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Bayesian Prediction Inference
Predict Y ∼ N(β0, r × In) from X ∼ N(β0, In) where

(1) β0 ∈ Rn is an unknown sparse mean vector where ∥β0∥0 ≤ sn

(2) r ∈ (0,∞) is known.

The goal is obtaining an entire predictive density p̂(y ∣ x) that is close
to π(y ∣β0) in terms of the Kullback-Leibler loss

L(β, p̂(⋅ ∣ x)) = ∫ π(y ∣β) log
π(y ∣β)

p̂(y ∣ x)
d y , (1)

We assess the quality of p̂(⋅ ∣ x) by its risk

ρ(β, p̂) = ∫ π(x ∣β)L(β, p̂(⋅ ∣ x))d x .

Given a prior π(⋅), the average risk r(π, p̂) = ∫ ρ(β, p̂)π(β)dβ is
minimized by the Bayes (posterior) predictive density (BPD)

p̂(y ∣ x) = ∫ π(y ∣β)π(β ∣ x)dβ. (2)



Why Bayes?
Why integrate if we can just plug in?

p̂(y ∣ x) = π(y ∣ β̂) (3)

In non-sparse setups, π(y ∣ β̂MLE) is uniformly dominated by BPD
under the uniform prior.

By Jensen’s inequality, BPD dominates a random plug-in estimator
(3) when β̂ is a random draw from the prior.

For sparse setups, Mukherjee and Johnstone (2015) quantified the
minimax risk

inf
p̂

sup
β0∶∥β0∥≤sn

ρ(β, p̂) ∼
1

1 + r
sn log(n/sn)

The minimax risk of plug-in density estimators (3) is

1
r
× sn log(n/sn)

which is problematic for small r .



When n = 1...
Suppose X ∼ N(0,1) and r = 0.5

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

y

P
re

di
ct

iv
e 

D
en

si
tie

s

Noise Scenario: β0 = 0

π(y|β0)
π(y|β = x)
πU(y|x)
π(x|β0)

β0 = 0 x = 1.18

RISK: Bayes: 1.07 and Plug-in: 1.306



REVIEW: Sparse Normal Means

Bayesian Estimation via posteriors under π(β)

Assume a product prior π(β) = ∏
n
i=1 π(βi)

↝ Popular penalized-likelihood approach: LASSO

π(βi ∣ λ) = Laplace(βi ∣ λ)

§ Not as great properties
© Easy to compute (regression)

↝ Popular Bayesian approach: Spike-and-Slab

π(βi ∣ γi) = γiφ(βi ∣ λ1) + (1 − γi)δ0(βi), P(γi ∣ θ) = θ, θ ∼ π(θ)

© Great properties: e.g. minimax rate sn log(n/sn) of posterior
concentration

§ Not so easy to compute (regression)



The Spike-and-Slab LASSO Prior (Rockova (2015))
A mixture of two LASSO priors with penalties λ1 and λ0

πSSL(β ∣ γ) =
p

∏
i=1

[γiφ(βi ∣ λ1) + (1 − γi)φ(βi ∣ λ0)]

γ1, . . . , γp ∣ θ iid ∼ Bern(θ), θ ∼ π(θ)

λ1 small: slab distribution holds large coefficients steady

λ0 large: spike distribution thresholds small coefficients

θ controls the sparsity
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Converges to the Point-Mass Spike-and-Slab Prior as λ0 →∞



Prediction Properties of Sparsity Priors

We inspect popular priors from a predictive point of view.

For independent product priors, BPD has a product form

p̂(y ∣ x) =
n

∏
i=1

p̂(yi ∣ xi)

and

L(β, p̂(⋅ ∣ x)) =
n

∑
i=1

L(βi , p̂(⋅ ∣ xi)).

The predictive risk is additive and satisfies

(n − sn)ρ(0, p̂) < ρ(β, p̂) =
n

∑
i=1
ρ(βi , p̂) ≤ (n − sn)ρ(0, p̂) + sn sup

β0∈R
ρ(β, p̂)

We need to control the risk at β0 = 0 and, at the same time, when β0
is large.



