Statistical inference for SPDEs under spatial ergodicity

Randolf Altmeyer

Imperial College London

Based on joint work with S. Gaudlitz

AHIDI2024, Università di Verona, November 8, 2024

IMPERIAL

2 LAN for local measurements

3 Inference on nonlinearity for small noise

Consider the equation

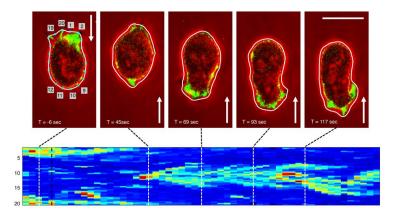
 $\partial_t X(t,y) = \vartheta \Delta X(t,y) + f(X(t,y)) + \sigma \partial_t W(t,y), \quad (t,y) \in [0,T] \times \Lambda,$

on a smooth bounded domain $\Lambda \subset \mathbb{R}^d$ with $\Delta = \sum_{i=1}^d \partial_{ii}^2$, some initial value $X(0, \cdot)$ and boundary conditions.

- ϑ diffusivity, $\sigma > 0$ noise level, $\partial_t W$ is space-time white noise.
- $f : \mathbb{R}^d \to \mathbb{R}$ Lipschitz continuous.
- $\partial_t W(t, y)$ is dynamic/intrinsic noise, NOT measurement noise.

We want to validate the SPDE model (i.e. ϑ , f) on data.

A particular aspect of chemotaxis is to understand how a cell changes direction when exposed to an external signal. This process is related to a change in actine concentration along the cell boundary.

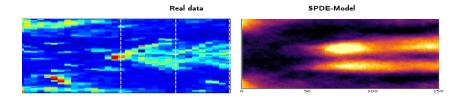


In order to describe the change in actine concentration, *A.*, *Bretschneider*, *Janak*, *Reiß ('22)* introduce a stochastic reaction diffusion model on the circle $\Lambda = [0, 2\pi]$, extending a classical activator-inhibotor model:

$$\partial_t X(t,y) = \vartheta \Delta X(t,y) + f(X(t,y), Z(t,y), y) + \sigma \partial_t W(t,y)$$

$$\partial_t Z(t,y) = \gamma \Delta Z(t,y) + g(X(t,y), Z(t,y), y).$$

Only X (actine concentration) can be measured.



Dynamic noise speeds up repolarisation and makes front-splitting more likely.

Recall: $\partial_t X(t,y) = \vartheta \Delta X(t,y) + f(X(t,y)) + \sigma \partial_t W(t,y)$ on $[0,T] \times \Lambda$.

1. Inference on ϑ

From observations

$$\begin{split} & X_{\delta} = (X_{\delta,k})_{k=1}^{M} \in L^{2}([0,T];\mathbb{R}^{M}), \quad X_{\delta,k}(t) = \langle X(t), K_{\delta,x_{k}} \rangle_{L^{2}(\Lambda)}, \\ & \text{at } x_{1}, \dots, x_{M} \in \mathbb{R}^{d} \text{ with } K_{\delta,x_{k}}(x) = \delta^{-d/2} \mathcal{K}(\delta^{-1}(x-x_{k})). \\ & (A., \text{ Reiß ('21), Reiß, Strauch, Trottner ('23), ...)} \end{split}$$

• Spatial ergodicity/asymptotics:

$$\langle X(t), \mathcal{K}_{\delta, x_k} \rangle_{L^2(\Lambda)} \stackrel{d}{=} \langle \delta Y(\delta^{-2}t), \mathcal{K} \rangle_{L^2(\delta^{-1}(\Lambda - x_k))} + \operatorname{rem},$$

$$\partial_t Y(t,y) = \vartheta \Delta Y(t,y) + \sigma \partial_t W(t,y) \text{ on } [0, \delta^{-2}T] imes \delta^{-1}(\Lambda - x_k).$$

• A., Tiepner, Wahl ('24): as $\delta \to 0$, $M \to \infty$, T fixed, have

$$M^{1/2}\delta^{-1}(\hat{\vartheta}_{\delta}-\boldsymbol{\vartheta})\stackrel{d}{\rightarrow}N(0,\Sigma_{\boldsymbol{\vartheta}}).$$

Recall: $\partial_t X(t,y) = \vartheta \Delta X(t,y) + f(X(t,y)) + \sigma \partial_t W(t,y)$ on $[0,T] \times \Lambda$.

