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Introduction to α-differential privacy



Idea behind Differential Privacy

individuals database public data

Alice x1−−−−−→

x randomization−−−−−−−−→
Q

ZBob x2−−−−−→
...

Zoey xn−−−−−→

Distribution of Z should not depend too much on any individual contribution xi .



Definition: α-DP
Definition: Let X = (Xi)i=1...,n denote the original data and Z = (Zi)i=1,...,n denote
its sanitized version. This data l obeys the local α-differential privacy constraint if

sup
A

sup
x ,x ′:d0(x ,x ′)=1

Pr(Z ∈ A|X = x)
Pr(Z ∈ A|X = x ′) ≤ eα,

where d0(x , x ′) = |{i : xi , x ′
i }| denotes the Hamming distance.

Idea: The conditional distribution of Z given X = x does not depend too much on the
data of the i-th individual in the database, thereby protecting its privacy.

Strength: Smaller α denotes stronger privacy protection.

Relaxed version: (α, δ) differential privacy: for all A and d0(x , x ′) = 1

Pr(Z ∈ A|X = x) ≤ eαPr(Z ∈ A|X = x ′) + δ.
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Properties

• "local" means that there is no trusted third party available for data collection and
processing, see . Evfimievski (2003)

• Protocols:
• non-interactive: Zi is generated from Xi independently.
• sequentially interactive: ith person has access to Z1, ...,Zi−1 when generating Zi .

• Random perturbation:
• Laplace: α-differentiable private mechanism
• Gauss: (α, δ)-differentiable private mechanism

• Applications: Apple (2 ≤ α ≤ 8), Google (0.6 ≤ α ≤ 10, 0 ≤ δ ≤ 10−10),
Microsoft (1.67 ≤ α ≤ 4.7, 0 ≤ δ ≤ 10−5), US Census Bureau (ounty Business
Patterns: α = 34.9, δ = 10−5; 2020 Decennial Census: 13.64 ≤ α ≤ 49.2,
δ = 10−5 ).



Literature review
Parametric models: Dwork et al (2006), Smith (2008), Duchi et al (2014), Kairouz
et al. (2016), Kamath et al (2018), Cai et al (2020)

Nonparametric models:
• density estimation: global privacy Wasserman and Zhou (2010), Hall et al

(2013); local Duchi et al (2013, 2018), Butucea (2020)
• regression: methodology Smith (2021), Golowich (2021) theory Gyorfi and Kroll

(2023).

Semi-parametric problems:
• Linear functionals Rohde and Steinberger (2018)
• Integrated square

∫
f 2(x)dx , Butucea et al (2023)

BUT! No general approach, case-by-case studies.



Model and examples



Model
Density estimation problem: X1, ...,Xn

iid∼ f , with

f ∈ Wp :=
{

f ∈ Cp[0, 1] : f ≥ 0,
∫ 1

0
f = 1, ∥f ∥(∞,p,λ) < M

}
,

p ∈ N, where for 1 ≤ q ≤ ∞ and measures λ = (λ0, . . . , λp) on [0, 1],

∥f ∥(q,p,λ) =
p∑

j=0

(∫ 1

0
(f (j))qdλj

)1/q
.

Semi-parametric model: Consider functionals Λ : Cp → R, s.t. for some 0 ≤ m < p,

Λ(f +h) = Λ(f ) + Tf (h) + O(∥h∥2
(2,m,λ)), (1)

where for f ∈ Wp, h ∈ Cp[0, 1] with ∥h∥(∞,m) small enough and Tf a bounded linear
functional on Cp[0, 1], see Goldstein & Messer (1992).



Functional
In view of the Hahn-Banach and Riesz representation theorems

Tf (h) =
p∑

j=0

∫ 1

0
h(j)dµj ,

where µj is a finite signed Borel measures on [0, 1] (possibly depending on f ).

Cases:
• Smooth functionals: Tf (h) =

∫
hωf , ∀f ∈ Wp, with supf ∈Wp ∥ωf ∥∞ < ∞.

• Atomic functionals: of index s ∈ {0, .., p}, where

Tf (h) =
sf∑

j=0

∫ 1

0
h(j)dµj,f

with µsf ,f having a discrete component δsf ,f , and s = maxf ∈Wp sf .



Examples

Atomic:
• Λ(f ) = f (r)(x0). Rate: n−(p−r)/(2p+1)

• Λ(f ) = Λ(f ) =
∫ 1

0 |f (m)|2 for m ∈ N+. Rate: n− p−m+1
2p+1

• Fisher information: Λ(f ) =
∫ 1

0 (f ′)2/f . Rate: n−p/(2p+1).

Smooth:
• Λ(f ) = Λ(f ) =

∫ 1
0 |f |q.

• Entropy: Λ(f ) =
∫ 1

0 f log f .



