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Estimating partial dependencies

. Observations of a set of p variables ¥ = (Y, ..., Yp)

. Statistical goal: estimate their partial dependencies Z(Y,, Yj\ WY, k#1i,j})

» Graphical modelling
Yl

Y2
Y,—-Y, < Y, LY,|Y,
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Applications with large p
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COVID-19 log infection rates in the US

Weekly rates from Jan 2020 to Nov 2021 in 332 counties




Gaussian graphical modelling (GGM)
. Assume Y = (Y}, ..., Y,) ~ MVN(0,, ¥)
with 2 = (0;),<; i<, the covariance matrix (p X p)
. With Q := X7 = (Q,),; i<, the precision (inverse-covariance) matrix, for i # J,

Q=0 = Y, LY [{Y,k#1)}

“» The precision matrix encodes the graphical model!

. Statistical goal: from n i.i.d observations of ¥, y,, ..., y, € R”, estimate {2 and
the corresponding graphical model Z = (z;); ; with z; = 1if £2;; # O and z;; = 0
otherwise.



Estimation in high-dimensional GGM

* If pislarge, it is reasonable to look for a sparse graphical model.

 Penalised Maximum Likelihood Estimator [Friedman et al., 2008; Yuan and Lin, 2007/]

Q>0 _ _
log-likelinood

o’

Graphical LASSO  Q = argmaxlog|Q| — tr(QX) - 1| |

—

P | S | |
with 2 = — Z y;y; =—Y"Y the sample covariance matrix.
n < n

Neighbourhood selection via Lasso [Meinshausen and Buhlmann, 2006}

O = arg min |[Y ;- Y,_J-QH2 + A10]] 5 j=1,...,p.
deRr-!

- Set z; = 1 if é’fl =+ () and/or é’]’ = ()
> (G)LASSO estimators tend to shrink large coefficients.

> No uncertainty quantification on the graphical model.
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Sparse Bayesian inference



Sparse conjugate prior

e G-Wishart distribution:

p(p— 1)

[I(Q) =TI(Q|2)II(Z) withe.g., II(Z)= er(6’) with @ € (0,1)

and  TIQ|Z) = L(b,D)|Q| ™ exp{— Tr(QD)}

withb > 2, D > 0 and L,b, D) is an intractable normalising constant.

= Requires some computational engineering and/or approximation to compute the
posterior distribution via MCMC [Mohammadi et al. 2021, 2023].

= Because of this, each MCMC step only modifies one edge.
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Spike-and-slab prior for GGM

e Shrinks each coefficient via a “product” of univariate mixture [Wang, 2015]

[1g45(£2) H EXp(Qll”DH Lo
i<J
where | 7g,5(Q;) = (1 — 0) N(@;; 0, 53) + 0 N(w; 0, 57) Spike
N Spike g ) Slab ’ 4.0 - A/
> 0 € (0,1): slab’s weight . S
2.5 - 0
> S, 51 > 0: spike’s and slab’s standard deviations 0 H Slab
“*The spike models small (non-significant) coefficients Lo- S1 /
while the slab allows large coefficients. -

**The precision matrix is not sparse! 20 15 -0 05 00 05 10 15 20
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Discrete spike-and-slab

e We replace the spike’s normal density by a Dirac measure at O:

[Mpgas(£2) H EXD(QZZJ)H
i<j

where | 7645(Q2) = (1 — 0) 8,(;) + 0 N(wyj; 0, 57
spike \ slab

» 0 € (0,1): slab’s weight
> 51 > 0: slab’s standard deviation

“*The spike now allows exact O while the slab allows
large coefficients.
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Continuous vs Discrete SAS

. Coefficients S sy are often estimated at O
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Continuous vs Discrete SAS

o =3,n=5000, p =0.15

. Consistency if s5 = 0 Discrete
Posterior proba.
on true model
H(ZO ‘ Y) Ccontinuous
. Poor MCMC mixing if s, < 0.01 30
0 =50,n=100, p = 0.15
Discrete
- Expected jump distance (EJD) = average EJD

number of inclusion variable flips per iteration
Continuous

" The continuous SAS is not scalable to p
larger than 200



Our contributions

. Efficient Monte-Carlo Markov Chain (MCMC) algorithms targeting the posterior
[1(€2]|Y) for the “discrete” spike-and-slab prior.

- We propose 2 types of Markov steps: or moves.

- We empirically show that it is than state-of-the-art (fully)

Bayesian algorithms for GGM.

- We analyse the mixing times of our MCMC, prove that it can be

under some sparsity conditions (in preprint soon)
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Local/Global Metropolis-
within-Gibbs



In a nutshell

. The conditional posterior of one column of €2 given the graphical model can be made
tractable under some re-parametrisation.

This permits to design a updating one column
of €2 at a time.

« Sampling one column of the graphical model shares some similarity with
in linear regression

moves via Gibbs or Metropolis-Hastings schemes such as Birth-Death-Swap
'Yang et al., 2016], Locally-Informed and Thresholded [Zhou et al., 2022] can be used.

