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Clustering and Hidden Markov Models

Clustering

Clustering is an ill-posed problem which aims to find out interesting
structures in the data or to derive a useful grouping of the observations.
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Clustering and Hidden Markov Models

Model-based clustering: Mixture models

Observations Y = (Yk)1≤k≤n coming from J populations.
Define latent variables X = (Xk)1≤k≤n such that: for each k,

Yk | Xk = j ∼ fj

Then Yk has distribution
J∑

j=1
πj fj

πj : Probability to come from population j

Useful to model data coming from heterogeneous populations.
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Clustering and Hidden Markov Models

Mixture models: Identifiability

Mixture models are not identifiable :
J∑

j=1
πj fj = π1

2 f1 +
(

π1
2 + π2

)( π1
2 f1 + π2f2

π1
2 + π2

)
+

J∑
j=3

πj fj

Learning of population components possible only under additional
structural assumptions such as:

Parametric mixtures
Shape restrictions (gaussian, multinomial, ...)

−→ Might lead to poor results in practice
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Clustering and Hidden Markov Models

Hidden Markov Models and why they are useful

Markov process : X0 X1 X2 · · · XT−1

Observations : Y0 Y1 Y2 · · · YT−1

Figure: A Hidden Markov Model.

Latent (unobserved) variables (Xk)k form a Markov chain.
Observations (Yk)k are independent conditionnally to (Xk)k .

HMMs are identifiable without any shape restriction!
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Clustering vs Classification
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Clustering vs Classification

Risk of classification
Consider the classification loss function:

L1(x ′
1:n, x1:n) = 1

n

n∑
k=1

1x ′
k ̸=xk

Let θ =
(
ν, Q, (fx )1≤x≤J

)
denote the model parameters.

The risk associated to a classifier h = (hi)1≤i≤n is:

Rclass
n (θ, h) = Eθ[L1(h(Y1:n), X1:n)] = Eθ

[
1
n

n∑
i=1

1hi (Y1:n )̸=Xi

]

The Bayes risk of classification corresponds to infh Rclass
n (θ, h) and the

Bayes classifier has a closed formula:

h⋆
θ = (Pθ (Xi = . | Y1:n))1≤i≤n

AHIDI2024 7 / 16



Clustering vs Classification

Risk of classification
Consider the classification loss function:

L1(x ′
1:n, x1:n) = 1

n

n∑
k=1

1x ′
k ̸=xk

Let θ =
(
ν, Q, (fx )1≤x≤J

)
denote the model parameters.

The risk associated to a classifier h = (hi)1≤i≤n is:

Rclass
n (θ, h) = Eθ[L1(h(Y1:n), X1:n)] = Eθ

[
1
n

n∑
i=1

1hi (Y1:n )̸=Xi

]

The Bayes risk of classification corresponds to infh Rclass
n (θ, h) and the

Bayes classifier has a closed formula:

h⋆
θ = (Pθ (Xi = . | Y1:n))1≤i≤n

AHIDI2024 7 / 16



Clustering vs Classification

Risk of classification
Consider the classification loss function:

L1(x ′
1:n, x1:n) = 1

n

n∑
k=1

1x ′
k ̸=xk

Let θ =
(
ν, Q, (fx )1≤x≤J

)
denote the model parameters.

The risk associated to a classifier h = (hi)1≤i≤n is:

Rclass
n (θ, h) = Eθ[L1(h(Y1:n), X1:n)] = Eθ

[
1
n

n∑
i=1

1hi (Y1:n )̸=Xi

]

The Bayes risk of classification corresponds to infh Rclass
n (θ, h) and the

Bayes classifier has a closed formula:

h⋆
θ = (Pθ (Xi = . | Y1:n))1≤i≤n

AHIDI2024 7 / 16



Clustering vs Classification

Risk of clustering
To measure the loss between two partitions A and B of {1, .., n}, we use
the loss

L2(A, B) = 1 − 1
n sup

M⊆E(A,B)
M is a matching
between A and B

∑
{C ,C ′}∈M

Card(C ∩ C ′)

where the supremum is over the set of matchings which are subsets of the
edge set E(A, B) := {{C , C ′} : C ∈ A, C ′ ∈ B}.
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Clustering vs Classification

Risk of clustering
We first define the map πn by:

πn(x1:n) = {{i : xi = a} : a ∈ {1, .., J}}\{∅}

The risk of a clusterer g can be defined as:

Rclust
n (θ, g) := Eθ [L2(g(Y1:n), πn(X1:n))]

where
- πn(X1:n) is the partition induced by the labels X1:n
- g(Y1:n) is the partition generated by the clusterer g

The Bayes risk of clustering corresponds to infg Rclust
n (θ, g).

