
On the impossibility of detecting a late
change-point in the preferential attachment

random graph model

Elisabeth Gassiat, Ibrahim Kaddouri, Zacharie Naulet
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The talk and the current work is inspired from

Gianmarco Bet et al. (2023) “Detecting a late change-point in
the preferential attachment model”, arXiv :2310.02603

in which the authors study the feasibility of detecting a changepoint
in the (affine) Preferential Attachement (PA) model.
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Outline

1 Introduction : what is the PA model ? what is a changepoint ?
Statement of main results and the conjecture

2 Feasibility : how to detect a late changepoint.

3 Impossibility : when is it impossible to detect a late
change-point ?
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Preferential attachment (multi)graph

We build (G0,G1,G2, . . . ) sequentially. At time t ≥ 1 the incoming
vertex t “sends” m edges to previous vertices {0, . . . , t − 1}.

After vertex t has sent i − 1 edges, the probability that the i-th edge
choose vertex s ∈ {0, . . . , t − 1} is

∝ degGt−1
(s) + #(edges between t and s) + δ(t)

=
degGt−1

(s) + #(edges between t and s) + δ(t)∑t−1
u=0

[
degGt−1

(u) + #(edges between t and u) + δ(t)
]

=
degGt−1

(s) + #(edges between t and s) + δ(t)

2m(t − 1) + (i − 1) + tδ(t)

=⇒ Edges of vertex t follow a Pólya urn conditional on Gt−1.
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Basic properties

The PA process generates almost-surely Directed Acyclic
(multi)Graphs (DAG) ;

Richer-get-richer phenomenon ;

Can generate graphs with power-law degree distributions ;

Allegedly model the dynamic of “real networks”

Dynamic of the graph controlled by the function
δ : N→ (−m,+∞) (constant or piecewise constant in the
sequel)

I Constant : no changepoint ;
I Piecewise constant : existence of changepoints
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Hypothesis testing problem
The change-point detection can be seen as a hypothesis testing
problem :

(H0) (∃δ0 > −m) δ(t) = δ0

(H1) (∃δ1 6= δ0 > −m) δ(t) = δ01t≤τn + δ11t>τn

Prior work focuses mainly on the case m = 1 and early detection
where the change happens at a linear time O(n) or even o(n). We
focus here on the case of late change-point detection, i.e.

τn = n −∆n and ∆n = o(n)

That is we want to understand the minimal time needed to detect
the change-point after it occurs.

Not the whole story though ! We are interested in the detection
of the change-point based only on the observation of the unlabeled
graph.
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Unlabeled directed graphs

For two (labeled) graphs g , g ′ ∈ G, g ∼= g ′ iff g and g ′ are
isomorphic ;

s(g) ≡ [g ]∼= is the structure of the graph ;
namely the isomorphism class of g ;

Un = {s(g) : g ∈ Gn} the set of unlabeled directed
multigraphs on n + 1 vertices.
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Formal statement of the problem

At this stage, we have two distributions over the set Gn of labeled
directed graphs [aka. laws of Gn] :

Pn
0 when δ(t) = δ0

Pn
1 when δ(t) = δ01t≤τn + δ11t>τn

which induce through s two distributions over the set of unlabeled
directed graphs Un [aka. laws of Un = s(Gn)]

Pn,∼=
0 := s]P

n
0 , Pn,∼=

1 := s]P
n
1 .

We consider the hypothesis testing problem :

H0 : P = Pn,∼=
0 H1 : P = Pn,∼=

1 .
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Bet et al. 2023’s result
They consider ∆n = bcnγc with c > 0 and γ ∈ (0, 1).

Theorem (Bet et al. 2023)

There exists a sequence of test (ψn)n≥0 with ψn : Un → [0, 1] such
that

limn EPn,∼=
0

[ψn(Un)] = 0.

limn EPn,∼=
1

[ψn(Un)] =

{
1 when γ > 1/2,
Cte when γ = 1/2,

limn EPn,∼=
1

[ψn(Un)] = 0 when γ < 1/2.

Conjecture (Bet et al. 2023)

When γ ≤ 1/2 there is no sequence (φn)n≥0, φn : Un → [0, 1], such
that

lim
n

EPn,∼=
0

[φn(Un)] = 0, and, lim
n

EPn,∼=
1

[φn(Un)] = 1.
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Our result

Theorem (EG, I. Kaddouri, Z. Naulet 2024)

Recall τn = n −∆n.

