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The talk and the current work is inspired from

Gianmarco Bet et al. (2023) “Detecting a late change-point in
the preferential attachment model”, arXiv :2310.02603

in which the authors study the feasibility of detecting a changepoint
in the (affine) Preferential Attachement (PA) model.
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Outline

ﬂ Introduction : what is the PA model ? what is a changepoint ?
Statement of main results and the conjecture

© Feasibility : how to detect a late changepoint.

© Impossibility : when is it impossible to detect a late
change-point ?
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Time 1, Edge #1
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Time 1, Edge #2
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Time 1, Edge #2

T s= Deg. Pr(choose s) x
0O — 1 0o 1 1
1 1

E.Gassiat (UPS and CNRS) Verona



Time 1, Edge #2
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Time 1, Edge #3

T s= Deg. Pr(choose s) x
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Time 1, Edge #3

T s= Deg. Pr(choose s) x
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Time 1, Edge #3
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Time 2, Edge #4

T s= Deg. Pr(choose s) x
0 ——1 0 3 3+6(2)
T~ 13 3+6(2)
2 0
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Time 2, Edge #5

T s= Deg. Pr(choose s) x
0 ——— 1 0 4 4+5(2)
N— 13 3+6(2)
T 2 1
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Time 2, Edge #5
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Time 2, Edge #6

T s= Deg. Pr(choose s) x

0 4 446(2)
N—— 1 4 44 65(2)
4 2 2
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Time 2, Edge #6

s = Deg.
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1 4
2 3
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Time 3

T s= Deg.
0 ——=— 1 0 5
2 3
5 3 0
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Time 3, Edge #7

T s= Deg. Pr(choose s) x
0 —— 1 0 5 5+6(3)
N 1 4 4+ 6(3)
2 3 3+4(3)
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Time 3, Edge #7

T s = Deg.
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Time 3, Edge #8

T s= Deg. Pr(choose s) x
0 —— 1 0 5 5+6(3)
N 1 5 5+ 6(3)
2 3 3+4(3)
3 1

E.Gassiat (UPS and CNRS) Verona Late CPD in PA graphs 5/31
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Time 3, Edge #8
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Time 3, Edge #9

T s= Deg. Pr(choose s) x
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Time 3, Edge #9

s = Deg.
0 T i 0 6
2 4
3 3

G3

E.Gassiat (UPS and CNRS) Verona Late CPD in PA graphs 5/31



Time 4

(7))

|

4
@

0 —— 1

B~ w N RO
O W~ O

E.Gassiat (UPS and CNRS) Verona Late CPD in PA graphs 5/31



Time 4, Edge #10

4
T s= Deg. Pr(choose s) x
0 ——1 0 6 6+ 0(4)
N 1 5 5+ 6(4)
2 4 4+ 6(4)
5 3 3 3+46(4)
4 0
3
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Time 4, Edge #10
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Time 4, Edge #11
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Time 4, Edge #12
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Time 5, Edge #13
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Time 5, Edge #15
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Preferential attachment (multi)graph

We build (Go, G1, Gy, .. .) sequentially. At time t > 1 the incoming
vertex t “sends’ m edges to previous vertices {0,...,t — 1}.

After vertex t has sent i — 1 edges, the probability that the i-th edge
choose vertex s € {0,...,t — 1} is

oc degg, ,(s) + #(edges between t and s) + 6(t)
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Preferential attachment (multi)graph

We build (Go, G1, Gy, .. .) sequentially. At time t > 1 the incoming
vertex t “sends’ m edges to previous vertices {0,...,t — 1}.

