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Semi-linear SPDEs

Consider the equation
9:X(t,y) = 0AX(t,y) +(X(t,y)) +0d:W(t,y), (t,y)€[0, T]xA,

on a smooth bounded domain A C RY with A =Y¢ | 92, some initial value

X(0,-) and boundary conditions. !

o ¥ diffusivity, o > 0 noise level, d; W is space-time white noise.
e f:RY = R Lipschitz continuous.

e J:W(t,y) is dynamic/intrinsic noise, NOT measurement noise.

We want to validate the SPDE model (i.e. ¥, f) on data.
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Case study: Cell repolarisation
|

A particular aspect of chemotaxis is to understand how a cell changes direction
when exposed to an external signal. This process is related to a change in actine
concentration along the cell boundary.
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Case study: Cell repolarisation
|

In order to describe the change in actine concentration, A., Bretschneider, Janak,
Reilf ("22) introduce a stochastic reaction diffusion model on the circle
A =[0,27], extending a classical activator-inhibotor model:

atX(tay) - ﬁAX(tvy)+f(X(tay)vZ(tvy)7Y)+GatW(tay)
e Z(t,y) =yAZ(t,y)+g(X(t,y), Z(t,y),y).

Only X (actine concentration) can be measured.

Real data SPDE-Model

Dynamic noise speeds up repolarisation and makes front-splitting more likely.
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Two statistical models
|

Recall: 9:X(t,y) = 0AX(t,y)+f(X(t,y))+0d:W(t,y) on [0, T] xA.

1. Inference on ¥
@ From observations
Xs = (Xs)hry € L2([0, TERM), X5 k(t) = (X(£), Ks ) 12(n)»
at xi,...,xy € R with Kgxk(x):5’d/2K( X —Xk))-
(A., Reil ('21), Rei, Strauch, Trottner ('23), ...)

)=
!

o Spatial ergodncuty/asymptotlcs:
(X(1), Ks ) 12(0) = L (5Y(572), K) 12(5-1(A-x,)) T rem,
2:Y(t,y) = OAY(t,y)+06d:W(t,y) on [0, 2T] x 8 (A —x).
o A., Tiepner, Wahl ("24): as 0 -0, M — o, T fixed, have
MY267 (85 — ) S N(0,Xy).
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Two statistical models
|

Recall: 9:X(t,y) = 0AX(t,y)+f(X(t,y))+0d:W(t,y) on [0, T]xA.

2. Inference on f

o From (X(t,y))o<t<T,yen (Gaudlitz ('23), Gaudlitz, Reil ('23), Ibragimov
('03)).

o Spatial ergodicity/asymptotics: ¢ = 91/2,
X(t.y) £ Y (8,07 y),
3:Y(t,y) = AY(t,y)+F(Y(t,y))+:W(t,y) on [0, T] x 8 2(A—xy).

o Gaudlitz ('23): nonparametric rates for f as © — 0, 6 = 9¥/2, T fixed.
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Local measurements
N

Let 0=1, f =0, K| 2rs) =1, K compactly supported.
atX(t7y) = ﬁAX(Ly)J’_atW(tay)

= at<X(t)7 K5.Xk> = ﬁ<X(t)7AK5,xk> +at<W(t)7K5.xk>'

o (X(t),Ks.x,) and (X(t),Ks ) are correlated (not independent)
o t— (X(t),Ks.,) not Markov processes.

A., Tiepner, Wahl ("24): M local measurements, minimax-optimal rate
hs =8 M2 as § =0, M — co.

What is the minimal variance for estimating ¥ from local measurements?
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The log-likelihood process

Goal: Show that the log-likelihood process is locally asymptotically normal

dpl9+r5

|
8 TP,

1
(XS):Z_EIﬁ_"OI%(]-)a 6—)0,M—>°°
with Z ~ N(0,Z3) and Fisher information Zy > 0.