Bayesian LASSO



The Calibration Conflict

Two conflicting demands

λ0 = 10 λ1 = 0.1
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LASSO: Noise Scenario: β0 = 0

π(y|β0)
πLASSO(y|x, λ0)
πLASSO(y|x, λ1) β0 = 0 x = 1.18
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LASSO: Signal Scenario: β0 = 2

π(y|β0)
πLASSO(y|x, λ0)
πLASSO(y|x, λ1)β0 = 2 x = 3.18

λ0 should be large for noise λ1 should be small for signal



Bayesian LASSO Prediction Risk
We need:

sup
β∈R

ρ(β, p̂) ≲
log(n/sn)

1 + r
and ρ(0, p̂) ≲

sn log(n/sn)

(n − sn)(1 + r)

UPPER BOUND:

For v = 1/(1 + 1/r) and Bayesian LASSO with λ > 0 we obtain

ρ(0, p̂) ≤ log(1 +
√

2
λ
√
πv

) +
4
λ2v

and sup
β≠0

ρ(β, p̂) ≲ λ2
+

1
λ2

LOWER BOUND:

As λ = λn →∞ for some suitable a > 0

inf
β∈Θ(sn)

ρ(β, p̂) > (n − sn) [(1 −Φ(a))(
1

√
v
− 1)

a
2(λn + a)

−O(1/λ2
n)] .

☇ Traditional calibration λ2 ∝ log(n/sn) does not work!



Bayesian LASSO Prediction Risk
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Bayesian LASSO Risk

lambda=0.1
lambda=1
lambda=2

Bayesian LASSO prediction risk ρ(β, p̂) for λ ∈ {0.1,1,2} and
r = 2.



Spike-and-Slab LASSO
(fixed θ)



Spike-and-Slab Mixing of Predictive Densities

Consider a separable Spike-and-Slab prior for a fixed θ ∈ (0,1)

π(β ∣ λ, θ) =
n

∏
i=1
π(βi ∣ λ, θ), where π(β ∣ λ, θ) = θπ1(β) + (1 − θ)π0(β)

Denote by mj(x) = ∫ π(x ∣ µ)πj(µ)dµ the marginal likelihoods.

For θ ∈ (0,1), we define a mixing weight

∆θ(x) =
θm1(x)

θm1(x) + (1 − θ)m0(x)
(4)

BPD under the spike-and-slab prior is a mixture, i.e.

p̂(y ∣ x) = ∆θ(x)p̂1(y ∣ x) + [1 −∆θ(x)]p̂0(y ∣ x) (5)

where p̂j(y ∣ x) = ∫ π(y ∣ µ)π(x ∣ µ)πj(µ)dµ
mj(x) for j = 0,1 are BPD’s under the

spike/slab priors (respectively).



The Mixing Weight
Denote by BF(x ; 0,1) the Bayes factor for spike versus slab models

∆θ(x) =
θm1(x)

θm1(x) + (1 − θ)m0(x)
= [1 +

1 − θ
θ

BF(x ; 0,1)]
−1

. (6)
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Spike−and−Slab Marginal Densities π0(x)  and π1(x) 

"signal""noise"

Slab Marginal: π1(x)
Spike Marginal: π0(x)



Spike-and-Slab LASSO Predictive Densities

Adaptive mixing based on the magnitude of x .
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LASSO: Noise Scenario: β0 = 0

π(y|β0)
πSSL(y|x, λ0 = 10, λ1 = 0.1)
πLASSO(y|x, λ = 0.1)
πLASSO(y|x, λ = 10) β0 = 0 x = 1.18
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Spike−and−Slab LASSO: β0 = 2

π(y|β0)
πSSL(y|x, λ0 = 10, λ1 = 0.1)
πLASSO(y|x, λ = 0.1)
πLASSO(y|x, λ = 10)β0 = 2 x = 3.18

x is "small" and spike takes over x is "large" and slab takes
over



Dirac Spike versus Laplace Spike

Laplace spike approximates Dirac spike π0(x) = δ0(x).
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Dirac Spike: β0 = 0