After vertex t has sent i — 1 edges, the probability that the i-th edge
choose vertex s € {0,...,t — 1} is

oc degg, ,(s) + #(edges between t and s) + 6(t)
degg, ,(s) + #(edges between t and s) + 6(t)
ZZ;%) [degg, ,(u) + #(edges between t and u) + i(1)]
degg, ,(s) + #(edges between t and s) + §(t)
2m(t — 1)+ (i — 1) + to(1)

=—> Edges of vertex t follow a Pélya urn conditional on G;_;.
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Basic properties

@ The PA process generates almost-surely Directed Acyclic
(multi)Graphs (DAG);

Richer-get-richer phenomenon;
Can generate graphs with power-law degree distributions;

Allegedly model the dynamic of “real networks”

Dynamic of the graph controlled by the function
0 : N — (—m, +00) (constant or piecewise constant in the
sequel)

» Constant : no changepoint;

> Piecewise constant : existence of changepoints
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Hypothesis testing problem

The change-point detection can be seen as a hypothesis testing
problem :

(Ho) (39 > —m) 6(t) =do
(H1) (361 # 00 > —m) (t) = dole<r, + d1lesr,
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Hypothesis testing problem

The change-point detection can be seen as a hypothesis testing
problem :

(Ho) (39 > —m) 6(t) =do
(Hl) (3(51 75 do > —m) (5(1.') = 501t§7'n + 611t>7'n

Prior work focuses mainly on the case m = 1 and early detection
where the change happens at a linear time O(n) or even o(n). We
focus here on the case of late change-point detection, i.e.

Th=n—A,and A, = o(n)

That is we want to understand the minimal time needed to detect
the change-point after it occurs.
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Hypothesis testing problem
The change-point detection can be seen as a hypothesis testing
problem :

(Ho) (39 > —m) 6(t) =do
(Hl) (3(51 75 oo > —m) (5(1.') = 501t§‘rn + 511t>7n

Prior work focuses mainly on the case m = 1 and early detection
where the change happens at a linear time O(n) or even o(n). We
focus here on the case of late change-point detection, i.e.

Th=n—A,and A, = o(n)

That is we want to understand the minimal time needed to detect
the change-point after it occurs.

Not the whole story though! We are interested in the detection
of the change-point based only on the observation of the unlabeled
graph.

Late CPD in PA graphs  8/31
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Unlabeled directed graphs

@ For two (labeled) graphs g, g’ € G, g = g’ iff g and g’ are
isomorphic;
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Unlabeled directed graphs

@ For two (labeled) graphs g, g’ € G, g = g’ iff g and g’ are
isomorphic;

o s(g) = [g]x is the structure of the graph;
namely the isomorphism class of g ;

o U,=1{s(g) : g € Gn} the set of unlabeled directed
multigraphs on n+ 1 vertices.
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Formal statement of the problem

At this stage, we have two distributions over the set G, of labeled
directed graphs [aka. laws of G,] :

Py when §(t) = do
P when §(t) = dole<r, + 011esr,

which induce through s two distributions over the set of unlabeled
directed graphs U, [aka. laws of U, = s(G,)]

Py~ =sP§, PP i=sP].
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Formal statement of the problem

At this stage, we have two distributions over the set G, of labeled
directed graphs [aka. laws of G,] :

Py when §(t) = do
P when §(t) = dole<r, + 011esr,

which induce through s two distributions over the set of unlabeled
directed graphs U, [aka. laws of U, = s(G,)]

Py~ =sP§, PP i=sP].

We consider the hypothesis testing problem :

Ho: P=Py=  Hy:P=P}".
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Bet et al. 2023's result
They consider A, = [cn”| with ¢ > 0 and v € (0,1).
Theorem (Bet et al. 2023)

There exists a sequence of test (¢n)n>0 with 1, : U, — [0, 1] such
that

e lim, EPg,e[wn(U,,)] =0.
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Bet et al. 2023's result
They consider A, = [cn”| with ¢ > 0 and v € (0,1).
Theorem (Bet et al. 2023)

There exists a sequence of test (¢n)n>0 with 1, : U, — [0, 1] such
that
e lim, EPS,E[’L/),,(U,,)] =0.
. 1 hen v > 1/2,
e lim, EPf,e[l/;,,(U,,)] = { when > 1/

Cte wheny=1/2,
e lim, Epf,e«[wn(Un)] =0 when vy < 1/2.

