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Introduction to a-differential privacy



|dea behind Differential Privacy
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Distribution of Z should not depend too much on any individual contribution x;.



Definition: a-DP
Definition: Let X = (Xj);=1...» denote the original data and Z = (Z;);j=1,...» denote
its sanitized version. This data | obeys the local a-differential privacy constraint if
Pr(Z € AlX = x)

sup sup < ea7
A x,x":do(x,x")=1 PF(Z € A|X = X/)

where do(x,x") = |[{i : x; # x/}| denotes the Hamming distance.



Definition: a-DP
Definition: Let X = (Xj);=1...» denote the original data and Z = (Z;);j=1,...» denote
its sanitized version. This data | obeys the local a-differential privacy constraint if

o s PUZEAX=x) _ .
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where do(x,x") = |[{i : x; # x/}| denotes the Hamming distance.

Idea: The conditional distribution of Z given X = x does not depend too much on the
data of the i-th individual in the database, thereby protecting its privacy.

Strength: Smaller o denotes stronger privacy protection.

Relaxed version: («, ) differential privacy: for all A and dp(x,x’) =1

Pr(Z € AIX = x) < e*Pr(Z € AIX = x') + .



Properties

"local" means that there is no trusted third party available for data collection and
processing, see . Evfimievski (2003)

Protocols:

® non-interactive: Z; is generated from X; independently.
® sequentially interactive: ith person has access to /i, ..., Z;_1 when generating Z;.

Random perturbation:

® [aplace: a-differentiable private mechanism
® Gauss: (a,d)-differentiable private mechanism

Applications: Apple (2 < a < 8), Google (0.6 < a <10, 0 < 6§ <10710),
Microsoft (1.67 < o < 4.7, 0 < § < 1075), US Census Bureau (ounty Business
Patterns: o = 34.9, § = 1072; 2020 Decennial Census: 13.64 < o < 49.2,
§=1075).



Literature review

Parametric models: Dwork et al (2006), Smith (2008), Duchi et al (2014), Kairouz
et al. (2016), Kamath et al (2018), Cai et al (2020)

Nonparametric models:

¢ density estimation: global privacy \Wasserman and Zhou (2010), Hall et al
(2013); local Duchi et al (2013, 2018), Butucea (2020)

® regression: methodology Smith (2021), Golowich (2021) theory Gyorfi and Kroll
(2023).

Semi-parametric problems:
® Linear functionals Rohde and Steinberger (2018)
* Integrated square [ f2(x)dx, Butucea et al (2023)

BUT! No general approach, case-by-case studies.



Model and examples



Model

Density estimation problem: Xi,..., X, i f, with

1
FeW, = {feC”[O,l]: fzo,/ f=1, ||f||(oo,,,,k)</v/},
0

p € N, where for 1 < g < oo and measures A = (Ao, ..., Ap) on [0,1],

P 1 .
s = ( ) (*)7a)

J=0

1/q

Semi-parametric model: Consider functionals A : CP — R, s.t. for some 0 < m < p,
N(f+h) = N(F) + Te(h) + Ol Al Za.mry)s (1)

where for f € W, h € CP[0, 1] with ||hl|(c,m) small enough and T¢ a bounded linear
functional on CP[0, 1], see Goldstein & Messer (1992).



Functional

In view of the Hahn-Banach and Riesz representation theorems

Pl
Ty =3 [ ndy,
j=0"0

where 1 is a finite signed Borel measures on [0, 1] (possibly depending on f).

Cases:
® Smooth functionals: T¢(h) = [ hwr, VF € W, with supseyy [|wrlleo < 00.

e Atomic functionals: of index s € {0, .., p}, where

Sf 1 )
Te(h) = Z/ hdp; ¢
j=070

with 15, ¢ having a discrete component ds, r, and s = maxscyy, .



Examples

Atomic:
o A(f) = f()(xo). Rate: n~(P=1)/(2p+1)
1 (m) 2 _ p—m+l
* A(f) =NA(f) =[5 |fU™]° for m € N_. Rate: n~ 21
® Fisher information: A(f) = fol(f’)z/f_ Rate: n—P/(2p+1)

Smooth:
o A(f) = A(f) :fol‘f’q_
e Entropy: A(f) = fol flogf.