π(y|β0)
πSSL(y|x, λ0 = 10, λ1 = 0.1)
πLASSO(y|x, λ = 0.1)
πDIRAC(y|x) β0 = 0 x = 1.18
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Dirac Spike: β0 = 2

π(y|β0)
πSSL(y|x, λ0 = 10, λ1 = 0.1)
πLASSO(y|x, λ = 0.1)
πDIRAC(y|x)β0 = 2 x = 3.18



Dirac Spike and Laplace Slab
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Bayesian LASSO Risk

lambda=0.1
lambda=1
lambda=2

−20 −10 0 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ
S

pi
ke

−
an

d−
S

la
b 

R
IS

K

Spike−and−Slab Risk (lambda=0.1)

eta=0.1
eta=0.5
eta=0.8

(Left) Bayesian LASSO prediction risk ρ(β, p̂) for λ ∈ {0.1,1,2};
(Right) Spike-and-Slab prediction risk for λ = 0.1 and
θ ∈ {0.1,0.5,0.8};
Both plots correspond to r = 2.



Spike-and-Slab Priors are Rate-Minimax

Dirac Spike and Laplace Slab

Assume
(1 − θ)/θ = n/sn

and a Laplace slab where λ is fixed and depending on r .

With sn/n → 0 we have for any fixed r ∈ (0,∞)

sup
β∈Θ(sn)

ρ(β, p̂) ≤
5

1 + r
sn log(n/sn) + C̃(r) (7)

where C̃(r) a term depending on r .

© Spike-and-Slab (Dirac version) is rate-minimax.

§ Non-adaptive result! We need to know sn to calibrate the prior!



Spike-and-Slab Priors are Rate-Minimax

Spike-and-Slab LASSO: Laplace Spike and Laplace Slab

Assume
(1 − θ)/θ = c

for some fixed constant c > 0.

Assume a Laplace spike with λ0 = n/sn and Laplace slab with λ1 fixed
and depending on r .

With sn/n → 0 we have for any fixed r ∈ (0,1)

sup
β∈Θ(sn)

ρ(β, p̂) ∼
sn

1 + r
log(n/sn). (8)

The same conclusion holds for r ∈ [1,∞) for parameters
θ ∈ Θn(sn) ∩ {θ ∈ Rn ∶ min1≤i≤n ∣θi ∣ > c1

√
log(n/sn)} for suitable c1 > 0.

© Spike-and-Slab LASSO is rate-minimax.

§ Non-adaptive result! We need to know sn to calibrate the prior!



Spike-and-Slab LASSO Prediction Risk
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Spike−and−Slab LASSO Risk (lambda0=10,lambda1=0.5)

eta=0.1
eta=0.5
eta=0.8
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Spike−and−Slab LASSO Risk (eta=0.5,lambda1=0.1)

lambda0=1
lambda0=2
lambda0=10
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Spike−and−Slab LASSO Risk (lambda0=10,eta =0.5)

lambda1=0.1
lambda1=0.5
lambda1=1

(Left) Varying θ for fixed λ0 = 10, λ1 = 0.5;
(Middle) Varying λ0 for fixed θ = 0.1, λ1 = 0.1;
(Right) Varying λ1 for fixed θ = 0.1, λ0 = 10.



Spike-and-Slab Priors
(random θ)



Random θ

Now we assume a hierarchical version (not an independent product)

π(β) = ∫
θ

n

∏
i=1

[(1− θ)δ0 + θπ1(βi)]π(θ)d θ and π(θ) ∼ Beta(a,b) (9)

for some a,b > 0.

We have

p̂(y ∣ x) = ∫
θ

n

∏
i=1

[∆θ(xi)p̂1(yi ∣ xi) + (1 −∆θ(xi))p̂0(yi ∣ xi)]dπ(θ ∣ x),

and
p̂(y ∣ x) = Eθ ∣ x p̂(y ∣ x , θ). (10)

The Kullback-Leibler loss of the predictive distribution under the
hierarchical prior (9) satisfies

L(θ, p̂(⋅ ∣ x)) ≤ Eθ ∣ xL(θ, p̂(⋅ ∣ x , θ)).