2. Inference on f

- From (X(t,y))_{0≤t≤T,y∈Λ} (Gaudlitz ('23), Gaudlitz, Reiß ('23), Ibragimov ('03)).
- Spatial ergodicity/asymptotics: $\sigma = \vartheta^{1/2}$,

$$X(t,y) \stackrel{d}{=} Y(t,\vartheta^{-1/2}y),$$

 $\partial_t Y(t,y) = \Delta Y(t,y) + f(Y(t,y)) + \partial_t W(t,y) \text{ on } [0,T] \times \vartheta^{-1/2}(\Lambda - x_k).$

• Gaudlitz ('23): nonparametric rates for f as $\vartheta \to 0$, $\sigma = \vartheta^{1/2}$, T fixed.

Inference on nonlinearity for small noise

Let $\sigma = 1$, f = 0, $||K||_{L^2(\mathbb{R}^d)} = 1$, K compactly supported. $\partial_t X(t, y) = \vartheta \Delta X(t, y) + \partial_t W(t, y).$ $\Rightarrow \partial_t \langle X(t), K_{\delta, x_k} \rangle = \vartheta \langle X(t), \Delta K_{\delta, x_k} \rangle + \partial_t \langle W(t), K_{\delta, x_k} \rangle.$

⟨X(t), K_{δ,xk}⟩ and ⟨X(t), K_{δ,xj}⟩ are correlated (not independent)
 t ↦ ⟨X(t), K_{δ,xk}⟩ not Markov processes.

A., Tiepner, Wahl ('24): *M* local measurements, minimax-optimal rate $h_{\delta} = \delta^{-1} M^{1/2}$ as $\delta \to 0$, $M \to \infty$.

What is the minimal variance for estimating ϑ from local measurements?

Goal: Show that the log-likelihood process is locally asymptotically normal

$$\log \frac{d\mathbb{P}_{\boldsymbol{\vartheta}+\boldsymbol{r}_{\delta}}}{d\mathbb{P}_{\boldsymbol{\vartheta}}}(X_{\delta}) = Z - \frac{1}{2}\mathcal{I}_{\boldsymbol{\vartheta}} + o_{\mathbb{P}_{\boldsymbol{\vartheta}}}(1), \quad \delta \to 0, M \to \infty$$

with $Z \sim N(0, \mathcal{I}_{\boldsymbol{\vartheta}})$ and Fisher information $\mathcal{I}_{\boldsymbol{\vartheta}} > 0$.

Then by the local asymptotic minimax theorem

$$\lim_{\delta\to 0, M\to\infty} \inf_{\hat{\psi}} \sup_{\vartheta_{\delta}\in [\vartheta, \vartheta+r_{\delta}]} r_{\delta}^{2} \mathbb{E}_{\vartheta_{\delta}} \left[(\hat{\psi} - \vartheta_{\delta})^{2} \right] \geq \mathcal{I}_{\vartheta}^{-1}.$$

Notation:

$$X_{\delta}(t) = (\langle X(t), K_{\delta, x_k} \rangle_{L^2(\mathbb{R}^d)})_{k=1}^M,$$

$$X_{\delta}^{\Delta}(t) = (\langle X(t), \Delta K_{\delta, x_k} \rangle_{L^2(\mathbb{R}^d)})_{k=1}^M.$$

Markov projection: $m_{\vartheta}(t) = \mathbb{E}_{\vartheta}[\vartheta X_{\delta}^{\Delta}(t)|(X_{\delta}(s))_{0 \le s \le t}].$

 $\Rightarrow dX_{\delta}(t) = m_{\vartheta}(t)dt + d\bar{w}(t), \quad \bar{w} M$ -dim. BM.