Privacy constrained estimation:
Non-adaptive setting



Data privatization

Privatized data

o {Bk,d,guo)(xi) +0jp-1Yigp- 1k fji=Jo— 1, k€ M,
T () + 0 i, if j > jo,k € M;,

where Y,-J-k'i‘j Lap(1), 1k are the spline wavelet basis, B, d.clo) the B-Splines up to
order d, and
Cd2_j0/27 Gaj = Call¥llc 2 jazj/2_

Ooig =2
Jo o a a-—1

Lemma: The privacy mechanism defined above is locally a-differentially private.



private plug-in estimation
Wavelet coefficients: privatized empirical wavelet coefficients Zk =n" Zle Zijk
Density estimation:

. -— ~ jn -— ~
fo=1fr= > Zjawlio—1k+ Y. Y. Zkjk

keMjg—1 Jj=jo keM;

) 1 1
Point-wise and L,-convergence For 2/ = (na?log™2? n)2» A n?%1 we have

max (Eqz, 1 (x0) — F9 () 7. B, I — F9|13,s))

2(p—q) 2(p—q)

< Cygm(na®log=22n)~ 272 v p~ 27t




Convergence rate for atomic functionals

Theorem [estimation atomic]: Let f € W,, p < d + 1 and suppose A is an atomic

functional of index s. Under some mild technical conditions, the plug-in estimator
1

A(F) = N(Fin) with 2 =< (na?log 22 n)ﬁ A n?+1 converges towards A(f) at rate

p—s

_p=s —
(na?log™22 n) 212 \V/ p” 2071,

Remark: Derived matching lower bound for o = O(1).



Convergence rate for smooth functionals

Theorem [estimation smooth]: Let f € W, and suppose A is a smooth functional
with m > 0, such that wg € W satisfy sups ||wr||oo < 00. Under some mild technical

A

conditions, the plug-in estimator A(f) = A(f,) with a > 0 and
1/2 .
(n/\(na2)) /2p < o < {Iog—a/(m-l-l)(na2)(na2)1/(4m+4)} A {|og—a(n)n1/(4m+3)}

converges towards A(f) at rate

nY2 v (na?)71/2,

Remark: Derived matching lower bound for o = O(1).



Adaptation



Lepski's type method

Grid: x; = t/M,, t =0,..., M,, for M, > n*/3
Data driven threshold:

G=min{j €T : H('A(,{)(q)—(?n/)(q)HE2[0,1] Vo max |(FH)(D(x,) — (FHY D (x,)[?
< 71222 4 22 P22,

VI>j, 1€ J,Vqe{0,1,.,p}},

Estimator (Lepski): ?n(X) = ?,2"(x).



Adaptation: density estimation

Theorem [adaptation density]: The estimator f,(x) = ?,J:"(x) satisfies that for all
g+1<pandxce]l0,1]

sup  Egr | F\? — D] 210) V Ef|F{D (x) — £(x)@)]
fewr(L)N||fllc <L

< (na? log~(1+22) n)72pp;+‘72 V (n/log n)fﬁ.



Adaptation: atomic functional

Theorem [adaptation atomic functional]: Let f € W, be such that ||f||oc < L and
suppose that the operator A is atomic for m;s > 0 and p > max(s+1,m+1,2m—s),
where Te(h) =327, [ hWdu;, s with discrete component. Then the plug in

estimator A(%,) with f, = 74" satisfies that

Ege,A(B) — A(F)| 5 (na?log~ (12 )55 v/ (n/ log )™~ 377,

Adaptation to smooth functional:
® The plug-in estimator A(f/7) doesn’t work (too smooth)

® One can consider an rougher estimator £, with threshold not depending on p.



Summary
Privacy constrained inference is becoming increasingly popular, in particular
differential privacy.

Methods are typically case-by-case. New privacy constrained estimator requires
new mechanism.

We consider a-differential private plug-in estimators in semi-parametric problems.
Can be used for a wide range, including smooth and atomic functionals.
Derived matching minimax lower bounds.

Adaptive inference for atomic functionals (smooth functionals need over-fitting).



