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Estimating partial dependencies
• Observations of a set of  variables  

• Statistical goal: estimate their partial dependencies  

• Graphical modelling

p Y = (Y1, …, Yp)

ℒ(Yi, Yj |{Yk, k ≠ i, j})
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Y1

Y2

Y3

Y1 − Y2 ⟺ Y1 /⊥ Y2 |Y3

Y1 /− Y3 ⟺ Y1 ⊥ Y3 |Y2



Applications with large p
• Gene-wise association studies 

 level of expression of gene Yj : j
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• Neuroimaging data 

 level of activation of region of interest Yj : j

from Ni et al., 2022 from Lee et al., 2023



Weekly rates from Jan 2020 to Nov 2021 in 332 counties
COVID-19 log infection rates in the US
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Gaussian graphical modelling (GGM)
• Assume  

with   the covariance matrix ( ) 

• With   the precision (inverse-covariance) matrix, for , 

 

➡ The precision matrix encodes the graphical model! 

• Statistical goal: from   i.i.d observations of , ,  estimate  and 

the corresponding graphical model  with if  and  
otherwise.

Y = (Y1, …, Yp) ∼ MVN(0p, Σ)

Σ = (σij)1≤i,j≤p p × p

Ω := Σ−1 = (Ωij)1≤i,j≤p i ≠ j

Ωij = 0 ⟺ Yi ⊥ Yj |{Yk, k ≠ i, j}

n Y y1, …, yn ∈ ℝp Ω
Z = (zij)i,j zij = 1 Ωij ≠ 0 zij = 0
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• If  is large, it is reasonable to look for a sparse graphical model.


• Penalised Maximum Likelihood Estimator [Friedman et al., 2008; Yuan and Lin, 2007]


Graphical LASSO       


with  the sample covariance matrix.


Neighbourhood selection via Lasso [Meinshausen and Buhlmann, 2006]





‣ Set  if  and/or 


‣ (G)LASSO estimators tend to shrink large coefficients. 

‣ No uncertainty quantification on the graphical model.

p

Ω̂ = arg max
Ω≻0

log |Ω | − tr(ΩΣ̂)

log-likelihood

− λ |Ω |1

 penalisation

Σ̂ =
1
n ∑

i

yiyT
i =

1
n

YTY

̂θ j = arg min
θ∈ℝp−1

∥Y⋅j − Y⋅−jθ∥2 + λ∥θ∥1, j = 1,…, p .

zij = 1 ̂θ j
i ≠ 0 ̂θi

j ≠ 0

Estimation in high-dimensional GGM
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Sparse Bayesian inference



• G-Wishart distribution: 

      with e.g.,  =    with  

and            

with ,   and  is an intractable normalising constant.  

➡Requires some computational engineering and/or approximation to compute the 

posterior distribution via MCMC [Mohammadi et al. 2021, 2023]. 

➡Because of this, each MCMC step only modifies one edge.

Π(Ω) = Π(Ω |Z)Π(Z) Π(Z) Ber(θ)
p(p − 1)

2 θ ∈ (0,1)

Π(Ω ∣ Z) = IZ(b, D) |Ω |
b − 2

2 exp{
1
2

Tr(ΩD)}

b > 2 D ≻ 0 IZ(b, D)

Sparse conjugate prior
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• Shrinks each coefficient via a “product” of univariate mixture [Wang, 2015] 

 

where    

‣ : slab’s weight 

‣ : spike’s and slab’s standard deviations 

➡The spike models small (non-significant) coefficients  
while the slab allows large coefficients.  

➡The precision matrix is not sparse!

ΠSAS(Ω) ∝ ∏
i

Exp(Ωii; λ)∏
i<j

πSAS(Ωij)1Ω≻0

πSAS(Ωij) = (1 − θ) N(ωij; 0, s2
0)

spike

+ θ N(ωij; 0, s2
1)

slab

θ ∈ (0,1)

s0, s1 > 0
s0

s1

Spike-and-slab prior for GGM

Spike

Slab
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• We replace the spike’s normal density by a Dirac measure at 0: 

 

where    

‣ : slab’s weight 

‣ : slab’s standard deviation 

➡The spike now allows exact 0 while the slab allows  
large coefficients. 

ΠDSAS(Ω) ∝ ∏
i

Exp(Ωii; λ)∏
i<j

πDSAS(Ωij)1Ω≻0

πDSAS(Ωij) = (1 − θ) δ0(Ωij)

spike

+ θ N(ωij; 0, s2
1)

slab

θ ∈ (0,1)

s1 > 0

Discrete spike-and-slab

Spike

Slab
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Continuous vs Discrete SAS
• Coefficients  are often estimated at 0≲ s0
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Ω0 =

 ρ

 ρ  ρ

 ρ

 ρ

 ρ

s0

s1

, n = 5000 s0 = 0.05
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 p = 50, n = 100, ρ = 0.15[George & McCulloch 1993, Wang 2015] 

• Expected jump distance (EJD)  = average 
number of inclusion variable flips per iteration
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• Consistency if s0 → 0
p = 3, n = 5000, ρ = 0.15

DiscreteMixture

Π(Z0 |Y)
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Continuous

• Poor  MCMC mixing if s0 < 0.01

Posterior proba. 
on true model

s0

➡ The continuous SAS is not scalable to p 
larger than 200
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• Efficient Monte-Carlo Markov Chain (MCMC) algorithms targeting the posterior 

 for the “discrete” spike-and-slab prior. 