Then by the local asymptotic minimax theorem

lim inf sup r5’Ey [ W — Y5 2] >7,%
8—0,M—0 ¥ 950, 0+rs] s |( ) v
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The likelihood

Notation: X5(t) = ((X(2), Ks ) 12(re) k1
X5 (t) = (<X(t)7AKS,xk>L2(Rd))f<w:1'

Markov projection: my(t) = Es[0X5()|(Xs5(5))o<s<t]-

= dXs(t) = my(t)dt+dw(t), w M-dim. BM.

Log-likelihood process: By Girsanov's thm

o8 ( “ () —tog (T 0x5) ) +og (;’g (Xs))

M
:EI/OT (mﬁ”rfsvk(t)_mﬂk dW 5 Z / My rs k(t) —my, k(t)) dt.
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Two links
|

Partial observations of OU-process:

o d-dimensional OU process dX; = Ay X:dt + dW;.
@ Observe X,” ¢ (e.g., projection on first coordinate).
@ 'usual’ rates of convergence (for ¥, as T — ), loss in information?

Kalman-Bucy method for filtering:

@ Hidden OU-process: dXe = Ag Xedt + dW,
dYt = Xtdt+ dBt

@ State estimation X; from m(t) = E[X¢|(Ys)o<s<t]-
e ODEs for m(t), y(t) = E[(X: — m(t))?].
o Based on m(t) = [; g(t,s)dYs where with c(t,s) = E[X;X,]

g(t,s) +'/Otc(s,5’)g(t,5’)d5’ =c(t,s).
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Reduction to M independent measurements

Notation:

o Let Cy be covariance operator of Py on L2([0, T],RM), so

Es {/OTXg(t)f(t)dt/OTXS(t)g(t)dt} :/OTCﬁf(t)g(t)dt.

o Let Cy be covariance operator of the law Py of M independent local
measurements (so Cy is diagonal).

By Feldman-Hajek-Thm

diP _ diP dP
Py ﬂ(Xg)—l > € <82 1/ d(; 1/ d(;
=& 2H*(Py,Py) §2872||C~];1/2 (Cﬂ—éﬂ) 1/2||H5

with Hellinger distance H?.
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Reduction to M independent measurements

A., Tiepner, Wahl (’24): for p-separated locations infy; [xx — x;| > p and
K = AK have
§2+2d

~—-1/2 =\ 2-1/2 -
16572 (o= Co) &6 s S M8 ™2 sy

= Effect of correlated measurements in likelihood expansion can be ignored if
2
M&2(8/p)?>2¢ =0, e.g. when M<p~ and p = 5235 log 1.

Therefore suppose in the following M = 1.
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The 'filter’

Proposition

We have the representation )
6t

mo (t) = E[0X5 ()| (X5(s)ozs<e] = 571/0 gs,5(87t,5)dY (s)
where 9:Y(t,y) = 0AY(t,y)+d:W(t,y) on[0,6 2T] x (A —x)

and where gy 5 is solution to Wiener-Hopf integral equation

52t
8.5(867%t,s) —/0 ch5(ls—5')gs,5(872t,s")ds' = —c§ 5(s).

@ Uses Gaussian correlation and mapping properties of cov. op.
o LHS in WH-equation is cov. op. of GP g — 5’1f0572tg(s)dY(s).

@ Computing Fisher information as & — 0 requires
go(s) =lims_,08s,5(872t,s) € L2(R™).
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Wiener-Hopf integral equation

Expect gy(s) = lims_,0 89 5(62t,s) with

£0(5)~ | cills =5 Dio(s)ds' = c(s).

Note: g — [ ci(|-—5'|)g(s')ds’ is not compact on L2(R™T) nor on Go(R™), so
Fredholm theory does not apply and solution of WH-equation above may not
exist (Wiener, Hopf (1931), Anselone, Sloan (1985)).

Instead:

@ Rewrite as Volterra equation

s
gs.5(87%t,s) :/0 2¢y 5(Is—5')gs,5(8%t,s")ds’ 4 rem.