Log-likelihood process: By Girsanov's thm

$$\log\left(\frac{d\mathbb{P}_{\vartheta+r_{\delta}}}{d\mathbb{P}_{\vartheta}}(X_{\delta})\right) = \log\left(\frac{d\mathbb{P}_{\vartheta+r_{\delta}}}{d\mathbb{P}_{0}}(X_{\delta})\right) + \log\left(\frac{d\mathbb{P}_{0}}{d\mathbb{P}_{\vartheta}}(X_{\delta})\right)$$
$$= \sum_{k=1}^{M} \int_{0}^{T} \left(m_{\vartheta+r_{\delta},k}(t) - m_{\vartheta,k}(t)\right) d\bar{w}_{k} - \frac{1}{2} \sum_{k=1}^{M} \int_{0}^{T} \left(m_{\vartheta+r_{\delta},k}(t) - m_{\vartheta,k}(t)\right)^{2} dt.$$

Two links

Partial observations of OU-process:

- *d*-dimensional OU process $dX_t = A_{\vartheta}X_t dt + dW_t$.
- Observe $X_t^T \varphi$ (e.g., projection on first coordinate).
- 'usual' rates of convergence (for ϑ , as $T \to \infty$), loss in information?

Kalman-Bucy method for filtering:

- Hidden OU-process: $dX_t = A_{\vartheta} X_t dt + dW_t,$ $dY_t = X_t dt + dB_t.$
- State estimation X_t from $m(t) = \mathbb{E}[X_t | (Y_s)_{0 \le s \le t}]$.
- ODEs for m(t), $\gamma(t) = \mathbb{E}[(X_t m(t))^2]$.
- Based on $m(t) = \int_0^t g(t,s) dY_s$ where with $c(t,s) = \mathbb{E}[X_t X_s]$

$$g(t,s)+\int_0^t c(s,s')g(t,s')ds'=c(t,s).$$

Notation:

• Let C_{ϑ} be covariance operator of \mathbb{P}_{ϑ} on $L^2([0,T],\mathbb{R}^M)$, so

$$\mathbb{E}_{\vartheta}\left[\int_{0}^{T}X_{\delta}(t)\cdot f(t)dt\int_{0}^{T}X_{\delta}(t)\cdot g(t)dt\right]=\int_{0}^{T}C_{\vartheta}f(t)\cdot g(t)dt.$$

Let C

 [°]_∂ be covariance operator of the law ℙ

 [®]_∂ of M independent local measurements (so C
 [°]_∂ is diagonal).

By Feldman-Hajek-Thm

$$\begin{split} \mathbb{P}_{\vartheta}\left(\left|\sqrt{\frac{d\tilde{\mathbb{P}}_{\vartheta}}{d\mathbb{P}_{\vartheta}}(X_{\delta})} - 1\right| > \varepsilon\right) &\leq \varepsilon^{-2} \int \left(\sqrt{\frac{d\tilde{\mathbb{P}}_{\vartheta}}{dQ}} - \sqrt{\frac{d\mathbb{P}_{\vartheta}}{dQ}}\right)^{2} dQ \\ &= \varepsilon^{-2} H^{2}(\tilde{\mathbb{P}}_{\vartheta}, \mathbb{P}_{\vartheta}) \leq 2\varepsilon^{-2} \|\tilde{C}_{\vartheta}^{-1/2} \left(C_{\vartheta} - \tilde{C}_{\vartheta}\right) \tilde{C}_{\vartheta}^{-1/2} \|_{HS}^{2} \end{split}$$

with Hellinger distance H^2 .