• We propose 2 types of Markov steps: local or globally-informed moves. 

• We empirically show that it is  computationally faster than state-of-the-art (fully) 

Bayesian algorithms for GGM. 

• We analyse the mixing times of our MCMC, prove that it can be “dimension-free” 

under some sparsity conditions (in preprint soon)

Π(Ω |Y)

Our contributions



Local/Global Metropolis-
within-Gibbs



• The conditional posterior of one column of  given the graphical model can be made 
tractable under some re-parametrisation. 

➡This permits to design a block Metropolis-within-Gibbs sampler updating one column 
of  at a time. 

• Sampling one column of the graphical model shares some similarity with variable 
selection in linear regression  

➡ Local moves via Gibbs or Metropolis-Hastings schemes such as Birth-Death-Swap 
[Yang et al., 2016], Locally-Informed and Thresholded [Zhou et al., 2022] can be used. 

➡ Related linear regression models can be exploited to do global moves.

Ω

Ω
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In a nutshell



Ω(0)

∼ Q1(Ω⋅1 |Ω(0))

Ω(1)

∼ Q2(Ω⋅2 |Ω(1))

Ω(2)

∼ Q3(Ω⋅3 |Ω(2)) ∼ Qp(Ω⋅p |Ω(p−1))

Ω(p−1)

…

Metropolis-within-block Gibbs



• Proposition:  
Under the DSAS prior and the re-parametrisation we have 

 

with.  .  

Π(u, v, z |Ω−p,−p, Y) = N(u; ⋅ , ⋅ )Ga(v, ⋅ , ⋅ )Π(z |Ω−p,−p, Y)

Π(z ∣ Ω−p−p, Y) ∝
e

mTz Uzmz
2

s |z|0
1 |Uz |

1
2

θ|z|0(1 − θ)p−1−|z|0

• Re-parametrise  to a “tractable” form. 

• Consider  

•  with  

•  

•

Π(Ω⋅j |Ω−j−j, Y)
j = p

z ∈ {0,1}p−1 zk = 0 ⟺ Ωkp = 0
u = − Ω−p,p,z

vp = ωpp − uTΩ−1
−p−p,zu

19

Ω−p,p

ωpp

Ω = Ω−p,−p

Conditional posterior distribution

➡  approximated via Metropolis-Hastings



•  is intractable but not dissimilar to other variable selection problems 

• One can use (local) SOTA Metropolis-Hasting Markov kernel to approximate it 

➡Gibbs [George and McCulloch, 1993]:  

➡Birth-Death-Swap [Yang et al., 2016]:  where  is obtained from  by either: 

✴ adding a 1 

✴ removing a 1 

✴ swapping a 1 with a 0 

➡ Locally-Informed and Thresholded proposal [Yang et al., 2016]: same as Birth-Death-
Swap but each move is weighted by a function of the posterior and the ratios of 
weights are bounded.

Π(z ∣ Ω−p−p, Y)

zk |z−k, Ω−p−p, Y ∼ Ber( ⋅ )

Q(z* ∣ z) z* z

20

Metropolis-Hastings (MH) 1: local moves



• The “model”  for  is also the “model” of  in the linear regression problem: 

 

    Proof: with  and denoting , then 

   or, equivalently,   . 

• A DSAS prior in the linear regression  and with  leads to the posterior 

  

➡ Many efficient samplers targeting this distribution 

➡   is independent of  while still being informed (globally) by the prior and data

z Ω⋅p β

Yp = βTY−p + ϵ

Y = (Y1, …, Yp) ∼ MVN(0p, Ω−1) Y−p = {Yk, k ≠ p}

p(Yp |Y−p) = N (
−ΩT

−p,p

ωpp
Y−p, ω−1

pp ) Yp =
−ΩT

−p,p

ωpp
Y−p+ϵ, ϵ ∼ N(0, ω−1

pp )

Yp = βTY−p + ϵ zk = 0 ⟺ βk = 0

Π̃(z |Yp, Y−p) ∝
θ|z|0(1 − θ)p−1−|z|0

s−|z|0
1 |Wz |

1
2 ( 1

b + spp − μT
z Wzμz )

n
2 +1

Π̃(z |Yp, Y−p) Ω−p−p 21

MH 2: globally-informed moves



• The proposal “linear regression” posterior 

  

can be more concentrated than the target  and cause mixing issues. 