@ Obtain unique solution in C(R") as § — 0 on all intervals [0, a].
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Wiener-Hopf integral equation

o Note gy 5(t,5) = (—C§ 5") ' cj 5= —(C§ 5) co5+rem.
@ Using properties of RKHS have

5 2¢
H/O chs(l-—5'Dgs.s(87%t,5)ds' || 120 5-20)

= ”Ugﬂ,5(5_2ta')||L2([0,5*2t])
= SL;P<Uf7g19,6(5_2 t, ) 2([0,56-24))

< supll(CY ) 2Uf 2o -2 (1(C5.5) ™0 5l12(0.5-2 + rem)

< ool (uniformly in §,0<t < T).

e So gy € L2(RT) after all.
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Rescaling

Using Gaussian concentration (Borell-Sudakov-Tirelson) have
T 2
/O (mo1hg(t) —ma(t))” dt
T 2
—or, () +Eo | [ (maay (1) - mo(0)°] o

= oPﬂ(1)+3’2/OT]E19 [(/08 t(g19+h5,6(572t75)_319,6(572@5)) dY(5)> ] dt

B o171
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Main result
|

Theorem

Let Z ~ N(0,Z). Under regularity assumptions on K, M < p~9 and
p = 6235 log 61, we find

dPﬂ+M*1/26

1
o (X6)=13*1/22—519*1TI+%(1), 8§ —=0,M— oo,
Y

log

@ inverse Fisher information is linear in 9.

e 9T 1T is minimal variance for estimating ¥ from local measurements

X5 =((X(1),Ks5,),0<t< T, k=1,...,M).

@ The result transfers to nonparametric diffusivity 9.

o Eventually we want to do Bayesian inference on 9 ...
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© Inference on nonlinearity for small noise
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Tractable likelihood

Now: d:X(t,y) = 0AX(t,y)+f(X(t,y))+06d:W(t,y) on [0, T] x A.

Observe
(X(t7 y))0§t§ T, yeN

so this is a regression problem:

X (t,y) — OAX(t,y) = F(X(t,y)) + G W(t,y).

observable

Log-likelihood by Girsanov's thm:

o 0K, ()~ 9AX () 00y s [ I

620

of) =
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Posterior is Gaussian
|

Suppose MM is an M-dim. Gaussian process prior on f € © C C3(R).
Given an ONB (&) of L2(U), suppf C U C R compact, then

N(f|1X)=N(u,Q)
with

/T< X(0)) 2p e+ T3,
— <12/ (ex(X(1)),dX(t) — ﬁAX(f)dt>L2(/\)>

M

k=1
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A concentration result
|

Let 9 = o~ /4. Define

R(F.g): / 1F(X (1) — g(X(£)) |22t

Theorem
If fo € C3(R), f,g € L?(R), then for x >0

2

) B ) I
Pr (|5(F.6) ~Eq [15 (.8)]| > 0x) < 2exp ( C02||f—g||f2(R)> .

@ y+— X(t,y) is hard to control (generally no It6 formula, no local time).

@ Proof based on Malliavin calculus and fine density bounds for law of X(t,y).
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Posterior contraction
|

Recall: h3(f,g):= fo' [F(X(1)) —g(X(1))I[}2(5dt
For a > 3 suppose fy € C*(U)NH*(U), rs = (62)21&1 log(c—2).
Theorem

Let M be a (finite-dim.) Gaussian wavelet prior on L2(U) (cut-off J ~ rgl/"‘)
with RKHS H*tY/2(U). Then for every Mg — oo

N (f: Eg, [B2(F, )] > Mor2) Y

c—0

@ proof based on v.d.Meulen, v.d. Vaart, v. Zanten ('06), see also Nickl, Ray
('20). B
@ As long as posterior is supported on compact U C U, we have

1F — ol22g0) S By [ (F, )] S 1IF — foll 3.
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Summary
|

o Statistical inference for semilinear SPDEs

e X(t,y) = 0AX(t,y)+ F(X(t,y))+0d:W(t,y).

@ LAN property for ¥ from local measurements as 6 — 0.

@ Posterior contraction with nonparametric rates for f from full observations
on [0, T] xA as 6 = ¥/* = 0.

@ Ongoing work: nonparametric BvM in both settings (a la Nickl, Ray ('18)).
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