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Semi-linear SPDEs

Consider the equation

∂tX (t,y) = ϑ∆X (t,y)+ f (X (t,y))+σ∂tW (t,y), (t,y) ∈ [0,T ]×Λ,

on a smooth bounded domain Λ⊂ Rd with ∆= ∑
d
i=1 ∂ 2

ii , some initial value
X (0, ·) and boundary conditions.

ϑ diffusivity, σ > 0 noise level, ∂tW is space-time white noise.
f : Rd → R Lipschitz continuous.
∂tW (t,y) is dynamic/intrinsic noise, NOT measurement noise.

We want to validate the SPDE model (i.e. ϑ , f ) on data.
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Case study: Cell repolarisation

A particular aspect of chemotaxis is to understand how a cell changes direction
when exposed to an external signal. This process is related to a change in actine
concentration along the cell boundary.

Figure 1. Molecular and computational analysis of actin relocalization in Dictyostelium cells: (A) schematic diagrams with equations for
three alternative models proposed for cell polarity (5,12,13). Each model incorporates a stimulus term, s, that provides directionality to
the external signal as defined in (5); (B) representative sequence of images showing actin relocalization in a single Dictyostelium cell after
rapid flow reversal (18). Filamentous actin was visualized in JH10 cells expressing LimED-GFP (green) with phase contrast in red. Arrow
indicates direction of the high hydrodynamic shear stress (P 5 2.1 Pa). The outer cell contour (white line) as determined using QuimP 11b
(19, http://go.warwick.ac.uk/quimp) where the blue crosses are evenly spaced nodes labelled 1–20. Scale bar, 10 lm; (C) time-space plots
of the cell from (B) as determined using QuimP 11b. Cell circumference as defined from the nodes shown in (B) with the dashed white
lines indicating the time for each image. Black dashed line indicates the time the flow was reversed; (D) time-space plot, as determined in
(C), for mean data of 18 responses from 14 cells (18); and (E) mean cortex fluorescence (black) for the indicated times points from (D). Red
indicates example model fit using the Meinhardt model as defined in (A). [Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]

Original Article

4 Fitting Models for Cell Reorientation
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Case study: Cell repolarisation

In order to describe the change in actine concentration, A., Bretschneider, Janak,
Reiß (’22) introduce a stochastic reaction diffusion model on the circle
Λ = [0,2π], extending a classical activator-inhibotor model:

∂tX (t,y) = ϑ∆X (t,y)+ f (X (t,y),Z (t,y),y)+σ ∂tW (t,y)

∂tZ (t,y) = γ∆Z (t,y)+g (X (t,y),Z (t,y),y) .

Only X (actine concentration) can be measured.

Real data SPDE-Model

Figure 1. Molecular and computational analysis of actin relocalization in Dictyostelium cells: (A) schematic diagrams with equations for
three alternative models proposed for cell polarity (5,12,13). Each model incorporates a stimulus term, s, that provides directionality to
the external signal as defined in (5); (B) representative sequence of images showing actin relocalization in a single Dictyostelium cell after
rapid flow reversal (18). Filamentous actin was visualized in JH10 cells expressing LimED-GFP (green) with phase contrast in red. Arrow
indicates direction of the high hydrodynamic shear stress (P 5 2.1 Pa). The outer cell contour (white line) as determined using QuimP 11b
(19, http://go.warwick.ac.uk/quimp) where the blue crosses are evenly spaced nodes labelled 1–20. Scale bar, 10 lm; (C) time-space plots
of the cell from (B) as determined using QuimP 11b. Cell circumference as defined from the nodes shown in (B) with the dashed white
lines indicating the time for each image. Black dashed line indicates the time the flow was reversed; (D) time-space plot, as determined in
(C), for mean data of 18 responses from 14 cells (18); and (E) mean cortex fluorescence (black) for the indicated times points from (D). Red
indicates example model fit using the Meinhardt model as defined in (A). [Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]

Original Article

4 Fitting Models for Cell Reorientation

Dynamic noise speeds up repolarisation and makes front-splitting more likely.

R. Altmeyer (Imperial College London) 6



Two statistical models

Recall: ∂tX (t,y) = ϑ∆X (t,y)+ f (X (t,y))+σ∂tW (t,y) on [0,T ]×Λ.

1. Inference on ϑ

From observations

Xδ = (Xδ ,k)
M
k=1 ∈ L2([0,T ];RM), Xδ ,k(t) = ⟨X (t),Kδ ,xk ⟩L2(Λ),

at x1, . . . ,xM ∈ Rd with Kδ ,xk (x) = δ−d/2K (δ−1(x−xk)).

(A., Reiß (’21), Reiß, Strauch, Trottner (’23), ...)