Conjecture (Bet et al. 2023)

When v < 1/2 there is no sequence (¢n)n>0, ¢n : Un — [0,1], such
that

lim Epa=[$n(Un)] =0, and, lim Epn=[gn(Un)] = 1.

v
E.Gassiat (UPS and CNRS) Verona Late CPD in PA graphs 12 /31




Our result

Theorem (EG, |. Kaddouri, Z. Naulet 2024)

Recall 7, = n — A,

If 6 > 0 and A, = o(n1/3) orifdg=0 and A, = o %) then
for every sequence (¢n)n>0 Of tests ¢, : U, — [0,1]

Iirr’n Epg,a«[(ﬁn(un)] =0 = Iirr’n Epf’a‘[(ﬁn(un)] =0
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Another result with some interest

The problem is quite different if we observe the labeled graph

Theorem (EG, I. Kaddouri, Z. Naulet 2024)

Suppose T, — +00 and A, — co. Then, there is a sequence
(¥n)n>0, ¥n : Gn — [0,1], such that

Ii,r1n EPg["/)n(Gn)] =0, and, Ii,';n EP{’[wn(Gn)] =1.

When limsup,, . ., A, < oo, detection of the change is not
possible.
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About the difficulty of the problem

Traditional path to simultaneously prove Theorem 1 and the
conjecture : require to understand the likelihood ratio

dPy=
dpPy=

(Un)

under Uy, ~ P(',”g (enough for conjecture) and U, ~ P{"= (for the
Theorem).

@ Neyman-Pearson's Lemma guarantees that 1(2£},:;(Un) > k) is
0
uniformly most powerful amongst all the tests of its size;

@ Our impossibility Theorem is equivalent to the statement
Py =(As) = 0 = P"(A,) =0

usually called contiguity and written P{"~ <1 Py"~ (well-studied
by Le Cam).
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So let's try to do this.
Let un (respectively A,) be the counting measure on G, (resp. U,).

Then,
dpP= der
W= > L)
dAn 4 dun
V(g)=In]

Difficult to understand!'!'! Why?
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So let's try to do this.
Let wun (respectively A,) be the counting measure on G, (resp. Up).

Then,
dpP= der
W= > L)
dAn 4 dun
V(g)=In]

Difficult to understand!'!'! Why?

Consider the two isomorphic graphs :

dPJ?( )>0 but dPJ?( "Y=0
—J(g)>0 but —L(g)=
dps & dps &

= makes the above sum tricky to analyze.
= need of another strategy.
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© Feasibility : how to detect a late changepoint.
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Strategy from Bet et al (2023).

To prove the feasibility, it is enough to build a test. The main
intuitions are the following :

e Under Hy the degree statistics (Nm(Un), Nm+1(Un), .. .) where
Ni(Uy,) := Number of vertices of degree k in U,

is a sufficient statistic for the model (not under H; though).
Furthermore, under both Pg and P{

(Nin(5(Gn))s Nt 1(5(Gn))s - ) "2 (Nl Gn), Nin41(Gn) - - -)

so that any test based on the degree statistics is easy to
analyze.
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intuitions are the following :

e Under Hy the degree statistics (Nm(Un), Nm+1(Un), .. .) where
Ni(Uy,) := Number of vertices of degree k in U,

is a sufficient statistic for the model (not under H; though).
Furthermore, under both Pg and P{

(Nin(5(Gn))s Nt 1(5(Gn))s - ) "2 (Nl Gn), Nin41(Gn) - - -)

so that any test based on the degree statistics is easy to
analyze.

@ Most of the vertices with arrival time > 7, will have m edges
thus it shall be enough to look at Np,(U,).
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Strategy from Bet et al (2023).

To prove the feasibility, it is enough to build a test. The main
intuitions are the following :

e Under Hy the degree statistics (Nm(Un), Nm+1(Un), .. .) where
Ni(Uy,) := Number of vertices of degree k in U,

is a sufficient statistic for the model (not under H; though).
Furthermore, under both Pg and P{

(Nin(5(Gn))s Nt 1(5(Gn))s - ) "2 (Nl Gn), Nin41(Gn) - - -)

so that any test based on the degree statistics is easy to
analyze.

@ Most of the vertices with arrival time > 7, will have m edges
thus it shall be enough to look at Np,(U,).

