A new way of achieving Bayesian nonparametric adaptation

Sergios Agapiou Verona, 7th November 2024

Department of Mathematics and Statistics, University of Cyprus

- 1. Start point rates of contraction with Gaussian priors
- 2. Waypoint p-exponential priors
- 3. Promised land? oversmoothed heavy-tailed priors
- 4. Outlook

References and collaborators

- *p*-exponential priors
 - S. Agapiou, M. Dashti and T. Helin, Rates of contraction of posterior distributions based on p-exponential priors, Bernoulli, 2021
 - S. Agapiou and S. Wang, Laplace priors and spatial inhomogeneity in Bayesian inverse problems, Bernoulli, 2024
 - S. Agapiou and A. Savva, Adaptive inference over Besov spaces in the white noise model using p-exponential priors, Bernoulli, 2024

- Oversmoothed heavy-tailed priors
 - S. Agapiou and I. Castillo, *Heavy-tailed Bayesian nonparametric adaptation*, The Annals of Statistics, 2024

• Works in progress with Ismaël Castillo and Paul Egels

Start point - rates of contraction with Gaussian priors

• Gaussian white noise model

$$dX(t) = f(t)dt + \frac{1}{\sqrt{n}}dB(t), \ t \in [0,1]^d$$

• Gaussian nonparametric regression, design points $t_i \in [0, 1]^d$

$$X_i = f(t_i) + \epsilon_i, \quad 1 \le i \le n$$

- Inverse problems, observe $\mathcal{G}(f)$ subject to noise
- Density estimation, $X_i \stackrel{iid}{\sim} f$, $1 \le i \le n$, for f pdf on $[0,1]^d$
- Nonparametric classification, independent observations X_i|Z_i, 1 ≤ i ≤ n, predictor Z ∈ [0,1]^d, response X ∈ {0,1}, f(z) = P(X = 1|Z = z)

• Gaussian white noise model

$$dX(t)=f(t)dt+rac{1}{\sqrt{n}}dB(t), \ t\in [0,1]^d$$

• Gaussian nonparametric regression, design points $t_i \in [0,1]^d$

$$X_i = f(t_i) + \epsilon_i, \quad 1 \le i \le n$$

- Inverse problems, observe $\mathcal{G}(f)$ subject to noise
- Density estimation, $X_i \stackrel{iid}{\sim} f, \ 1 \leq i \leq n$, for f pdf on $[0,1]^d$
- Nonparametric classification, independent observations X_i|Z_i, 1 ≤ i ≤ n, predictor Z ∈ [0, 1]^d, response X ∈ {0, 1}, f(z) = P(X = 1|Z = z)

Interested in inferring unknown function f, as $n \to \infty$

 $\begin{array}{l} \mbox{Typical minimax estimation rate for `β-smooth' function f} \\ \mbox{$n^{-\frac{\beta}{d+2\beta}}$} & \left(n^{-\frac{\beta}{d+2\beta+2\nu}}, \ \nu \ \mbox{ill-posedness}\right) \end{array}$

- Find estimator T of f converging at minimax rate without knowledge of β
- Some methods: Lepski's method (90s-), wavelet thresholding (95s-), model selection (98s-), Bayesian nonparametrics (2000s-)

 $\begin{array}{l} \mbox{Typical minimax estimation rate for `β-smooth' function f} \\ \mbox{$n^{-\frac{\beta}{d+2\beta}}$} & \left(n^{-\frac{\beta}{d+2\beta+2\nu}}, \ \nu \ \mbox{ill-posedness}\right) \end{array}$

- Find estimator T of f converging at minimax rate without knowledge of β
- Some methods: Lepski's method (90s-), wavelet thresholding (95s-), model selection (98s-), Bayesian nonparametrics (2000s-)
- Restrict presentation to *d* = 1

Bayesian nonparametric framework

- $f \sim \Pi$ prior, distribution on parameter space \mathcal{F} (say L_2)
- $X^{(n)}|f \sim P_f^{(n)}$ likelihood (suppress *n*, write $X|f \sim P_f$)
- $f|X \sim \Pi(\cdot|X)$ posterior, given by Bayes' rule

$$\Pi(B|X) = \frac{\int_B P_f(X) d\Pi(f)}{\int_{\mathcal{F}} P_f(X) d\Pi(f)}$$

- Result is a data-dependent distribution $\Pi(\cdot|X)$
- Appealing because of uncertainty quantification and flexibility in prior's choice