A., Tiepner, Wahl ('24): for ρ -separated locations $\inf_{k\neq j} |x_k - x_j| \ge \rho$ and $K = \Delta \tilde{K}$ have

$$\| ilde{C}_{artheta}^{-1/2}\left(\mathcal{C}_{artheta}- ilde{C}_{artheta}
ight) ilde{C}_{artheta}^{-1/2}\|_{HS}^2\lesssim M\delta^{-2}rac{\delta^{2+2d}}{
ho^{2+2d}}.$$

 $\Rightarrow \text{ Effect of correlated measurements in likelihood expansion can be ignored if } M\delta^{-2}(\delta/\rho)^{2+2d} \rightarrow 0 \text{, e.g. when } M \leq \rho^{-d} \text{ and } \rho = \delta^{\frac{2d}{2+3d}} \log \delta^{-1}.$

Therefore suppose in the following M = 1.

The 'filter'

Proposition

We have the representation

$$m_{\vartheta}(t) = \mathbb{E}_{\vartheta}[\vartheta X_{\delta}^{\Delta}(t)|(X_{\delta}(s))_{0 \le s \le t}] = \delta^{-1} \int_{0}^{\delta^{-2}t} g_{\vartheta,\delta}(\delta^{-2}t,s) dY(s)$$

where $\partial_t Y(t,y) = \vartheta \Delta Y(t,y) + \partial_t W(t,y)$ on $[0, \delta^{-2}T] \times \delta^{-1}(\Lambda - x_k)$

and where $g_{\vartheta,\delta}$ is solution to Wiener-Hopf integral equation

$$g_{artheta,\delta}(\delta^{-2}t,s)-\int_0^{\delta^{-2}t}c_{artheta,\delta}''(|s-s'|)g_{artheta,\delta}(\delta^{-2}t,s')ds'=-c_{artheta,\delta}''(s).$$

- Uses Gaussian correlation and mapping properties of cov. op.
- LHS in WH-equation is cov. op. of GP $g \mapsto \delta^{-1} \int_0^{\delta^{-2}t} g(s) dY(s)$.
- Computing Fisher information as $\delta \to 0$ requires $g_{\vartheta}(s) = \lim_{\delta \to 0} g_{\vartheta,\delta}(\delta^{-2}t,s) \in L^2(\mathbb{R}^+).$

Expect $g_{artheta}(s) = \lim_{\delta o 0} g_{artheta,\delta}(\delta^{-2}t,s)$ with

$$g_{\vartheta}(s) - \int_0^\infty c_{\vartheta}''(|s-s'|)g_{\vartheta}(s')ds' = -c_{\vartheta}''(s).$$

Note: $g - \int_0^\infty c_{\vartheta}''(|\cdot - s'|)g(s')ds'$ is *not* compact on $L^2(\mathbb{R}^+)$ nor on $C_0(\mathbb{R}^+)$, so Fredholm theory does not apply and solution of WH-equation above may not exist (Wiener, Hopf (1931), Anselone, Sloan (1985)).

Instead:

• Rewrite as Volterra equation

$$g_{\vartheta,\delta}(\delta^{-2}t,s) = \int_0^s 2c''_{\vartheta,\delta}(|s-s'|)g_{\vartheta,\delta}(\delta^{-2}t,s')ds' + \text{rem}.$$

• Obtain unique solution in $C(\mathbb{R}^+)$ as $\delta \to 0$ on all intervals [0,a].

Wiener-Hopf integral equation

• Note
$$g_{\vartheta,\delta}(t,s) = (-C_{\vartheta,\delta}^t)^{-1} c_{\vartheta,\delta}'' = -(C_{\vartheta,\delta}^t)^{-1} c_{\vartheta,\delta} + \text{rem}.$$