For now : we assume g is known.
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So typically we need to understand the behaviour of Ny,(U,) and
show that it differs under Hy and H;
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So typically we need to understand the behaviour of N,,(U,) and
show that it differs under Hy and H;

More precisely, defining

pm(50) = lim Eo(Nm(Un))

n—o00 n

they show that the test statistic
Tn(Un) := Nm(Un) — npm(do)

satisfies
@ T.(Us) = Op(v/n) under U, ~ PI=;
@ To(Un) = C(pm(61) = pm(d0))n” + Op(+/n) under Up ~ P},
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When g is unknown

In this case, one can simply consider an estimator S,,(U,,) of dg and
consider the plugin test

Q(Un) = Nm(n) — ”Pm(gn(Un))
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When g is unknown

In this case, one can simply consider an estimator S,,(U,,) of Jp and
consider the plugin test

Q(Un) = Nm(n) — ”Pm(gn(Un))

But what estimator ?

Interestingly, the MLE under Hy is easy to compute (Gao and van
der Vaart, 2017). Consider a labeled graph g, in the support of Pg.
Then

d'D(r;( ) = Hk>m [Hj(:m(f + 50)] e
dpn " T T, TImL (2m(t — 1) + (i — 1) + téo)

This only depends on s(g,)!!
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Deduce that,

P () Tiom [Hj’f:m(j + )] Nic(un)
A T T [T (2m(t — 1) + (7 = 1) + tdo)

— analyzis of the MLE.
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Deduce that,

P () Tiom [Hj’f:m(j + )] Nic(un)
A T T [T (2m(t — 1) + (7 = 1) + tdo)

— analyzis of the MLE.

Q(Un) = Nim(n) = npm(8n(Un))
= M) 1 (30) + 1m(5) — pr(20))

N~

(1) ()
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Deduce that,

dP{,”E(u - Tiom [Hj‘f:m(j+5o)] Nic(un)
A T T [T (2m(t — 1) + (7 = 1) + tdo)

— analyzis of the MLE.

Q(Un) = Nm(n) — ”Pm(gn(Un))
= Nm(n) — npm(do) + n(Pm((SAn)v_ Pm(do))

N~

(1) ()

Under Ho, (1) = Opy (v/n) and (2) = Opy (v/nlog(n)).
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Deduce that,

dP{,”E(u - Tiom [Hj‘f:m(j+5o)] Nic(un)
A T T [T (2m(t — 1) + (7 = 1) + tdo)

— analyzis of the MLE.

A

Q(Un) = Nm(n) — npm(6n(Un))
= Nm(n) — npm(do) + n(Pm((SAn)v_ Pm(do))

N~

(1) ()

Under Ho, (1) = Opy (v/n) and (2) = Opy (v/nlog(n)).

Under H; when v > 1/2, (1) < n7 and (2) < n” and (1) +(2) < n".
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© Impossibility : when is it impossible to detect a late
change-point ?
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Recall our result

Theorem (EG, |. Kaddouri, Z. Naulet 2024)

Recall T, = n — A,

If 6o > 0 and A, = o(n"/3) or if do = 0 and Ay = o (), then
for every sequence (¢n)n>0 of tests ¢, : U, — [0, 1]

||’r7n EPS,E[(bn(Un)] =0 — ||,r7n EP{LE [(bn(Un)] =0

Le Cam’s theory : equivalent to show that P{"E < P(’)”g.
Too difficult to establish.
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Reduction

Usual approach : show that an easier problem is not feasible.
Most trivial attempt : show that the change-point cannot be
detected from the labeled graph G, itself... unfortunately :

Theorem (EG, |. Kaddouri, Z. Naulet 2024)

Suppose T, — +00 and A, — oo. Then, there is a sequence
(¥n)n>0, ¥n : Gn — [0, 1], such that

lim Epg[thn(Gn)] =0, and, lim Epy[¢(Gp)] = 1.

When limsup,_ .. ., A, < oo, detection of the change is not
possible.