Spatial ergodicity/asymptotics:

⟨X (t),Kδ ,xk ⟩L2(Λ)
d
= ⟨δY (δ−2t),K ⟩L2(δ−1(Λ−xk ))

+ rem,

∂tY (t,y) = ϑ∆Y (t,y)+σ∂tW (t,y) on [0,δ−2T ]×δ
−1(Λ−xk).

A., Tiepner, Wahl (’24): as δ → 0, M → ∞, T fixed, have

M1/2
δ
−1(ϑ̂δ −ϑ)

d→ N(0,Σϑ ).
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Two statistical models

Recall: ∂tX (t,y) = ϑ∆X (t,y)+ f (X (t,y))+σ∂tW (t,y) on [0,T ]×Λ.

2. Inference on f

From (X (t,y))0≤t≤T ,y∈Λ (Gaudlitz (’23), Gaudlitz, Reiß (’23), Ibragimov
(’03)).

Spatial ergodicity/asymptotics: σ = ϑ1/2,

X (t,y)
d
= Y (t,ϑ−1/2y),

∂tY (t,y) = ∆Y (t,y)+ f (Y (t,y))+∂tW (t,y) on [0,T ]×ϑ
−1/2(Λ−xk).

Gaudlitz (’23): nonparametric rates for f as ϑ → 0, σ = ϑ1/2, T fixed.
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Local measurements

Let σ = 1, f = 0, ∥K∥L2(Rd ) = 1, K compactly supported.

∂tX (t,y) = ϑ∆X (t,y)+∂tW (t,y).

⇒ ∂t⟨X (t),Kδ ,xk ⟩= ϑ⟨X (t),∆Kδ ,xk ⟩+∂t⟨W (t),Kδ ,xk ⟩.

⟨X (t),Kδ ,xk ⟩ and ⟨X (t),Kδ ,xj ⟩ are correlated (not independent)

t 7→ ⟨X (t),Kδ ,xk ⟩ not Markov processes.

A., Tiepner, Wahl (’24): M local measurements, minimax-optimal rate
hδ = δ−1M1/2 as δ → 0, M → ∞.

What is the minimal variance for estimating ϑ from local measurements?
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The log-likelihood process

Goal: Show that the log-likelihood process is locally asymptotically normal

log
dPϑ+rδ

dPϑ

(Xδ ) = Z − 1
2
Iϑ +oPϑ

(1), δ → 0,M → ∞

with Z ∼ N(0,Iϑ ) and Fisher information Iϑ > 0.

Then by the local asymptotic minimax theorem

lim
δ→0,M→∞

inf
ψ̂

sup
ϑδ∈[ϑ ,ϑ+rδ ]

rδ
2Eϑδ

[
(ψ̂ −ϑδ )

2
]
≥ I−1

ϑ
.
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The likelihood

Notation: Xδ (t) = (⟨X (t),Kδ ,xk ⟩L2(Rd ))
M
k=1,

X∆
δ
(t) = (⟨X (t),∆Kδ ,xk ⟩L2(Rd ))

M
k=1.

Markov projection: mϑ (t) = Eϑ [ϑX∆
δ
(t)|(Xδ (s))0≤s≤t ].

⇒ dXδ (t) =mϑ (t)dt+dw̄(t), w̄ M-dim. BM.

Log-likelihood process: By Girsanov’s thm

log

(
dPϑ+rδ

dPϑ

(Xδ )

)
= log

(
dPϑ+rδ

dP0
(Xδ )

)
+log

(
dP0

dPϑ

(Xδ )

)
=

M

∑
k=1

∫ T

0

(
mϑ+rδ ,k(t)−mϑ ,k(t)

)
dw̄k −

1
2

M

∑
k=1

∫ T

0

(
mϑ+rδ ,k(t)−mϑ ,k(t)

)2
dt.
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Two links

Partial observations of OU-process:

d-dimensional OU process dXt = AϑXtdt+dWt .
Observe XT

t ϕ (e.g., projection on first coordinate).
’usual’ rates of convergence (for ϑ , as T → ∞), loss in information?

Kalman-Bucy method for filtering:

Hidden OU-process: dXt = AϑXtdt+dWt ,

dYt = Xtdt+dBt .

State estimation Xt from m(t) = E[Xt |(Ys)0≤s≤t ].
ODEs for m(t), γ(t) = E[(Xt −m(t))2].
Based on m(t) =

∫ t
0 g(t,s)dYs where with c(t,s) = E[XtXs ]

g(t,s)+
∫ t

0
c(s,s ′)g(t,s ′)ds ′ = c(t,s).
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Reduction to M independent measurements

Notation:

Let Cϑ be covariance operator of Pϑ on L2([0,T ],RM), so

Eϑ

[∫ T

0
Xδ (t) · f (t)dt

∫ T

0
Xδ (t) ·g(t)dt

]
=
∫ T

0
Cϑ f (t) ·g(t)dt.

Let C̃ϑ be covariance operator of the law P̃ϑ of M independent local
measurements (so C̃ϑ is diagonal).

