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Bayesian Prediction Inference
Predict Y ~ N(Bq, r x I,) from X ~ N(B,, In) where
(1) B, € R" is an unknown sparse mean vector where | 3,0 < Sn
(2) re(0,00) is known.

The goal is obtaining an entire predictive density p(y| x) that is close
to m(y | By) in terms of the Kullback-Leibler loss

m(y|8)
p(y|x)

LB.BC1 X)) = [ n(y|B)log ay, (1)
We assess the quality of p(-| x) by its risk
p(B.0) = [ w(x|BIL(B.A(| X))dx.

Given a prior 7(-), the average risk r(m,p) = [ p(8,p)m(B)d 3 is
minimized by the Bayes (posterior) predictive density (BPD)

pyIx) = [ 7(y|B)m(BIx)dp. @)



Why Bayes?
Why integrate if we can just plug in?
p(y|x)=n(y|B) (3)
In non-sparse setups, 7(¥ | By ) is uniformly dominated by BPD

under the uniform prior.

By Jensen’s inequality, BPD dominates a random plug-in estimator
(3) when 3 is a random draw from the prior.

For sparse setups, Mukherjee and Johnstone (2015) quantified the
minimax risk

inf sup  p(B,p) ~ Snlog(n/sn)

P Byl Boll<sn T+r

The minimax risk of plug-in density estimators (3) is

1
7 Sn log(n/sn)

which is problematic for small r.



When n=1...
Suppose X ~ N(0,1) and r=0.5

Noise Scenario: By=0
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RISK: Bayes: 1.07 and Plug-in: 1.306



REVIEW: Sparse Normal Means

Bayesian Estimation via posteriors under 7(3)
Assume a product prior 7(3) =TT/, 7(5;)
~ Popular penalized-likelihood approach: LASSO

m(Bi| A) = Laplace(f;| )

© Not as great properties
© Easy to compute (regression)

~ Popular Bayesian approach: Spike-and-Slab
m(Bilvi) = vid(Bil M) + (1 =11)d0(Bi), P(ril0) =6, 6~m(0)

© Great properties: e.g. minimax rate s, log(n/s,) of posterior
concentration
© Not so easy to compute (regression)



The Spike-and-Slab LASSO Prior (Rockova (2015))

A mixture of two LASSO priors with penalties A\ and \g
P
msst(Bly) = [1ie(Bil M) + (1 =71)d(Bi] Ao)]
i=1

V5.3 Yp |0 did ~Bern(f), 0~m(0)
A1 small: slab distribution holds large coefficients steady
Ao large: spike distribution thresholds small coefficients
0 controls the sparsity

0
-7 Spike  ~ 5 10 Slab
No=3 ' ' =05
' '

SsL(p)
10
L

0.5
I

e |
IS}

Converges to the Point-Mass Sr;ikefané-Sfab Prior as \g — o0



Prediction Properties of Sparsity Priors

We inspect popular priors from a predictive point of view.
For independent product priors, BPD has a product form
n

p(y|x) H il i)

and

n
L(B,p(:1 %)) = > L(Bi, P(:| X))
i1
The predictive risk is additive and satisfies
(n=3n)p(0,p) < p(B,P) = > p(Bi,p) < (n-8n)p(0,p) + Snﬁsu%p(ﬁ, p)
i=1 o€

We need to control the risk at 39 = 0 and, at the same time, when 5
is large.



Bayesian LASSO



The Calibration Conflict

Two conflicting demands

Ao =10

LASSO: Noise Scenario: Bp=0
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Ao should be large for noise

A1 =0.1

LASSO: Signal Scenario: By=2
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A1 should be small for signal



Bayesian LASSO Prediction Risk
We need:

Splog(n/sp)

Iog(n/Sn)
(n-sp)(1+7r)

supp(ﬁyp) S and p(0,p) <

UPPER BOUND:
For v=1/(1+1/r) and Bayesian LASSO with A\ > 0 we obtain
V2 4
LOWER BOUND:

p(0,p) < Iog(1 + and supp(B,P) SN+ —
B0

As )\ = )\, — oo for some suitable a> 0

1 a
L 8.8 > (05} (1-0(@) (- -1) i -0

4 Traditional calibration A\ o log(n/s,) does not work!



Bayesian LASSO Prediction Risk

Bayesian LASSO Risk
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Bayesian LASSO prediction risk p(S3, p) for A € {0.1,1,2} and
r=2.