If δ0 > 0 and ∆n = o(n1/3) or if δ0 = 0 and ∆n = o
(

n1/3

log n

)
, then

for every sequence (φn)n≥0 of tests φn : Un → [0, 1]

lim
n

EPn,∼=
0

[φn(Un)] = 0 =⇒ lim
n

EPn,∼=
1

[φn(Un)] = 0
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Another result with some interest

The problem is quite different if we observe the labeled graph

Theorem (EG, I. Kaddouri, Z. Naulet 2024)

Suppose τn → +∞ and ∆n →∞. Then, there is a sequence
(ψn)n≥0, ψn : Gn → [0, 1], such that

lim
n

EPn
0
[ψn(Gn)] = 0, and, lim

n
EPn

1
[ψn(Gn)] = 1.

When lim supn→+∞∆n <∞, detection of the change is not
possible.
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About the difficulty of the problem
Traditional path to simultaneously prove Theorem 1 and the
conjecture : require to understand the likelihood ratio

dPn,∼=
1

dPn,∼=
0

(Un)

under Un ∼ Pn,∼=
0 (enough for conjecture) and Un ∼ Pn,∼=

1 (for the
Theorem).

Neyman-Pearson’s Lemma guarantees that 1
(dPn,∼=

1

dPn,∼=
0

(Un) > k
)

is

uniformly most powerful amongst all the tests of its size ;

Our impossibility Theorem is equivalent to the statement

Pn,'
0 (An)→ 0 =⇒ Pn,'

1 (An)→ 0

usually called contiguity and written Pn,'
1 C Pn,'

0 (well-studied
by Le Cam).
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So let’s try to do this.

Let µn (respectively λn) be the counting measure on Gn (resp. Un).
Then,

dPn,∼=
j

dλn
(u) =

∑
g∈u

V (g)=[n]

dPn
j

dµn
(g)

Difficult to understand ! ! ! Why ?

Consider the two isomorphic graphs :

g = 0 1 2 g ′ = 0 2 1

dP3
j

dµ3
(g) > 0 but

dP3
j

dµ3
(g ′) = 0.

=⇒ makes the above sum tricky to analyze.
=⇒ need of another strategy.
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1 Introduction : what is the PA model ? what is a changepoint ?
Statement of main results and the conjecture

2 Feasibility : how to detect a late changepoint.

3 Impossibility : when is it impossible to detect a late
change-point ?
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Strategy from Bet et al (2023).

To prove the feasibility, it is enough to build a test. The main
intuitions are the following :

Under H0 the degree statistics (Nm(Un),Nm+1(Un), . . . ) where

Nk(Un) := Number of vertices of degree k in Un

is a sufficient statistic for the model (not under H1 though).
Furthermore, under both Pn

0 and Pn
1

(Nm(s(Gn)),Nm+1(s(Gn)), . . . )
law
= (Nm(Gn),Nm+1(Gn), . . . )

so that any test based on the degree statistics is easy to
analyze.

Most of the vertices with arrival time > τn will have m edges
thus it shall be enough to look at Nm(Un).

For now : we assume δ0 is known.
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So typically we need to understand the behaviour of Nm(Un) and
show that it differs under H0 and H1

More precisely, defining

pm(δ0) := lim
n→∞

E0(Nm(Un))

n

they show that the test statistic

Tn(Un) := Nm(Un)− npm(δ0)

satisfies

1 Tn(Un) = Op(
√
n) under Un ∼ Pn,∼=

0 ;

2 Tn(Un) = C (pm(δ1)− pm(δ0))nγ + Op(
√
n) under Un ∼ Pn,∼=

1 .
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When δ0 is unknown

In this case, one can simply consider an estimator δ̂n(Un) of δ0 and
consider the plugin test

Q(Un) = Nm(n)− npm(δ̂n(Un))

But what estimator ?
Interestingly, the MLE under H0 is easy to compute (Gao and van
der Vaart, 2017). Consider a labeled graph gn in the support of Pn

0 .
Then

dPn
0

dµn
(gn) =

∏
k>m

[∏k
j=m(j + δ0)

]Nk (gn)∏n
t=2

∏m
i=1(2m(t − 1) + (i − 1) + tδ0)

This only depends on s(gn) ! !
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Deduce that,

dPn,∼=
0

dλn
(un) ∝

∏
k>m

[∏k
j=m(j + δ0)

]Nk (un)∏n
t=2

∏m
i=1(2m(t − 1) + (i − 1) + tδ0)

,

→ analyzis of the MLE.

Q(Un) = Nm(n)− npm(δ̂n(Un))

= Nm(n)− npm(δ0)︸ ︷︷ ︸
(1)

+ n(pm(δ̂n)− pm(δ0))︸ ︷︷ ︸
(2)

Under H0, (1) = OPn
0

(√
n
)

and (2) = OPn
0

(√
n log(n)

)
.