- Assume there exists fixed true f_0 such that $X \sim P_{f_0}$ (recall suppressed n)
- Study the behaviour of $\Pi(\cdot|X)$ under P_{f_0} as $n \to \infty$:
 - convergence to f_0
 - rate of convergence
- ε_n is a posterior contraction rate at f_0 wrt loss ℓ , if as $n \to \infty$

$$E_{f_0}\Pi(f:\ell(f,f_0)>\varepsilon_n|X)\to 0$$

• Mathematical foundation of Bayesian procedures

- Mathematical foundation of Bayesian procedures
- Implies existence of point estimator converging at this rate (meaningful to compare to minimax rate)

- Mathematical foundation of Bayesian procedures
- Implies existence of point estimator converging at this rate (meaningful to compare to minimax rate)
- Insight on choice of prior

- Mathematical foundation of Bayesian procedures
- Implies existence of point estimator converging at this rate (meaningful to compare to minimax rate)
- Insight on choice of prior

Trade offs:

- Ability to optimally capture complex unknown functions
- Prior's complexity
- Computability

How?

• Sometimes can do explicit or semi-explicit calculations

How?

- Sometimes can do explicit or semi-explicit calculations
- 'GGV' general theory [Ghosal, Ghosh and van der Vaart 00], [Ghosal and van der Vaart 07]
 - Prior mass condition

'The prior should put enough mass around the truth'

- Testing/entropy condition on sieve sets
- Sieve sets need to capture 'bulk' of prior mass

How?

- Sometimes can do explicit or semi-explicit calculations
- 'GGV' general theory [Ghosal, Ghosh and van der Vaart 00], [Ghosal and van der Vaart 07]
 - Prior mass condition

'The prior should put enough mass around the truth'

- Testing/entropy condition on sieve sets
- Sieve sets need to capture 'bulk' of prior mass
- Prior mass condition alone suffices for contraction of ρ -posteriors

$$\Pi_{\rho}(B|X) = \frac{\int_{B} (P_{f}(X))^{\rho} d\Pi(f)}{\int_{\mathcal{F}} (P_{f}(X))^{\rho} d\Pi(f)}, \qquad 0 < \rho < 1$$

[T. Zhang 06, Bhattacharya et al. 19, L'Huillier et al. 24]

• [A. van der Vaart and H. van Zanten 08] showed that posterior contraction rates for GP priors can be studied via their concentration function at f_0

$$\phi_{f_0}(\varepsilon) = \inf_{h \in \mathbb{H}: \|h - f_0\|_{\mathcal{F}} \le \varepsilon} \|h\|_{\mathbb{H}}^2 - \log \Pi(\varepsilon B_{\mathcal{F}})$$

• α -smooth Gaussian priors by random expansions in orthonormal bases, e.g.

$$f(\cdot) = \sum_{k\geq 1} \sigma_k \zeta_k \varphi_k(\cdot)$$

with

$$\sigma_k = k^{-1/2-lpha}, \qquad \zeta_k \stackrel{iid}{\sim} \mathcal{N}(0,1)$$

Posterior contraction rates for Gaussian priors

• Contraction rate for α -smooth GP prior for β -Sobolev smooth truth f_0

$$\varepsilon_n \lesssim egin{cases} n^{-eta/(1+2lpha)}, & ext{if } lpha \ge eta, \\ n^{-lpha/(1+2lpha)}, & ext{if } lpha \le eta \end{cases}$$

- Rate cannot be improved, [Castillo 08]
- GPs are not adaptive to smoothness
- · Adaptation can be achieved by making the prior more complex, e.g. by
 - making α random, [Belitser and Ghosal 03], [Knapik et al. 16]
 - introducing random rescaling, [van der Vaart and van Zanten 09]
 - randomly truncating the series expansion, e.g. [Arbel et al 13]

In many applications, the unknown function has 'edges' and 'blocky structure'

Shepp-Logan phantom [Shepp and Logan 74], road cut in Chimborazo volcano [www.geologyin.com], and NMR signal [Donoho et al. 95]