Spike-and-Slab LASSO
(fixed 0)



Spike-and-Slab Mixing of Predictive Densities

Consider a separable Spike-and-Slab prior for a fixed 6 € (0,1)
n
m(BIA0) = [T7(Bi| X,0), where w(B|X,0) =0m1(8) + (1 -60)m0(5)
=1

I
Denote by m;(x) = [ w(x|p)mj(p)d p the marginal likelihoods.
For 0 € (0,1), we define a mixing weight

gmi (x)

BolX) = G+ (1 = ) mo(0)

BPD under the spike-and-slab prior is a mixture, i.e.
P(y1x) = Ds(x)pr(y[x) +[1=Do(x)]Po(y | X) (5)

where p;(y | x) = LZUWmCLmmGIde 6 i 0 4 are BPD's under the

mj(x)
spike/slab priors (respectively).




The Mixing Weight

Denote by BF(x; 0, 1) the Bayes factor for spike versus slab models

AG(X) = 9m1 (X)+(1 79)m0(x> )

Marginal Densities

om (x) [

Spike—and—-Slab Marginal Densities
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m Slab Marginal: T (x)
m Spike Marginal: To(x)
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BF(x:0, 1 )]1 .

(6)



Spike-and-Slab LASSO Predictive Densities

Adaptive mixing based on the magnitude of x.

LASSO: Noise Scenario: =0
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Spike-and-Slab LAS!
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Dirac Spike versus Laplace Spike

Predictive Densities

Laplace spike approximates Dirac spike mo(x) = do(X).

Dirac Spike: Bo=0

@ n(y|p)

= nm(ylx Ao=10,A;=0.1)
B Tusso(yx A=0.1)
& Torac(yl)

|
'
'
'
'
'
'
'
'
[
b
4
'
'
'
'
'
'
'
'
'
'
'
+
0
y

Predictive Densities

Dirac Spike: Bo=2
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Dirac Spike and Laplace Slab

Bayesian LASSO Risk
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Spike-and-Slab RISK
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(Left) Bayesian LASSO prediction risk p(3,p) for A € {0.1,1,2};
(Right) Spike-and-Slab prediction risk for A = 0.1 and

6 €{0.1,0.5,0.8};

Both plots correspond to r = 2.




Spike-and-Slab Priors are Rate-Minimax

Dirac Spike and Laplace Slab

Assume
(1-0)/0=n/s,

and a Laplace slab where ) is fixed and depending on r.

With s,/n — 0 we have for any fixed r € (0, o)

sup p(B3,p) <

5 -
Splog(n/s
= - Snlog(n/sn) + C(r)

where C(r) a term depending on r.

© Spike-and-Slab (Dirac version) is rate-minimax.

© Non-adaptive result! We need to know s, to calibrate the prior!



Spike-and-Slab Priors are Rate-Minimax

Spike-and-Slab LASSO: Laplace Spike and Laplace Slab

Assume
(1-0)/6=c

for some fixed constant ¢ > 0.

Assume a Laplace spike with A\ = n/s, and Laplace slab with A fixed
and depending on r.

With s,/n — 0 we have for any fixed r € (0,1)

sup p(B,P) ~ 2 log(n/sn). (8)

3O (sn) 1+r

The same conclusion holds for r € [1, o) for parameters
0 € ©,(5p) N {0 € R" : miny<jcp |0i| > Cc11/log(n/sy)} for suitable ¢; > 0.

© Spike-and-Slab LASSO is rate-minimax.

© Non-adaptive result! We need to know s, to calibrate the prior!



Spike-and-Slab LASSO Prediction Risk

Spike-and-Slab LASSO Risk (lambda0=10,lambda1=0.5) Spike-and-Slab LASSO Risk (eta=0.5,lambda1=0.1) pi LASSO Risk
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(Left) Varying 0 for fixed A\ = 10, Ay = 0.5;
(Middle) Varying \q for fixed 6 = 0.1, Ay = 0.1;
(Right) Varying A for fixed 6 = 0.1, A\ = 10.