Privacy constrained estimation:
Non-adaptive setting



Data privatization

Privatized data

Zijk =
{

Bk,d ,ξ(j0)(Xi) + σj0−1Yi(j0−1)k , if j = j0 − 1, k ∈ Mj0−1,

ψj,k(Xi) + σjYijk , if j ≥ j0, k ∈ Mj ,

where Yijk
iid∼ Lap(1), ψj,k are the spline wavelet basis, Bk,d ,ξ(j0) the B-Splines up to

order d , and
σα,j0−1 = Cd

α
2j0/2, σα,j = Cd∥ψ∥∞

α

a
a − 1 ja2j/2.

Lemma: The privacy mechanism defined above is locally α-differentially private.



private plug-in estimation

Wavelet coefficients: privatized empirical wavelet coefficients Z̄jk = n−1 ∑n
i=1 Zijk

Density estimation:

f̂n = f̂ jn
n =

∑
k∈Mj0−1

Z̄(j0−1)k ψ̃j0−1,k +
jn∑

j=j0

∑
k∈Mj

Z̄jk ψ̃j,k .

Point-wise and L2-convergence For 2jn ≍ (nα2 log−2a n)
1

2p+2 ∧ n
1

2p+1 we have

max
(
EQPf |f̂ (q)

n (x0) − f (q)(x0)|2, EQPf ∥f̂ (q)
n − f (q)∥2

L2(G)

)
≤ Cd ,q,M(nα2 log−2a n)− 2(p−q)

2p+2 ∨ n− 2(p−q)
2p+1 .



Convergence rate for atomic functionals

Theorem [estimation atomic]: Let f ∈ Wp, p ≤ d + 1 and suppose Λ is an atomic
functional of index s. Under some mild technical conditions, the plug-in estimator
Λ̂(f ) = Λ(f̂ jn) with 2jn ≍ (nα2 log−2a n)

1
2p+2 ∧ n

1
2p+1 converges towards Λ(f ) at rate

(nα2 log−2a n)− p−s
2p+2 ∨ n− p−s

2p+1 .

Remark: Derived matching lower bound for α = O(1).



Convergence rate for smooth functionals

Theorem [estimation smooth]: Let f ∈ Wp and suppose Λ is a smooth functional
with m ≥ 0, such that ωf ∈ W1 satisfy supf ∥ωf ∥∞ < ∞. Under some mild technical
conditions, the plug-in estimator Λ̂(f ) = Λ(f̂n) with a > 0 and(

n ∧ (nα2)
)1/2p

≤ 2jn ≤
[
log−a/(m+1)(nα2)(nα2)1/(4m+4)

]
∧

[
log−a(n)n1/(4m+3)

]
converges towards Λ(f ) at rate

n−1/2 ∨ (nα2)−1/2.

Remark: Derived matching lower bound for α = O(1).



Adaptation



Lepski’s type method

Grid: xt = t/Mn, t = 0, ...,Mn, for Mn ≳ n4/3

Data driven threshold:

ĵn = min{j ∈ J : ∥(f̂ j
n )(q)−(f̂ l

n)(q)∥2
L2[0,1] ∨ max

xt , t=0,...,Mn
|(f̂ j

n )(q)(xt) − (f̂ l
n)(q)(xt)|2

≤ τn−122lq l(2l + 22l l2aα−2),
∀l > j , l ∈ J ,∀q ∈ {0, 1, .., p}},

Estimator (Lepski): f̂n(x) = f̂ ĵn
n (x).



Adaptation: density estimation

Theorem [adaptation density]: The estimator f̂n(x) = f̂ ĵn
n (x) satisfies that for all

q + 1 ≤ p and x ∈ [0, 1]

sup
f ∈Wp(L)∩∥f ∥∞≤L

EQPf ∥f̂ (q)
n − f (q)∥L2[0,1] ∨ Ef |f̂ (q)

n (x) − f (x)(q)|

≲ (nα2 log−(1+2a) n)− p−q
2p+2 ∨ (n/ log n)− p−q

2p+1 .



Adaptation: atomic functional

Theorem [adaptation atomic functional]: Let f ∈ Wp be such that ∥f ∥∞ ≤ L and
suppose that the operator Λ is atomic for m, s ≥ 0 and p ≥ max(s + 1,m + 1, 2m − s),
where Tf (h) =

∑s
j=1

∫
h(j)dµj , µs with discrete component. Then the plug in

estimator Λ(f̂n) with f̂n = f̂ ĵn
n satisfies that

EQPf |Λ(f̂n) − Λ(f )| ≲ (nα2 log−(1+2a) n)− p−s
2p+2 ∨ (n/ log n)− p−s

2p+1 .

Adaptation to smooth functional:
• The plug-in estimator Λ(f̂ ĵn) doesn’t work (too smooth)
• One can consider an rougher estimator f̂n with threshold not depending on p.



Summary

• Privacy constrained inference is becoming increasingly popular, in particular
differential privacy.

• Methods are typically case-by-case. New privacy constrained estimator requires
new mechanism.

• We consider α-differential private plug-in estimators in semi-parametric problems.

• Can be used for a wide range, including smooth and atomic functionals.

• Derived matching minimax lower bounds.

• Adaptive inference for atomic functionals (smooth functionals need over-fitting).