Questions:
- Is there any relationship between the Bayes classifier and the Bayes

clusterer? If so, under what condition?
- Under what condition do the Bayes risk of classification and the

Bayes risk of clustering have the same magnitude? In what sense?
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Clustering vs Classification

Relationship between the minimizers

Let J the number of hidden states. Let Θind the set of parameters for
which observations are independent (all the lines of the transition matrix
Q are equal,...) and let Θdep be the set of the remaining parameters. We
recall that g⋆

θ is the Bayes clusterer and h⋆
θ the Bayes classifier.

Theorem
If J = 2, then for all θ ∈ Θind and all n ≥ 2.

g⋆
θ (Y1:n) = πn ◦ h⋆

θ(Y1:n) Pθ-a.s.

Theorem
If J > 2 or θ ∈ Θdep, then for all n ≥ 2.

Pθ (g⋆
θ (Y1:n) ̸= πn ◦ h⋆

θ(Y1:n)) > 0.

AHIDI2024 10 / 16



Clustering vs Classification

Relationship between the minimizers

Let J the number of hidden states. Let Θind the set of parameters for
which observations are independent (all the lines of the transition matrix
Q are equal,...) and let Θdep be the set of the remaining parameters. We
recall that g⋆

θ is the Bayes clusterer and h⋆
θ the Bayes classifier.

Theorem
If J = 2, then for all θ ∈ Θind and all n ≥ 2.

g⋆
θ (Y1:n) = πn ◦ h⋆

θ(Y1:n) Pθ-a.s.

Theorem
If J > 2 or θ ∈ Θdep, then for all n ≥ 2.

Pθ (g⋆
θ (Y1:n) ̸= πn ◦ h⋆

θ(Y1:n)) > 0.

AHIDI2024 10 / 16



Clustering vs Classification

Relationship between the minimizers

Let J the number of hidden states. Let Θind the set of parameters for
which observations are independent (all the lines of the transition matrix
Q are equal,...) and let Θdep be the set of the remaining parameters. We
recall that g⋆

θ is the Bayes clusterer and h⋆
θ the Bayes classifier.

Theorem
If J = 2, then for all θ ∈ Θind and all n ≥ 2.

g⋆
θ (Y1:n) = πn ◦ h⋆

θ(Y1:n) Pθ-a.s.

Theorem
If J > 2 or θ ∈ Θdep, then for all n ≥ 2.

Pθ (g⋆
θ (Y1:n) ̸= πn ◦ h⋆

θ(Y1:n)) > 0.

AHIDI2024 10 / 16



Clustering vs Classification

Relationship between the Bayes risks

Theorem
Assume δ = mini ,j Qi ,j > 0. For J = 2 and θ ∈ Θind ∪ Θdep, there exist
c, c ′, β > 0 depending only on δ such that(

1 − c√
n

)
inf
h

Rclass
n (θ, h) ≤ inf

g
Rclust

n (θ, g) ≤ inf
h

Rclass
n (θ, h)

For J > 2 and θ ∈ Θind ∪ Θdep and all n ≥ 1(
1 − c ′

√
n

)
inf
h

Rclass
n (θ, h) − J2e−nβ ≤ inf

g
Rclust

n (θ, g) ≤ inf
h

Rclass
n (θ, h)
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Clustering vs Classification

Analyzing the Bayes risk of clustering

Theorem

Assume δ = mini ,j Qi ,j > 0. Then,
- When J = 2

δ(1 − αn)
∫

f0 ∧ f1 ≤ inf
g

Rclust
n (θ, g) ≤ (1 − δ)

∫
f0 ∧ f1

- When J > 2

δ(1 − αn)Λ − J2e−nβ ≤ inf
g

Rclust
n (θ, g) ≤ (1 − δ) Λ

where αn decays to 0 and β depends on δ and J and

Λ =
∫

min
1≤x0≤J

∑
x ̸=x0

fx (y)dy
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Simulations

Examples where HMMs are useful

Data are generated through the same transition matrix Q =
(

0.8 0.2
0.3 0.7

)
.

First example: A sample of size n = 5.104 is generated from two
gaussian mixtures :1

2 (N (1.7, 0.2) + N (7, 0.15)) and
1
2 (N (3.5, 0.2) + N (5, 0.4)).
Second example: A sample of size n = 105 is generated from two
gaussian mixtures :1

2 (N (3, 0.6) + N (7, 0.4)) and
1
2 (N (5, 0.3) + N (9, 0.4)).

Purpose: Retrieve the sequence of hidden states using only the
observations.
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Simulations

Example 1

Figure: Histograms of the clusters. Left: clustering using plug-in classifier. Right:
K-means clustering
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Simulations

Example 2

Figure: Histograms of the clusters. Left: clustering using plug-in classifier. Right:
K-means clustering
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Simulations

Clustering errors

Bayes classifier Plug-in classifier K-means algorithm
Example 1 1.56% 1.61% 46.7%
Example 2 6.42% 6.51% 47.3%

Table: Errors of clustering using 3 algorithms: the Bayes classifier (using the true
model parameters), the plug-in classifier (using the estimated parameters) and
the K-means algorithm.
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