Related linear regression models can be exploited to do moves.
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Conditional posterior distribution

. Re-parametrise 11(€2,; |1€2_. ., Y) to a “tractable” form.

ik
- Considerj =p O
—P-P
. 2€{0,1}7 L with z, = 0 = Q,=0 O {
Q: —pP>—P
° u—_Q
—P:P:? o
Vv =w, —ul Q! o
p pp —p—p.2H

- Proposition:
Under the DSAS prior and the re-parametrisation we have
[(u, v, 2| Q_, _,, Y) = N(u; - , - )Ga(v, -, -)

sz U,

QIZIO(l — gy—1=1zly

= approximated via Metropolis-Hastings
19




Metropolis-Hastings (MH) 1: local moves

[I(z | €

Y) is intractable but not dissimilar to other variable selection problems

PP’

One can use (local) SOTA Metropolis-Hasting Markov kernel to approximate it

= Gibbs [George and McCulloch, 1993]: zk\z_k, Q_p Y ~ Ber( -)

_p>
= Birth-Death-Swap [Yang et al., 2016]: Q(z* | z) where z* is obtained from z by either:
* adding a1
* removing a1
* swapping a 1Twitha O

= Locally-Informed and Thresholded proposal [Yang et al., 2016]: same as Birth-Death-
Swap but each move is weighted by a function of the posterior and the ratios of

weights are bounded.
20



MH 2: globally-informed moves

. The “model” z for Q,p is also the “model” of fin the problem:
_ T
Y,=p"Y_,+¢€
Proof: with ¥ = (Y}, ..., Y)) ~ MVN(Op, Q1) and denoting = {Y,, k # p}, then
_QT -Qf
p(Yp\ Y_)=N a : a)p_p1 or, equivalently, Y, = i +e, €~ N, w pp
Wpp Dpp

. A DSAS prior in the linear regression ¥, = ,BTY + eand withz, =0 < [, = 0 leads to the posterior

. '7lo(1 — gyP~1= 1o 1 o
Mz]Y,, Y_)
p> L -p 51, WZ‘% b uIW.u,

<

Many efficient samplers targeting this distribution

[1(z | Yp, Y_p) IS of Q_p_p while still being informed (globally) by the prior and data .



MH 2: globally-informed moves + Tempering

« The proposal “linear regression” posterior

>+1
N 9\2\0(1 _ g)p—l—IZ\o 1
H(z|Y,, Y_)) my : -
5, ZO‘WZP b+s,,—uWu,

can be more concentrated than the target I1(z| Q_p . Y) and cause mixing issues.

—p
= Tempering reduces over-concentration and improves mixing:

0/z) < Tz | Y,, Y_,)/
with € (0,1].
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Serial MCMC with local moves

Algorithm:
» Input: Y, 7, OO
» foreacht=1,2,..., T:
> foreachj =1,2,...,p:

- Let QWD = (Q__,Q.), = 1(Q, # 0)

—j—7

T~ . .

(1)) — (0 — (_ (7)
» Update QYY) = (Q_j_j, Q.j = ( Uj, @, )

» Output: samples {Q(t)}th

» MH step: propose z]* ~ O(z| zj) (Gibbs/BDS/LIT) and accept with probability
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Almost-parallel MCMC with global moves

Algorithm:
> Input: Y, 7, QY.

> foreachj = 1,2,...,pinparallel, foreacht = 1,2,..., T, p independent
~(t) QJ(Z) MCMC chains

> foreachtr=1,2,...,T:

> foreachj = 1,2,...,p:
- 1et QWD =(Q__,Q), 7 =1(Q; # 0)

» MH step: propose z '”(t) (global) and accept with probability o
- uj\zj ~ MVN(:, )
-V~ Ga(-,-)andsetw? = v; + uTQ_ U.

Ji J=1%
. Update QW) = (Q Q(t) = (—u., o))

—J=J’

> Qutput: samples {Q(’)}tST




Numerical results




Comparison to state-of-the-art

« Gibbs sampler for continuous SAS [\Wang , 2015]: SSGraph
« MCMC for G-Wishart prior:

« BDGraph [Mohammadi et al., 2021]: continuous-time Birth-Death
- BDGraph.MPLT [Mohammadi et al., 2023]: use pseudo-likelihood within BD steps
- Approximate Bayesian method:

. Quasi-posterior [Atchade, 2021]: O(21]Y) H Q€2 |'Y) with Q€2 | 'Y) is the posterior

obtained by considering regressing ¥; onto Y_jj

= Can also compute Q(£2.;| Y) in parallel for each

= Does not guarantee symmetric positive definite €2

« Our methods: implemented in mombt?2

« Serial with Gibbs or Birth-Death-Swap: Metropolis-wtihin-Gibbs with local moves

. Almost Parallel-f: MwG with global moves and tempering (and other variants)

'https://cran.r-project.org/web/packages/BDgraph/index.html
2https://github.com/davidrusi/mombf
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Between chain log-MAE (p)

Algorithmic efficiency
Mixing time vs clock time: p=50,100, 200, n=2p
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Comparison local/global steps

Clock time and Mixing quality in an ill-conditioned case

Clock time in seconds (log scale)
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Summary

» Novel MCMC algorithms for high-dimensional GGM with , implemented in the
1R package.
» We propose , leveraging a toolbox of algorithms for linear regression

and allowing an almost-parallel algorithm.

- We analyse the mixing times of the MH steps: can be “ under sparsity conditions for
 the local moves with Locally-Informed and Thresholded samplers
 the global moves with tempering

see preprint soon

Thank you for your attention!

https://github.com/davidrusi/mombf
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