Adapting to Sparsity sn

The prediction risk under the hierarchical prior (9) satisfies for λ > 2

ρ(β, p̂) ≤sn {C(λ,v) + (1 − v)[Ex ∣βE log (
1 − θ
θ

) ∣ x]}

+D(n − sn) sup
i ∶βi≠0

Ex/i ∣βE (
θ

1 − θ
∣ x/i ).

for a suitable constant C(λ,v) > 0 and D = 1 + 2/(a − 1), where x/i
denotes the vector x without the i th coordinate.

Adaptive minimax rate achieved when

Ex ∣βE log (
1 − θ
θ

) ∣ x ≲ log(n/sn)

and
sup

i ∶βi≠0
Ex/i ∣βE (

θ

1 − θ
∣ x/i ) ≲ sn/n.



The Magic of Hierarchical Priors
Assume the hierarchical Spike-and-Slab prior (9) with a,b > 0.

Under the Gaussian model X ∼ Nn(β, I), the posterior distribution
π(β ∣ x) satisfies for any β ∈ Θ(sn) with sn(β) = ∥β∥0

E (
θ

1 − θ
∣ x) ≤

a +E[sn(β) ∣ x] + 1
b − 1

and

E (
1 − θ
θ

∣ x) ≤ E (
b + n

sn(β) + a − 1
∣ x) .

Suggested calibration

a = 2 and b = n.

It is important that the posterior:

E[sn(β) ∣ x] does not overshoot sn by too much.

E[1/sn(β) ∣ x] does not overshoot 1/sn by too much.



The Posterior Does not Overshoot

Assume X ∼ Nn(β0, I) and the hierarchical Spike-and-Slab prior (9)
with a = 2 and b = n + 1. Then for some suitable M > 0 we have

sup
β0∈Θn(sn)

Ex ∣β0
E (

θ

1 − θ
∣ x) ≤ Msn/n + o(1) as n →∞.

This result follows from Castillo and van der Vaart (2012).

This takes care of the noise coordinates in the risk upper bound:

D(n − sn) sup
i ∶βi≠0

Ex/i ∣βE (
θ

1 − θ
∣ x/i ) ≲ (n − sn)

sn

n



The Posterior Does not Undershoot
Define

Θn(sn, M̃) = Θn(sn) ∩ {β ∈ Rn
∶ min

i ∶βi≠0
∣βi ∣ > M̃

√
log n} . (11)

Assume X ∼ Nn(β0, I) and the hierarchical Spike-and-Slab prior (9)
with a = 2 and b = n + 1.

Denote with S an index of all subsets of {1, . . . ,n} and define
c = (M̃2 − 2)/4.

We have

sup
β∈βn(sn,M̃)

P(∃j such that βj ≠ 0 and j ∉ S ∣ x) ≤
Ceλ

2/2sn

nc−1

with probability at least 1 − 2/n. Assume λ > 0 such that λ2 ≤ 2d log n
for some d > 0. Then for c > 2 + d we have

sup
β∈Θn(sn,M̃)

Ex ∣βE (
1 − θ
θ

∣ x) ≲ n/sn.



... and finally!

Hierarchical Spike-and-Slab Prior
Assume the hierarchical prior (9) with a Laplace slab and with a = 2
and b = n + 1.

A bit of calibration needed for λ
Choose λ2 = vCr for Cr > 2/[v(1/2+4)] such that λ > 2 when 0 < r < 1
and λ2 = (1 − v)C∗

r for C∗
r > 2/[5(1 − v)] such that λ > 2 when r ≥ 1.

Beta-min condition to get the minimax rate without a log factor
Denote c = (M̃2 − 2)/4 where M̃ is the signal-strength constant in (11)
then we have for c > 2

sup
β0∈Θn(sn,M̃)

ρ(β0, p̂) ≲
sn

r + 1
log(n/sn) and sup

β0∈Θn(sn)
ρ(β0, p̂) ≲

sn

r + 1
log(n).

Hooray! Adaptive minimax rate (no knowledge of sn required)!



Spike-and-Slab priors are great!
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