➡ Tempering reduces over-concentration and improves mixing: 

 

with .

Π̃(z |Yp, Y−p) ∝
θ|z|0(1 − θ)p−1−|z|0

s−|z|0
1 |Wz |

1
2 ( 1

b + spp − μT
z Wzμz )

n
2 +1

Π(z |Ω−p−p . Y)

Qβ(z) ∝ Π̃(z ∣ Yp, Y−p)β

β ∈ (0,1]

22

MH 2: globally-informed moves + Tempering



  Algorithm: 

‣ Input:  

‣ for each : 

‣ for each : 

‣ Let  

‣ MH step: propose  (Gibbs/BDS/LIT) and accept with probability  

‣  

‣  and set  

‣ Update  

‣ Output: samples 

Y, T, Ω(0)

t = 1,2,…, T
j = 1,2,…, p

Ω(t,j−1) = (Ω−j−j, Ω⋅j), zj = 1(Ω⋅j ≠ 0)

z*j ∼ Q(z |zj) α

uj |z*j ∼ MVN( ⋅ , ⋅ )

vj ∼ Ga( ⋅ , ⋅ ) ω(t)
jj = vj + uT

j Ω−1
−j−j,z*j

uj

Ω(t,j) = (Ω−j−j, Ω(t)
⋅j = (−uj, ω(t)

jj ))

{Ω(t)}t≤T
23

Serial MCMC with local moves



  Algorithm: 

‣ Input:  

‣ for each  in parallel, for each , 

                        

‣ for each : 

‣ for each : 

‣ let  

‣ MH step: propose  (global) and accept with probability  

‣  

‣  and set  

‣ Update  

‣ Output: samples 

Y, T, Ω(0), β
j = 1,2,…, p t = 1,2,…, T

z̃(t)
j ∼ Qj

β(z)

t = 1,2,…, T
j = 1,2,…, p

Ω(t,j−1) = (Ω−j−j, Ω⋅j), zj = 1(Ω⋅j ≠ 0)
z*j = z̃(t)

j α

uj |z*j ∼ MVN( ⋅ , ⋅ )

vj ∼ Ga( ⋅ , ⋅ ) ω(t)
jj = vj + uT

j Ω−1
−j−j,z*j

uj

Ω(t,j) = (Ω−j−j, Ω(t)
⋅j = (−uj, ω(t)

jj ))

{Ω(t)}t≤T
24

{p independent 
MCMC chains

Almost-parallel MCMC with global moves



Numerical results



• Gibbs sampler for continuous SAS [Wang , 2015]: SSGraph 
• MCMC for G-Wishart prior: 

• BDGraph [Mohammadi et al., 2021]: continuous-time Birth-Death 
• BDGraph.MPL1 [Mohammadi et al., 2023]: use pseudo-likelihood within BD steps 

• Approximate Bayesian method: 

• Quasi-posterior [Atchade, 2021]:  with  is the posterior 

obtained by considering regressing  onto  

➡Can also compute  in parallel for each  

➡Does not guarantee symmetric positive definite  

• Our methods: implemented in mombf2 
• Serial with Gibbs or Birth-Death-Swap: Metropolis-wtihin-Gibbs with local moves 

• Almost Parallel- : MwG with global moves and tempering (and other variants)

Q(Ω |Y) ∝ ∏
j

Q(Ω⋅j |Y) Q(Ω⋅j |Y)

Yj Y−j
Q(Ω⋅j |Y) j

Ω

β
26

1https://cran.r-project.org/web/packages/BDgraph/index.html

Comparison to state-of-the-art

2https://github.com/davidrusi/mombf



Algorithmic efficiency
Mixing time vs clock time
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Algorithmic efficiency
Mixing time vs clock time: p=50,100, 200, n=2p

Ω0 =

p=100

Serial Gibbs

Quasi-posterior

p=50 p=200

28



29

0

200

400

600

100 200 300
p

EJ
D

Method
Parallel−0.3
Parallel−0.5
Parallel−1.0
SerialGibbs

EJD p vs p

100

101

102

100 200 300
p

Ti
m

e

Method
Parallel−0.3
Parallel−0.5
Parallel−1.0
SerialGibbs

Clock time for 200 iterations vs p Expected jump distance (higher is better)Clock time in seconds (log scale) 

p p
• Parallelisation can reduce clock time 
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Thank you for your attention!

• Novel MCMC algorithms for high-dimensional GGM with discrete spike-and-slab prior, implemented in the 
mombf1 R package. 

• We propose local and globally-informed steps, leveraging a toolbox of algorithms for linear regression 
and allowing an almost-parallel algorithm. 

• We analyse the mixing times of the MH steps: can be “dimension-free” under sparsity conditions for 

• the local moves with Locally-Informed and Thresholded samplers 

• the global moves with tempering 

➡see preprint soon

301https://github.com/davidrusi/mombf

Summary 
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