By Feldman-Hajek-Thm

Pϑ

∣∣∣∣∣∣
√

d P̃ϑ

dPϑ

(Xδ )−1

∣∣∣∣∣∣> ε

≤ ε
−2
∫ √d P̃ϑ

dQ
−
√

dPϑ

dQ

2

dQ

= ε
−2H2(P̃ϑ ,Pϑ )≤ 2ε

−2∥C̃−1/2
ϑ

(
Cϑ − C̃ϑ

)
C̃

−1/2
ϑ

∥2
HS

with Hellinger distance H2.
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Reduction to M independent measurements

A., Tiepner, Wahl (’24): for ρ-separated locations infk ̸=j |xk −xj | ≥ ρ and
K =∆K̃ have

∥C̃−1/2
ϑ

(
Cϑ − C̃ϑ

)
C̃

−1/2
ϑ

∥2
HS ≲Mδ

−2 δ 2+2d

ρ2+2d .

⇒ Effect of correlated measurements in likelihood expansion can be ignored if
Mδ−2(δ/ρ)2+2d → 0, e.g. when M ≤ ρ−d and ρ = δ

2d
2+3d logδ−1.

Therefore suppose in the following M = 1.
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The ’filter’

Proposition
We have the representation

mϑ (t) = Eϑ [ϑX∆
δ
(t)|(Xδ (s))0≤s≤t ] = δ

−1
∫

δ−2t

0
gϑ ,δ (δ

−2t,s)dY (s)

where ∂tY (t,y) = ϑ∆Y (t,y)+∂tW (t,y) on [0,δ−2T ]×δ
−1(Λ−xk)

and where gϑ ,δ is solution to Wiener-Hopf integral equation

gϑ ,δ (δ
−2t,s)−

∫
δ−2t

0
c ′′

ϑ ,δ (|s− s ′|)gϑ ,δ (δ
−2t,s ′)ds ′ =−c ′′

ϑ ,δ (s).

Uses Gaussian correlation and mapping properties of cov. op.

LHS in WH-equation is cov. op. of GP g 7→ δ−1 ∫ δ−2t
0 g(s)dY (s).

Computing Fisher information as δ → 0 requires
gϑ (s) = limδ→0 gϑ ,δ (δ

−2t,s) ∈ L2(R+).
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Wiener-Hopf integral equation

Expect gϑ (s) = limδ→0 gϑ ,δ (δ
−2t,s) with

gϑ (s)−
∫

∞

0
c ′′ϑ (|s− s ′|)gϑ (s

′)ds ′ =−c ′′ϑ (s).

Note: g −
∫

∞

0 c ′′
ϑ
(| ·−s ′|)g(s ′)ds ′ is not compact on L2(R+) nor on C0(R+), so

Fredholm theory does not apply and solution of WH-equation above may not
exist (Wiener, Hopf (1931), Anselone, Sloan (1985)).

Instead:

Rewrite as Volterra equation

gϑ ,δ (δ
−2t,s) =

∫ s

0
2c ′′

ϑ ,δ (|s− s ′|)gϑ ,δ (δ
−2t,s ′)ds ′+ rem.

Obtain unique solution in C (R+) as δ → 0 on all intervals [0,a].
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Wiener-Hopf integral equation

Note gϑ ,δ (t,s) = (−C t
ϑ ,δ

′′)−1c ′′
ϑ ,δ =−(C t

ϑ ,δ )
−1cϑ ,δ + rem.

Using properties of RKHS have

∥
∫

δ−2t

0
c ′′

ϑ ,δ (| ·−s ′|)gϑ ,δ (δ
−2t,s ′)ds ′∥L2([0,δ−2t])

= ∥Ugϑ ,δ (δ
−2t, ·)∥L2([0,δ−2t])

= sup
f
⟨Uf ,gϑ ,δ (δ

−2t, ·)⟩L2([0,δ−2t])

≤ sup
f
∥(C t

ϑ ,δ )
−1/2Uf ∥L2([0,δ−2t])

(
∥(C t

ϑ ,δ )
−1/2cϑ ,δ∥L2([0,δ−2t])+ rem

)
< ∞! (uniformly in δ ,0 ≤ t ≤ T ).