• Empirically, Gaussian priors are known to perform poorly for such spatially inhomogeneous unknowns

Waypoint - *p*-exponential priors

- (Hilbert-)Sobolev spaces measure differentiability in L²-sense, functions with spikes get high norms
- \mathcal{B}^{β}_{11} -Besov spaces, 'measure differentiability in L^1 -sense'

- Motivation for introduction of \mathcal{B}_{pp}^{s} -Besov priors in [Lassas et al. 2009], 'penalizing \mathcal{B}_{pp}^{s} norms', $p \in [1, 2]$
 - for p = 2 Gaussian priors
 - for p = 1 Laplace priors, permitting SI functions with non-trivial probability

1/2 - |u'|=1/h

h

 $\left\|u'\right\|_{L_2} = \frac{1}{\sqrt{h}}$

• [Agapiou et al 21] consider *p*-exponential priors, $p \in [1, 2]$

$$f(\cdot) = \sum_{k\geq 1} \sigma_k \zeta_k \varphi_k(\cdot)$$

with

$$(\sigma_k) \in \ell_2, \qquad \zeta_k \stackrel{iid}{\sim} c_p \exp(-|x|^p/p)$$

- p = 1 Laplace, p = 2 Gaussian, for appropriate σ_k get Besov priors
- Developed abstract concentration theory, strongly relying on log-concavity

• [Agapiou et al 21] consider *p*-exponential priors, $p \in [1, 2]$

$$f(\cdot) = \sum_{k\geq 1} \sigma_k \zeta_k \varphi_k(\cdot)$$

with

$$(\sigma_k) \in \ell_2, \qquad \zeta_k \stackrel{iid}{\sim} c_p \exp(-|x|^p/p)$$

- p = 1 Laplace, p = 2 Gaussian, for appropriate σ_k get Besov priors
- Developed abstract concentration theory, strongly relying on log-concavity
- Let \mathcal{Z} be the Banach space with norm $\|h\|_{\mathcal{Z}} = \left(\sum_{k=1}^{\infty} |h_k/\sigma_k|^p\right)^{1/p}$.

Theorem (A., Dashti, Helin 21)

Can study rates of contraction under p-exponential priors via concentration function

$$\phi_{f_0}(\varepsilon) = \inf_{h \in \mathcal{Z}: \|h - f_0\|_{\mathcal{F}} \le \varepsilon} \|h\|_{\mathcal{Z}}^p - \log \Pi(\varepsilon B_{\mathcal{F}})$$

- In WNM, [Donoho and Johnstone 98]
 - minimax rate over $B_{rq}^{eta}, r \in [1,2]$ in L_2 -loss is $n^{-rac{eta}{1+2eta}}$
 - for $r \in [1, 2)$ linear estimators limited by slower rate $n^{-\frac{\beta \gamma/2}{1+2\beta \gamma}}$, $\gamma = \frac{2-r}{r}$ (for r = 2 linear estimators achieve minimax rate)

'Linear estimators not flexible enough to fit both smooth and spiky part'

• α -smooth *p*-exponential priors, $p \in [1, 2]$,

$$f(\cdot) = \sum_{k\geq 1} \sigma_k \zeta_k \varphi_k(\cdot), \quad \sigma_k = k^{-1/2-\alpha}, \quad \zeta_k \stackrel{iid}{\sim} c_p \exp(-|x|^p/p)$$

or wavelet version

$$f(\cdot) = \sum_{l \ge 0} \sum_{k=0}^{2^l - 1} \sigma_l \zeta_{lk} \psi_{lk}(\cdot), \quad \sigma_l = 2^{-(1/2 + \alpha)l}, \quad \zeta_{lk} \stackrel{iid}{\sim} c_p \exp(-|x|^p / p)$$

Rates of contraction under Besov smoothness in the WNM

- [Agapiou et al 21], see also [Savva PhD thesis 23], derived upper bounds
- Over Sobolev spaces, *p*-exponential priors with any $p \in [1,2]$ contract at the minimax rate only for $\alpha = \beta$
- Over $\mathcal{B}^{eta}_{rq}, r \in [1,2)$
 - Rates for α -smooth Gaussian priors at best match the (suboptimal) linear minimax rate
 - Laplace priors can achieve the minimax rate for $\alpha=\beta-1$ and appropriate rescaling
- In [Agapiou and Wang 24] established lower bound over B^β_{rq}, for arbitrary sequences of Gaussian priors: GP priors limited by linear minimax rate!
- Open problem whether Laplace rates can be improved