Spike-and-Slab Priors
(random 6)



Random 6

Now we assume a hierarchical version (not an independent product)
n

7(8) = fen[m —~0)d0 +0m1()]n(0)d0 and w(0) ~ Beta(a, b) (9)
i=1

for some a,b > 0.

We have
p(y|x) = feﬁ [Ag(X)p1 (yi| Xi) + (1 = Do (X)) Po(yi| Xi)]d (0] x),

and
p(y|[x)=Eg xp(y|x,0). (10)

The Kullback-Leibler loss of the predictive distribution under the
hierarchical prior (9) satisfies

L(6,p(-| x)) < Eg|xL(6,p(:| X,0)).



Adapting to Sparsity s,
The prediction risk under the hierarchical prior (9) satisfies for A > 2
(8.8 <sn{COV) + (1= V)| Ex pElog () 1x]}
+ D(n—s,,)i:sg:fo Ex, IBE( 4 ‘x\()

for a suitable constant C(\,v) >0and D =1+2/(a-1), where x,;
denotes the vector x without the i coordinate.

Adaptive minimax rate achieved when

1-6
EX|5E|0g( - )|X<Iog(n/s,,)

and 9
sup Ex, ‘ﬂE( |x\,)<s,,/n
i:Bi%0



The Magic of Hierarchical Priors
Assume the hierarchical Spike-and-Slab prior (9) with a, b > 0.

Under the Gaussian model X ~ N,(3, 1), the posterior distribution
m(B]| x) satisfies for any 3 € ©(s,,) with 5,(3) = |Bllo

0 a+E[sp(B)|x]+1
E(m"‘)ﬁ b-1

1-6 b+n
E(9|X)SE(S,,(ﬁ)+a—1|x)'

Suggested calibration

and

a=2 and b=n.

It is important that the posterior:

E[sn(3) | x] does not overshoot s, by too much.

E[1/sn(3)| x] does not overshoot 1/s, by too much.



The Posterior Does not Overshoot

Assume X ~ N,(3,, ) and the hierarchical Spike-and-Slab prior (9)
with a=2 and b= n+ 1. Then for some suitable M > 0 we have

0
sup EX‘ﬁOE(ﬁ|x)ngn/n+o(1) as n— oo.
Bo€©n(sn) -

This result follows from Castillo and van der Vaart (2012).

This takes care of the noise coordinates in the risk upper bound:

0 Sn
D(n- E,. E(—x,)s n-5sp)—
( Sn)i:sﬂljfo x| B 179‘ \i ( n) n



The Posterior Does not Undershoot
Define

On(Sm, M) = On(8n) 1 {[3 €R": min || > M\/iog n} S

Assume X ~ N,(3,, ) and the hierarchical Spike-and-Slab prior (9)
witha=2and b=n+1.

Denote with S an index of all subsets of {1,...,n} and define
c=(M?-2)/4.

We have

2
Ce*/2s,
n071

sup  P(3j suchthat 3;#0 and j¢S|x)<
Beﬂn(sn,m)

with probability at least 1 — 2/n. Assume X > 0 such that A\? < 2dlogn
for some d > 0. Then for ¢ > 2 + d we have

1-60
sup Eme(T

|x) s n/sp.
B<On(sn,M)



... and finally!

Hierarchical Spike-and-Slab Prior
Assume the hierarchical prior (9) with a Laplace slab and with a=2
and b=n+1.

A bit of calibration needed for A
Choose )2 = vC, for C, > 2/[v(1/2+4)] such that A >2when 0 < r < 1
and )2 = (1 - v)C; for C! > 2/[5(1 - v)] such that A > 2 when r > 1.

Beta-min condition to get the minimax rate without a log factor
Denote ¢ = (M? - 2)/4 where M is the signal-strength constant in (11)
then we have for ¢ > 2

Sn Sn

log(n).

sup  p(Bo,P) S log(n/sp) and  sup p(By.P) S
Bo<On(sn,M) r+1 Bo<®n(sn) r+1

Hooray! Adaptive minimax rate (no knowledge of s, required)!



Spike-and-Slab priors are great!
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