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Clustering and Hidden Markov Models
Clustering

Clustering is an ill-posed problem which aims to find out interesting

structures in the data or to derive a useful grouping of the observations.

DBSCAN clustering

K-means clustering
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Clustering and Hidden Markov Models

Model-based clustering: Mixture models

Observations Y = (Yk)1<k<n coming from J populations.
Define latent variables X = (Xx)1<k<n such that: for each k,

Y| Xk=j~Ff
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Clustering and Hidden Markov Models

Model-based clustering: Mixture models

Observations Y = (Yk)1<k<n coming from J populations.
Define latent variables X = (Xx)1<k<n such that: for each k,

Vil Xk =j~f
Then Y has distribution
J
>
j=1

7j: Probability to come from population j

Useful to model data coming from heterogeneous populations.
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Mixture models: ldentifiability

Mixture models are not identifiable :

J ™ £ £ J
Z _ 71 m1 5 1+ maf
j:171'j)5'— 7f1+ <2+7T2) <M> +j_537rjf}
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Mixture models: ldentifiability

Mixture models are not identifiable :

J m™ £ J
st m 1+ mofy

E 7TJ6:2f1+<2+7T2) <2>+ 537'['_,'6'

™
5 1 M2 =

Learning of population components possible only under additional
structural assumptions such as:

@ Parametric mixtures

@ Shape restrictions (gaussian, multinomial, ...)

— Might lead to poor results in practice
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Clustering and Hidden Markov Models

Hidden Markov Models and why they are useful

Markov process :

Observations : @ @ @

Figure: A Hidden Markov Model.

Latent (unobserved) variables (Xk)x form a Markov chain.
Observations (Y )k are independent conditionnally to (X ).
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Clustering and Hidden Markov Models

Hidden Markov Models and why they are useful

Markov process :

Observations : @ @ @

Figure: A Hidden Markov Model.

Latent (unobserved) variables (Xk)x form a Markov chain.
Observations (Y )k are independent conditionnally to (X ).

HMMs are identifiable without any shape restriction!
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Outline

© Clustering vs Classification
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Clustering vs Classification

Risk of classification

Consider the classification loss function:

1.0
Ll(X{:m Xl:n) = n Z 1X;(7£Xk
k=1
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Clustering vs Classification

Risk of classification

Consider the classification loss function:
1 n
!
Ll(Xl:m X1:n) = n Z 1X;(7£Xk
k=1

Let 6 = (1/, Q, (fX)lgng) denote the model parameters.
The risk associated to a classifier h = (h;);<;,, is:

1.0
,RzlszS(e7 h) = Eg[L1(h(Y1:n), X1.n)] = Eg ln Z ]-hi(ylcn)#xi‘|
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Clustering vs Classification

Risk of classification

Consider the classification loss function:
1 n
!
Ll(Xl:m X1:n) = n Z 1X;(75Xk
k=1

Let § = ( Q, (1, )1<X<J) denote the model parameters.
The risk associated to a classifier h = (h;);<;,, is:

,RzlszS(e7 h) = Eg[L1(h(Y1:n), X1.n)] = Eg [ Z 1, (Y1:n #X:‘|

The Bayes risk of classification corresponds to inf, RS#55(6, h) and the
Bayes classifier has a closed formula:

hg = (Pp (Xi = . | Yl:n))1§i§n
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Clustering vs Classification

Risk of clustering

To measure the loss between two partitions A and B of {1, .., n}, we use
the loss

(A, B)=1— 1 sup > Card(CNC')

N mce(AB)
=\ C,C'teM
Mis a matching {c.crke
between A and B
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Clustering vs Classification

Risk of clustering

To measure the loss between two partitions A and B of {1, .., n}, we use
the loss

(A, B)=1— ! sup > Card(CNC')

N mce(AB)
=<\ C,C'teM
Mis a matching {c.crke
between A and B

where the supremum is over the set of matchings which are subsets of the
edge set £(A,B) ={{C,C'} : Ce A, C' € B}.

A

(9)
(%)
©)
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Clustering vs Classification

Risk of clustering

We first define the map 7, by:

Tolxin) = {{i © xi=a} 1 ae {1,., 1N\{2)}
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Clustering vs Classification

Risk of clustering

We first define the map 7, by:
Ta(xin) ={{i : xi=a} : ae{l,.,J}}\{o}

The risk of a clusterer g can be defined as:

RE’”“(&g) = Eg [L2(g( Y1:n), mn(X1:n))]
where

- mn(Xi:n) is the partition induced by the labels Xj.,
- g(Yi:n) is the partition generated by the clusterer g
The Bayes risk of clustering corresponds to inf, Rust(9, g).
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Clustering vs Classification

Risk of clustering

We first define the map 7, by:

Tolxin) = {{i © xi=a} 1 ae {1,., 1N\{2)}

The risk of a clusterer g can be defined as:

RE’”“(&g) = Eg [L2(g( Y1:n), mn(X1:n))]
where

- mn(Xi:n) is the partition induced by the labels Xj.,
- g(Yi:n) is the partition generated by the clusterer g

The Bayes risk of clustering corresponds to inf, Rust(9, g).
Questions:
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Clustering vs Classification