Under H1 when γ > 1/2, (1) � nγ and (2) � nγ and (1) + (2) � nγ .
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1 Introduction : what is the PA model ? what is a changepoint ?
Statement of main results and the conjecture

2 Feasibility : how to detect a late changepoint.

3 Impossibility : when is it impossible to detect a late
change-point ?
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Recall our result

Theorem (EG, I. Kaddouri, Z. Naulet 2024)

Recall τn = n −∆n.

If δ0 > 0 and ∆n = o(n1/3) or if δ0 = 0 and ∆n = o
(

n1/3

log n

)
, then

for every sequence (φn)n≥0 of tests φn : Un → [0, 1]

lim
n

EPn,∼=
0

[φn(Un)] = 0 =⇒ lim
n

EPn,∼=
1

[φn(Un)] = 0

Le Cam’s theory : equivalent to show that Pn,∼=
1 C Pn,∼=

0 .
Too difficult to establish.
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Reduction

Usual approach : show that an easier problem is not feasible.
Most trivial attempt : show that the change-point cannot be
detected from the labeled graph Gn itself... unfortunately :

Theorem (EG, I. Kaddouri, Z. Naulet 2024)

Suppose τn → +∞ and ∆n →∞. Then, there is a sequence
(ψn)n≥0, ψn : Gn → [0, 1], such that

lim
n

EPn
0
[ψn(Gn)] = 0, and, lim

n
EPn

1
[ψn(Gn)] = 1.

When lim supn→+∞∆n <∞, detection of the change is not
possible.

Using MLE (and standard martingale arguments as in Gao et al.
2017).

We need to find a problem that is intermediate between observing
s(Gn) and Gn
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Simpler problem : consider the observation of π(Gn) where π is a
random permutation.

Pn
0 (respectively Pn

1) joint distribution of (π,Gn) under H0

(resp. H1).

Pn,π
0 distributions of π(Gn) under H0 ; idem Pn,π

1 ;

Pn
0 marginal distribution of Gn under H0 ; idem Pn

1 ;

We have to construct Pn
j such that :

A. It is easier to test {H0,H1} based on the observation of π(Gn)
rather than Un = s(Gn) :

B. We can prove that Pn,π
1 C Pn,π

0 .

Remark : to prove B, it is convenient to build the permutation π
conditional to Gn ; ie. π and Gn are not independent and it is unclear
if A is true.
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A first lemma : hierarchy of difficulties

Lemma

Suppose the law of π | Gn is the same under H0 and H1 and
consider the following statements :

1 For every sequence (φn) of Gn-measurable tests,
limn EPn

0
(φn) = 0 implies limn EPn

1
(φn) = 0 ;

2 For every sequence (φn) of π(Gn)-measurable tests,
limn EPn

0
(φn) = 0 implies limn EPn

1
(φn) = 0 ;

3 For every sequence (φn) of s(Gn)-measurable tests,
limn EPn

0
(φn) = 0 implies limn EPn

1
(φn) = 0.

Then 1 =⇒ 2 =⇒ 3.
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So now we shall investigate permutations :

complicated enough to enable contiguity.

tractable enough to enable computations.

built as prescribed by the previous lemma.

Contiguity : we use a second moment bound. For any sequence
(An)n≥1 of events and with Hn = π(Gn)

Pn,π
1 (An) = Pn,π

1 (An ∩ Bc
n ) + Pn,π

1 (An ∩ Bn)

≤ Pn,π
1 (Bc

n ) + EPn,π
1

(
1An∩Bn(Hn)

)
= Pn,π

1 (Bc
n ) + EPn,π

0

(
1An∩Bn(Hn)

dPn,π
1

dPn,π
0

(Hn)

)

≤ Pn,π
1 (Bc

n ) + Pn,π
0 (An)1/2

(
EPn

0

[(
dPn,π

1

dPn,π
0

(Hn)

)2

1Bn(Hn)

])1/2
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Vertices in red : Swap their labels with “compatible” vertices in
[n − rn] ;
Vertices in blue or green : keep their labels
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Bn is the event that no blue or green nodes exists.

Advantage : this event has probability 1 + o(1) as long as
rn = o(n1/3) and on this event the likelihood ratio
dPn,π

1

dPn,π
0

(π(Gn)) behave nicely under Pn
0 ;

Advantage bis : This random permutation leaves invariant Pn
0 :

ie. π(Gn) ∼ Pn
0 when (π,Gn) ∼ Pn

0. This makes the study under
Pn

0 convenient.

Downside : this event has probability going to zero as long as
rn � n1/3 ; so this trick cannot work to fully establish the
conjecture...
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Conclusion

There was a conjecture in Bet et al. 2023 ;

We wanted to prove or disprove it ;

We made some progress but there is still a gap between lower
and upper bound ;

What next ?
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Thank you for your attention !
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