

Accuracy of an MIA

$$Acc_n(\phi; P, A) := P\left(\phi\left(\hat{\theta}_n, \tilde{z}\right) = T\right)$$

Test points are defined as $\tilde{z} := (1 - T)z_0 + TU$ where

• U is uniformly distributed over \mathcal{D}_n , conditionally to \mathcal{D}_n .

•
$$T \sim Ber(1/2)$$
 and $\mathsf{z}_0 \stackrel{i.i.d.}{\sim} P_{\cdot}$

ヘロト 人間ト 人目下 人口下

Fundamental quantity

Lemma 1
Defining
$$\Delta_n(P, \mathcal{A})$$
 as $\left\| P_{(\hat{\theta}_n, z_1)} - P_{\hat{\theta}_n} \otimes P \right\|_{TV}$, we have

$$\sup_{\phi} Acc_n(\phi; P, \mathcal{A}) = 1/2 + 1/2\Delta_n(P, \mathcal{A})$$

イロト イボト イヨト イヨト

э

Fundamental quantity

Lemma 1
Defining
$$\Delta_n(P, \mathcal{A})$$
 as $\left\|P_{\left(\hat{\theta}_{n, \mathbf{z}_1}\right)} - P_{\hat{\theta}_n} \otimes P\right\|_{TV}$, we have
$$\sup_{\phi} Acc_n(\phi; P, \mathcal{A}) = 1/2 + 1/2\Delta_n(P, \mathcal{A})$$

- Different from "usual privacy metrics".
- Holds for any algorithm \mathcal{A} and distribution P.

Questions

- How to audit and control the privacy of an algorithm?
- How to improve the privacy of an algorithm?

э

Hypothesis 1 (H1)

Assume that \mathcal{A} minimizes the empirical loss $L_n : \theta \mapsto \frac{1}{n} \sum_{j=1}^n l_{\theta}(z_j)$ for some loss function $l_{\theta} : \mathcal{Z} \to \mathbb{R}^+$.

$\begin{array}{l} \text{Definition } ((\varepsilon, 1 - \alpha) - \text{overfitting}) \\ \mathcal{A} \text{ is } (\varepsilon, 1 - \alpha) - \text{overfitting for some } \varepsilon \in \mathbb{R}^+ \text{ and } \alpha \in (0, 1) \text{ if} \\ \\ P\left(l_{\hat{\theta}_n}(\mathsf{z}_1) \leq \varepsilon\right) \geq 1 - \alpha \end{array}$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Hypothesis 1 (H1)

Assume that \mathcal{A} minimizes the empirical loss $L_n : \theta \mapsto \frac{1}{n} \sum_{j=1}^n l_{\theta}(z_j)$ for some loss function $l_{\theta} : \mathcal{Z} \to \mathbb{R}^+$.

 $\begin{array}{l} \text{Definition } \left((\varepsilon,1-\alpha)\text{-overfitting}\right)\\ \mathcal{A} \text{ is } (\varepsilon,1-\alpha)\text{-overfitting for some } \varepsilon \in \mathbb{R}^+ \text{ and } \alpha \in (0,1) \text{ if}\\ \\ P\left(l_{\hat{\theta}_n}(\mathsf{z}_1) \leq \varepsilon\right) \geq 1-\alpha \end{array}$

Proposition 1 : H1 + stopping criteria \implies overfitting

Assume H1 holds. For some $\varepsilon \in \mathbb{R}^+$ and $\alpha \in (0, 1)$, assume that \mathcal{A}_{η} with $\eta := \varepsilon \alpha$ stops as soon as $L_n(\hat{\theta}_n) \leq \eta$. Then \mathcal{A}_{η} is $(\varepsilon, 1 - \alpha)$ -overfitting.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Theorem 1

• Assume H1 holds. Assume \mathcal{A} is $(\varepsilon, 1 - \alpha)$ -overfitting. Let $S_{\theta}^{\varepsilon} := \{l_{\theta} \leq \varepsilon\}$. Then

$$\Delta_n(P, \mathcal{A}) \geq 1 - \alpha - \int_{\Theta} P(\mathsf{z} \in S_{\theta}^{\varepsilon}) d\mu_{\hat{\theta}_n},$$