So gϑ ∈ L2(R+) after all.
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Rescaling

Using Gaussian concentration (Borell-Sudakov-Tirelson) have∫ T

0

(
mϑ+hδ

(t)−mϑ (t)
)2

dt

= oPϑ
(1)+Eϑ

[∫ T

0

(
mϑ+hδ

(t)−mϑ (t)
)2]

dt

= oPϑ
(1)+δ

−2
∫ T

0
Eϑ

(∫ δ−2t

0

(
gϑ+hδ ,δ

(δ−2t,s)−gϑ ,δ (δ
−2t,s)

)
dY (s)

)2
dt

Pϑ→ ϑ
−1TI.
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Main result

Theorem

Let Z ∼ N(0,I). Under regularity assumptions on K , M ≤ ρ−d and
ρ = δ

2d
2+3d logδ−1, we find

log
dP

ϑ+M−1/2δ

dPϑ

(Xδ ) = ϑ
−1/2Z − 1

2
ϑ

−1TI+oPϑ
(1), δ → 0,M → ∞.

inverse Fisher information is linear in ϑ .
ϑT−1I−1 is minimal variance for estimating ϑ from local measurements

Xδ = (⟨X (t),Kδ ,xk ⟩,0 ≤ t ≤ T ,k = 1, . . . ,M).

The result transfers to nonparametric diffusivity ϑ .
Eventually we want to do Bayesian inference on ϑ ...
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Tractable likelihood

Now: ∂tX (t,y) = ϑ∆X (t,y)+ f (X (t,y))+σ∂tW (t,y) on [0,T ]×Λ.

Observe
(X (t,y))0≤t≤T ,y∈Λ,

so this is a regression problem:

∂tX (t,y)−ϑ∆X (t,y)︸ ︷︷ ︸
observable

= f (X (t,y))+σ∂tW (t,y).

Log-likelihood by Girsanov’s thm:

ℓ(f ) =
1

σ2

∫ T

0
⟨f (X (t)),dX (t)−ϑ∆X (t)dt⟩L2(Λ)−

1
2σ2

∫ T

0
∥f (X (t))∥2

L2(Λ)dt.
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Posterior is Gaussian

Suppose Π is an M-dim. Gaussian process prior on f ∈Θ⊂ C 3(R).
Given an ONB (ek) of L2(U), suppf ⊂ U ⊂ R compact, then

Π(f |X ) = N(µ,Q)

with

Q−1
jk =

1
σ2

∫ T

0

〈
ek(X (t)),ej (X (t))

〉
L2(Λ)

dt+Σ−1
jk ,

µ = Q

(
1

σ2

∫ T

0
⟨ek(X (t)),dX (t)−ϑ∆X (t)dt⟩L2(Λ)

)M

k=1
.
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A concentration result

Let ϑ = σ−1/4. Define

h2
σ (f ,g) :=

∫ T

0
∥f (X (t))−g(X (t))∥2

L2(Λ)dt.

Theorem

If f0 ∈ C 3(R), f ,g ∈ L2(R), then for x ≥ 0

Pf0

(∣∣h2
σ (f ,g)−Ef0

[
h2

σ (f ,g)
]∣∣≥ σx

)
≤ 2exp

(
−C

x2

σ2∥f −g∥2
L2(R)

)
.

y 7→ X (t,y) is hard to control (generally no Itô formula, no local time).
Proof based on Malliavin calculus and fine density bounds for law of X (t,y).
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Posterior contraction

Recall: h2
σ (f ,g) :=

∫ T
0 ∥f (X (t))−g(X (t))∥2

L2(Λ)
dt.

For α > 3 suppose f0 ∈ Cα(U)∩Hα(U), rσ = (σ2)
α

2α+1 log(σ−2).

Theorem

Let Π be a (finite-dim.) Gaussian wavelet prior on L2(U) (cut-off J ≈ r
−1/α

σ )
with RKHS Hα+1/2(U). Then for every Mσ → ∞

Π
(
f : Ef0

[
h2

σ (f , f0)
]
≥Mσ r

2
σ

) Pf0−−−→
σ→0

0.

proof based on v.d.Meulen, v.d. Vaart, v. Zanten (’06), see also Nickl, Ray
(’20).
As long as posterior is supported on compact Ū ⊂ U, we have

∥f − f0∥2
L2(U) ≲ Ef0

[
h2

σ (f , f0)
]
≲ ∥f − f0∥2

L2(U).
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Summary

Statistical inference for semilinear SPDEs

∂tX (t,y) = ϑ∆X (t,y)+ f (X (t,y))+σ∂tW (t,y).

LAN property for ϑ from local measurements as δ → 0.
Posterior contraction with nonparametric rates for f from full observations
on [0,T ]×Λ as σ = ϑ1/4 → 0.
Ongoing work: nonparametric BvM in both settings (à la Nickl, Ray (’18)).
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