• Using properties of RKHS have

$$\begin{split} \|\int_{0}^{\delta^{-2}t} c_{\vartheta,\delta}'(|\cdot-s'|)g_{\vartheta,\delta}(\delta^{-2}t,s')ds'\|_{L^{2}([0,\delta^{-2}t])} \\ &= \|Ug_{\vartheta,\delta}(\delta^{-2}t,\cdot)\|_{L^{2}([0,\delta^{-2}t])} \\ &= \sup_{f} \langle Uf, g_{\vartheta,\delta}(\delta^{-2}t,\cdot)\rangle_{L^{2}([0,\delta^{-2}t])} \\ &\leq \sup_{f} \|(C_{\vartheta,\delta}^{t})^{-1/2}Uf\|_{L^{2}([0,\delta^{-2}t])} \left(\|(C_{\vartheta,\delta}^{t})^{-1/2}c_{\vartheta,\delta}\|_{L^{2}([0,\delta^{-2}t])} + \operatorname{rem}\right) \\ &< \infty! \text{ (uniformly in } \delta, 0 \leq t \leq T \text{)}. \end{split}$$

• So
$$g_artheta\in L^2(\mathbb{R}^+)$$
 after all.

Using Gaussian concentration (Borell-Sudakov-Tirelson) have

$$\begin{split} &\int_{0}^{T} \left(m_{\vartheta+h_{\delta}}(t) - m_{\vartheta}(t) \right)^{2} dt \\ &= o_{\mathbb{P}_{\vartheta}}(1) + \mathbb{E}_{\vartheta} \left[\int_{0}^{T} \left(m_{\vartheta+h_{\delta}}(t) - m_{\vartheta}(t) \right)^{2} \right] dt \\ &= o_{\mathbb{P}_{\vartheta}}(1) + \delta^{-2} \int_{0}^{T} \mathbb{E}_{\vartheta} \left[\left(\int_{0}^{\delta^{-2}t} \left(g_{\vartheta+h_{\delta},\delta}(\delta^{-2}t,s) - g_{\vartheta,\delta}(\delta^{-2}t,s) \right) dY(s) \right)^{2} \right] dt \\ &= \frac{\mathbb{P}_{\vartheta}}{\vartheta} \vartheta^{-1} T \mathcal{I}. \end{split}$$

Theorem

Let $Z \sim N(0, \mathcal{I})$. Under regularity assumptions on K, $M \leq \rho^{-d}$ and $\rho = \delta^{\frac{2d}{2+3d}} \log \delta^{-1}$, we find

$$\log rac{d\mathbb{P}_{artheta+M^{-1/2}\delta}}{d\mathbb{P}_{artheta}}\left(X_{\delta}
ight) = artheta^{-1/2}Z - rac{1}{2}artheta^{-1}\mathcal{TI} + o_{\mathbb{P}_{artheta}}(1), \quad \delta o 0, M o \infty.$$

• inverse Fisher information is linear in ϑ .

• $\vartheta T^{-1} \mathcal{I}^{-1}$ is minimal variance for estimating ϑ from local measurements

$$X_{\delta} = (\langle X(t), K_{\delta, x_k} \rangle, 0 \leq t \leq T, k = 1, \dots, M).$$

- The result transfers to nonparametric diffusivity ϑ .
- Eventually we want to do Bayesian inference on ϑ ...

Now: $\partial_t X(t,y) = \vartheta \Delta X(t,y) + f(X(t,y)) + \sigma \partial_t W(t,y)$ on $[0, T] \times \Lambda$. Observe

 $(X(t,y))_{0\leq t\leq T,y\in\Lambda},$

so this is a regression problem:

$$\underbrace{\frac{\partial_t X(t,y) - \vartheta \Delta X(t,y)}{\text{observable}} = f(X(t,y)) + \sigma \partial_t W(t,y)}_{\text{observable}}$$

Log-likelihood by Girsanov's thm:

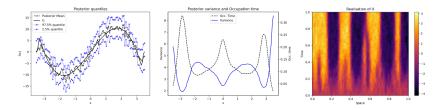
$$\ell(f) = \frac{1}{\sigma^2} \int_0^T \langle f(X(t)), dX(t) - \vartheta \Delta X(t) dt \rangle_{L^2(\Lambda)} - \frac{1}{2\sigma^2} \int_0^T \|f(X(t))\|_{L^2(\Lambda)}^2 dt.$$

