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Setting

Data : Let Dn := {z1, · · · , zn} ; zj
i .i .d .∼ P on some space Z.

▶ Classification : Z := Rd × {1, · · · , K}
▶ Regression : Z := Rd × R
▶ Generative : Z := Rd

Model : Let F := {Ψθ; θ ∈ Θ}, Θ being the set of parameters.
▶ F is the set of predictors.

Algorithm : Let A : M → P(Θ).
▶ A is the learning algorithm.
▶ θ̂n ∼ A(P̂n) is the learned parameter.

MIA game
Only having access to θ̂n, how well can we detect whether a test point
z̃ ∈ Z was part of Dn ?
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Definition

Membership Inference Attack
Any measurable function ϕ : Θ × Z → {0, 1} is called an MIA.

ϕ can be randomized.
ϕ may have access to additional information.

Accuracy of an MIA

Accn(ϕ; P, A) := P
(
ϕ

(
θ̂n, z̃

)
= T

)
Test points are defined as z̃ := (1 − T )z0 + TU where

U is uniformly distributed over Dn, conditionally to Dn.
T ∼ Ber(1/2) and z0

i .i .d .∼ P.
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Fundamental quantity

Lemma 1

Defining ∆n(P, A) as
∥∥∥∥P(θ̂n,z1) − Pθ̂n

⊗ P
∥∥∥∥

TV
, we have

sup
ϕ

Accn(ϕ; P, A) = 1/2 + 1/2∆n(P, A)

Different from "usual privacy metrics".
Holds for any algorithm A and distribution P.
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Questions

How to audit and control the privacy of an algorithm ?
How to improve the privacy of an algorithm ?
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Overfitting

Hypothesis 1 (H1)
Assume that A minimizes the empirical loss Ln : θ 7→ 1

n
∑n

j=1 lθ(zj) for
some loss function lθ : Z → R+.

Definition ((ε, 1 − α)−overfitting)
A is (ε, 1 − α)−overfitting for some ε ∈ R+ and α ∈ (0, 1) if

P
(
lθ̂n

(z1) ≤ ε
)

≥ 1 − α

Proposition 1 : H1 + stopping criteria =⇒ overfitting
Assume H1 holds. For some ε ∈ R+ and α ∈ (0, 1), assume that Aη with
η := εα stops as soon as Ln(θ̂n) ≤ η. Then Aη is (ε, 1 − α)−overfitting.
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Overfitting

Theorem 1
1 Assume H1 holds. Assume A is (ε, 1 − α)−overfitting. Let

Sε
θ := {lθ ≤ ε}. Then

∆n(P, A) ≥ 1 − α −
∫

Θ
P(z ∈ Sε

θ )dµθ̂n
,

2 Under additional hypotheses of continuity, and assuming that Aη

stops as soon as Ln ≤ η, we have that

lim
η→0+

∆n(P, Aη) = 1.

Theorem 1.1 holds for any learning task.
Theorem 1.2 displays low privacy of overtrained parameters.
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Discrete Data

Hypothesis 2 (H2)

Let P =
∑K

j=1 pjδuj . Define C(P) :=
∑K

j=1

√
pj(1 − pj).

Theorem 2
1 If C(P) < ∞, n ≥ 5 and n > 1/pj for all j = 1, . . . , n, then there

exists a universal constant c ≥ 0.29 such that

c · C(P)n−1/2 ≤ max
A

∆n(P, A) ≤ 1
2C(P)n−1/2

2 If C(P) < ∞ but the condition on n doesn’t hold, we have

max
A

∆n(P, A) ≤ 1
2C(P)n−1/2

Discretizing may improve privacy.
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Estimating ∆n

MIA as a statistical test (lemma 1)

H0 : ”
(
θ̂n, z̃

)
∼ P(θ̂n,z1)” vs. H1 : ”

(
θ̂n, z̃

)
∼ Pθ̂n

⊗ P”
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Conclusion

Results
Overfitting : ∆n(P, A) ≈ 1
Discrete data : max

A
∆n(P, A) ≈ C(P)

2 n−1/2

Ongoing Works

Audit of a privacy mechanism.
Quantization of Parameters.
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