Using MLE (and standard martingale arguments as in Gao et al.
2017).
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Reduction

Usual approach : show that an easier problem is not feasible.
Most trivial attempt : show that the change-point cannot be
detected from the labeled graph G, itself... unfortunately :

Theorem (EG, |. Kaddouri, Z. Naulet 2024)

Suppose T, — +00 and A, — oo. Then, there is a sequence
(¥n)n>0, ¥n : Gn — [0, 1], such that

lim Epg[thn(Gn)] =0, and, lim Epy[¢(Gp)] = 1.

When limsup,_ .. ., A, < oo, detection of the change is not
possible.

Using MLE (and standard martingale arguments as in Gao et al.
2017).
We need to find a problem that is intermediate between observing

s(Gp) and G,
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Simpler problem : consider the observation of 7(G,) where 7 is a
random permutation.
o Pg (respectively IPT) joint distribution of (7, G,) under Hp
(resp. Hy).
e Py’" distributions of (G,) under Hp; idem P"™;
e Py marginal distribution of G, under Hp; idem P';

We have to construct P such that :
A. It is easier to test {Hp, H1} based on the observation of 7(G,)

rather than U, = s(G,) :

B. We can prove that P;"" <1 Py™".
Remark : to prove B, it is convenient to build the permutation 7
conditional to G, ; ie. m and G, are not independent and it is unclear

if A is true.

E.Gassiat (UPS and CNRS) Verona Late CPD in PA graphs 25/31



A first lemma : hierarchy of difficulties

Lemma
Suppose the law of 7 | G, is the same under Hy and H; and
consider the following statements :
@ For every sequence (¢n,) of G,-measurable tests,
lim, E]pg(gb,,) = 0 implies lim, Epf(gb,,) =0;
@ For every sequence (¢,,) of w(G,)-measurable tests,
lim,, Epg(¢n) = 0 implies lim,, Epn(¢s) =0
© For every sequence (¢n) of s(Gp)-measurable tests,
limy, Ezg(¢n) = O implies lim, Epa () = 0.
Thenl — 2 = 3.

E.Gassiat (UPS and CNRS) Verona Late CPD in PA graphs 26 /31



So now we shall investigate permutations :

@ complicated enough to enable contiguity.
@ tractable enough to enable computations.

@ built as prescribed by the previous lemma.

Contiguity : we use a second moment bound. For any sequence
(An)n>1 of events and with H, = 7(G,)

P17 (An) = PP (An N BS) + P (An N By)
< P(B) + Eprm (1a,08,(Hn))

- dPnﬂ'
- P]_ (BC) + EPnﬂ- <1Antn(H )dPnﬂ'(H )>

2
nm nr dry”
<P (By) + Py’ (An)1/2<EPngPM(H )) 15,(Hn)

)1/2
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”J—UD

Yy Jo sspou
g/1v =< Uy 1se7

@ Vertices in red : Swap their labels with “compatible” vertices in
[n—r];
@ Vertices in blue or green : keep their labels
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B, is the event that no blue or green nodes exists.

e Advantage : this event has probability 1 + o(1) as long as

rn = o(n'/3) and on this event the likelihood ratio
dpr
ary

@ Advantage bis : This random permutation leaves invariant Py :
ie. m(Gp) ~ P§ when (7, G,) ~ Pj. This makes the study under
0 convenient.

(7(Gn)) behave nicely under Pg ;

@ Downside : this event has probability going to zero as long as
ra > n/3; so this trick cannot work to fully establish the
conjecture...
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Conclusion

@ There was a conjecture in Bet et al. 2023;
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Conclusion

@ There was a conjecture in Bet et al. 2023;

@ We wanted to prove er-disprove it;

@ We made some progress but there is still a gap between lower
and upper bound;
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Conclusion

@ There was a conjecture in Bet et al. 2023;

@ We wanted to prove er-disprove it;

@ We made some progress but there is still a gap between lower
and upper bound;

@ What next?
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Thank you for your attention !

E.Gassiat (UPS and CNRS) Verona



	Introduction: what is the PA model? what is a changepoint? Statement of main results and the conjecture
	Feasibility: how to detect a late changepoint.
	Impossibility: when is it impossible to detect a late change-point ?