② Under additional hypotheses of continuity, and assuming that A_{η} stops as soon as $L_n \leq \eta$, we have that

$$\lim_{\eta\to 0^+} \Delta_n(P, \mathcal{A}_\eta) = 1.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

- 3

Theorem 1

• Assume H1 holds. Assume \mathcal{A} is $(\varepsilon, 1 - \alpha)$ -overfitting. Let $S_{\theta}^{\varepsilon} := \{l_{\theta} \leq \varepsilon\}$. Then

$$\Delta_n(P, \mathcal{A}) \geq 1 - \alpha - \int_{\Theta} P(\mathsf{z} \in S_{\theta}^{\varepsilon}) d\mu_{\hat{\theta}_n},$$

② Under additional hypotheses of continuity, and assuming that A_{η} stops as soon as $L_n \leq \eta$, we have that

$$\lim_{\eta\to 0^+} \Delta_n(P, \mathcal{A}_\eta) = 1.$$

- Theorem 1.1 holds for any learning task.
- Theorem 1.2 displays low privacy of overtrained parameters.

・ロト ・ 同ト ・ ヨト ・ ヨト

Discrete Data

Hypothesis 2 (H2)

Let
$$P = \sum_{j=1}^{K} p_j \delta_{u_j}$$
. Define $C(P) := \sum_{j=1}^{K} \sqrt{p_j(1-p_j)}$.

A D N A B N A B N A B N

Discrete Data

Hypothesis 2 (H2)

Let
$$P = \sum_{j=1}^{K} p_j \delta_{u_j}$$
. Define $C(P) := \sum_{j=1}^{K} \sqrt{p_j(1-p_j)}$.

Theorem 2

• If $C(P) < \infty$, $n \ge 5$ and $n > 1/p_j$ for all j = 1, ..., n, then there exists a universal constant $c \ge 0.29$ such that

$$c \cdot C(P) n^{-1/2} \leq \max_{\mathcal{A}} \Delta_n(P, \mathcal{A}) \leq rac{1}{2} C(P) n^{-1/2}$$

2 If $C(P) < \infty$ but the condition on *n* doesn't hold, we have

$$\max_{\mathcal{A}} \Delta_n(P, \mathcal{A}) \leq \frac{1}{2} C(P) n^{-1/2}$$

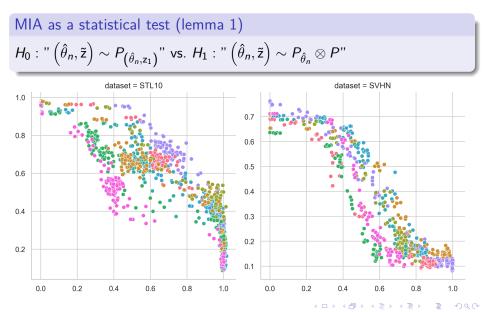
Discretizing may improve privacy.

(日)

Estimating Δ_n

MIA as a statistical test (lemma 1) $H_0: "(\hat{\theta}_n, \tilde{z}) \sim P_{(\hat{\theta}_n, z_1)}"$ vs. $H_1: "(\hat{\theta}_n, \tilde{z}) \sim P_{\hat{\theta}_n} \otimes P"$

Estimating Δ_n



Conclusion

Results

- Overfitting : $\Delta_n(P, \mathcal{A}) \approx 1$
- Discrete data : $\max_{\mathcal{A}} \Delta_n(P,\mathcal{A}) \approx \frac{C(P)}{2} n^{-1/2}$

< □ > < □ > < □ > < □ > < □ > < □ >

Conclusion

Results

- Overfitting : $\Delta_n(P, \mathcal{A}) \approx 1$
- Discrete data : $\max_A \Delta_n(P,\mathcal{A}) pprox rac{C(P)}{2} n^{-1/2}$

Ongoing Works

- Audit of a privacy mechanism.
- Quantization of Parameters.

• • = • • = •

E. Aubinais, E. Gassiat and P. Piantanida

Fundamental Limits of Membership Inference Attacks on MachineLearning Models

http://arxiv.org/abs/2310.13786.

4 1 1 1 4 1 1