Posterior is Gaussian

Suppose Π is an *M*-dim. Gaussian process prior on $f \in \Theta \subset C^3(\mathbb{R})$. Given an ONB (e_k) of $L^2(U)$, supp $f \subset U \subset \mathbb{R}$ compact, then $\Pi(f|X) = N(\mu, Q)$

with

$$\begin{aligned} Q_{jk}^{-1} &= \frac{1}{\sigma^2} \int_0^T \left\langle e_k(X(t)), e_j(X(t)) \right\rangle_{L^2(\Lambda)} dt + \Sigma_{jk}^{-1}, \\ \mu &= Q \left(\frac{1}{\sigma^2} \int_0^T \left\langle e_k(X(t)), dX(t) - \vartheta \Delta X(t) dt \right\rangle_{L^2(\Lambda)} \right)_{k=1}^M \end{aligned}$$



A concentration result

Let $\vartheta = \sigma^{-1/4}$. Define

$$h_{\sigma}^{2}(f,g) := \int_{0}^{T} \|f(X(t)) - g(X(t))\|_{L^{2}(\Lambda)}^{2} dt.$$

Theorem

If
$$f_0 \in C^3(\mathbb{R})$$
, $f,g \in L^2(\mathbb{R})$, then for $x \ge 0$
$$\mathbb{P}_{f_0}\left(\left|h_{\sigma}^2(f,g) - \mathbb{E}_{f_0}\left[h_{\sigma}^2(f,g)\right]\right| \ge \sigma x\right) \le 2\exp\left(-C\frac{x^2}{\sigma^2 \|f - g\|_{L^2(\mathbb{R})}^2}\right).$$

• $y \mapsto X(t,y)$ is hard to control (generally no Itô formula, no local time).

• Proof based on Malliavin calculus and fine density bounds for law of X(t,y).

Posterior contraction

Recall: $h_{\sigma}^{2}(f,g) := \int_{0}^{T} ||f(X(t)) - g(X(t))||_{L^{2}(\Lambda)}^{2} dt.$

For $\alpha > 3$ suppose $f_0 \in C^{\alpha}(U) \cap H^{\alpha}(U)$, $r_{\sigma} = (\sigma^2)^{\frac{\alpha}{2\alpha+1}} \log(\sigma^{-2})$.

Theorem

Let Π be a (finite-dim.) Gaussian wavelet prior on $L^2(U)$ (cut-off $J \approx r_{\sigma}^{-1/\alpha}$) with RKHS $H^{\alpha+1/2}(U)$. Then for every $M_{\sigma} \to \infty$

$$\Pi\left(f:\mathbb{E}_{f_0}\left[h_{\sigma}^2\left(f,f_0\right)\right]\geq M_{\sigma}r_{\sigma}^2\right)\xrightarrow{\mathbb{P}_{f_0}}0.$$

- proof based on v.d.Meulen, v.d. Vaart, v. Zanten ('06), see also Nickl, Ray ('20).
- As long as posterior is supported on compact $\bar{U} \subset U$, we have

$$\|f - f_0\|_{L^2(U)}^2 \lesssim \mathbb{E}_{f_0} \left[h_{\sigma}^2(f, f_0)\right] \lesssim \|f - f_0\|_{L^2(U)}^2.$$

• Statistical inference for semilinear SPDEs

$$\partial_t X(t,y) = \vartheta \Delta X(t,y) + f(X(t,y)) + \sigma \partial_t W(t,y).$$

- LAN property for ϑ from local measurements as $\delta
 ightarrow 0$.
- Posterior contraction with nonparametric rates for *f* from full observations on [0, *T*] × Λ as σ = ϑ^{1/4} → 0.
- Ongoing work: nonparametric BvM in both settings (à la Nickl, Ray ('18)).