Risk of clustering

We first define the map 7, by:

Ta(xin) ={{i : xi=a} : ae{l,.,J}}\{o}

The risk of a clusterer g can be defined as:

Rzlust(e’g) = EG [L2(g( Yl:n)a 7Tn()<1:n))]
where
- mn(Xi:n) is the partition induced by the labels Xj.,

- g(Yi:n) is the partition generated by the clusterer g

The Bayes risk of clustering corresponds to inf, Rust(9, g).
Questions:

- Is there any relationship between the Bayes classifier and the Bayes
clusterer? If so, under what condition?
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Clustering vs Classification

Risk of clustering

We first define the map 7, by:

Ta(xin) ={{i : xi=a} : ae{l,.,J}}\{o}

The risk of a clusterer g can be defined as:

RE’““(&g) = Eg [L2(g(Y1:n), Tn(X1:n))]
where
- mn(Xi:n) is the partition induced by the labels Xj.,
- g(Yi:n) is the partition generated by the clusterer g
The Bayes risk of clustering corresponds to inf, Rust(9, g).
Questions:
- Is there any relationship between the Bayes classifier and the Bayes
clusterer? If so, under what condition?
- Under what condition do the Bayes risk of classification and the
Bayes risk of clustering have the same magnitude? In what sense?
] AHIDI2024 9/16



Clustering vs Classification

Relationship between the minimizers

Let J the number of hidden states. Let @ the set of parameters for
which observations are independent (all the lines of the transition matrix
Q are equal,...) and let @3°P be the set of the remaining parameters. We
recall that gy is the Bayes clusterer and hj the Bayes classifier.

AHIDI2024 10/16



Clustering vs Classification

Relationship between the minimizers

Let J the number of hidden states. Let ©™d the set of parameters for
which observations are independent (all the lines of the transition matrix
Q are equal,...) and let @3°P be the set of the remaining parameters. We
recall that gy is the Bayes clusterer and hj the Bayes classifier.

Theorem

If J =2, then for all € ©™4 and all n > 2.

gg(ylzn) =Tnpo hg(YLn) Py-a.s.
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Relationship between the minimizers

Let J the number of hidden states. Let ©™d the set of parameters for
which observations are independent (all the lines of the transition matrix
Q are equal,...) and let @3°P be the set of the remaining parameters. We
recall that gy is the Bayes clusterer and hj the Bayes classifier.

Theorem

If J =2, then for all € ©™4 and all n > 2.

gg(ylzn) =Tnpo hg(YLn) Py-a.s.

Theorem
IfJ>2orf e ©%r then for all n > 2.

Pg (gg(yln) 7& Tp O hg(yln)) > 0.
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Clustering vs Classification

Relationship between the Bayes risks

Theorem

Assume § = min; ; Q;; > 0. For J=2 and 0 Ond | @der | there exist
c,c’, B> 0 depending only on § such that

(1 _ \/ﬁ) inf RC/aSS(Q h) InfRCIUSt(Q,g) < ir)]f Rﬁ/ass(e’ h)
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Clustering vs Classification

Relationship between the Bayes risks

Theorem

Assume § = min; ; Q;; > 0. For J=2 and 0 Ond | @der | there exist
c,c’, B> 0 depending only on § such that

(1 - ﬁ) inf RE#5(0, h) < mfRC’usf(e,g) < irAfRﬁ’ass(Q, h)
For J>?2 and € @4 U @deP and all n > 1

/
(1 - \Cﬁ) inf R#(6, h) — J2e™" < inf RE™(6, ) < inf RS (0, h)

v
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Analyzing the Bayes risk of clustering

Theorem

Assume 6 = min,-J Q;,j > 0. Then,
- When J =2

5(1 = ay) /fo/\fl < inf RS0, 8) < (1) /ﬁ)/\fl
- When J > 2
5(1 —ap)Ah— e < inf R, g) < (1 —38)A

where o, decays to 0 and 3 depends on § and J and

/ min f(y)dy

1<XO<J
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Simulations

Examples where HMMs are useful

Data are generated through the same transition matrix Q = (83 85)

o First example: A sample of size n = 5.10* is generated from two
gaussian mixtures :3 (N(1.7,0.2) + N/(7,0.15)) and
3 (N(3.5,0.2) + N (5,0.4)).

o Second example: A sample of size n = 10° is generated from two
gaussian mixtures :3 (AV(3,0.6) +A/(7,0.4)) and
T (N(5,0.3) + N (9,0.4)).

Purpose: Retrieve the sequence of hidden states using only the
observations.
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Example 1
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Figure: Histograms of the clusters. Left: clustering using plug-in classifier. Right:
K-means clustering
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Example 2
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Figure: Histograms of the clusters. Left: clustering using plug-in classifier. Right:
K-means clustering
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Simulations

Clustering errors

Bayes classifier

Plug-in classifier

K-means algorithm

Example 1
Example 2

1.56%
6.42%

1.61%
6.51%

46.7%
47.3%

Table: Errors of clustering using 3 algorithms: the Bayes classifier (using the true
model parameters), the plug-in classifier (using the estimated parameters) and
the K-means algorithm.
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