- [Agapiou and Savva 24], see also [Savva PhD thesis 23], studied adaptation in WNM
- No conjugacy to exploit, used general theory of [Rousseau and Szabo 17]
 - Adaptation over Sobolev spaces with *p*-exponential priors for any $p \in [1, 2]$, by making α random or introducing random rescaling
 - Adaptation over Besov spaces $\mathcal{B}_{rq}^{\beta}, r \in [1, 2], q \in [1, \infty]$ with Laplace priors, by simultaneously randomizing α and introducing random rescaling
- MMLE empirical Bayes choice of hyper-parameters leads to same rates

- [Agapiou and Wang 24] rates of contraction with Laplace priors in (nonlinear) PDE inverse problems, for Besov truths
- [Giordano and Ray 22] rates of contraction with *p*-exponential priors over Sobolev spaces, in drift estimation of multidimensional diffusions
- [Giordano 23] adaptation over Besov spaces with Laplace priors in density estimation

- Sampling hyper-parameters [Agapiou et al 14] or maximizing the marginal likelihood can be computationally hard
- Rates for α -smooth *p*-exponential prior in WNM for β -Sobolev truth f_0

$$\varepsilon_n \lesssim \begin{cases} n^{-\beta/(1+2\beta+p(\alpha-\beta))}, & \text{if } \alpha \ge \beta, \\ n^{-\alpha/(1+2\alpha)}, & \text{if } \alpha \le \beta \end{cases}$$

'Oversmoothing' rate slightly improves when p goes from 2 to 1

- Sampling hyper-parameters [Agapiou et al 14] or maximizing the marginal likelihood can be computationally hard
- 'Heavy' tails correspond to p
 ightarrow 0 and would give

$$\varepsilon_n(??) \begin{cases} n^{-\beta/(1+2\beta)}, & \text{if } \alpha \ge \beta, \\ n^{-\alpha/(1+2\alpha)}, & \text{if } \alpha \le \beta \end{cases}$$

'Oversmoothing' rate is minimax!

- Sampling hyper-parameters [Agapiou et al 14] or maximizing the marginal likelihood can be computationally hard
- 'Heavy' tails correspond to p
 ightarrow 0 and would give

$$\varepsilon_n(\ref{eq:relation}) \begin{cases} n^{-\beta/(1+2\beta)}, & \text{if } \alpha \ge \beta, \\ n^{-\alpha/(1+2\alpha)}, & \text{if } \alpha \le \beta \end{cases}$$

'Oversmoothing' rate is minimax!

- If heuristic correct
 - adaptation 'for free' if $\alpha \geq \beta$ (prior oversmoothing)
 - rate still limited by prior's smoothness, try ' $\alpha \to \infty$ '

Promised land? - oversmoothed heavy-tailed priors

• Model: project WNM on given orthonormal basis (φ_k) of $L^2[0,1]$

 $X_k \stackrel{\textit{ind}}{\sim} \mathcal{N}(f_k, 1/n)$

Observation is sequence $X = (X_1, X_2, \dots)$ and unknown $f = (f_1, f_2, \dots)$

• Truth: suppose f_0 is β -smooth in Sobolev sense

$$f_0 \in \mathcal{S}^{\beta}(L) = \left\{ f = (f_k), \sum_{k \geq 1} k^{2\beta} f_k^2 \leq L^2 \right\}$$

• Prior on f: for ζ_k iid of heavy-tailed density h, $h(x) \simeq |x|^{-m}$

$$f_k \stackrel{ind}{\sim} \sigma_k \zeta_k$$

$$\sigma_k = k^{-1/2-lpha}, \quad \mathsf{HT}(lpha) ext{-prior}$$

 $\sigma_k = e^{-(\log k)^2}, \quad \mathsf{OT} ext{-prior} \quad (`lpha o \infty)'$

Theorem (A. and Castillo 24+)

If *h* has two moments (m > 3), then for the OT-prior and any $\beta > 0$

$$E_{f_0} \Pi \Big[\big\{ f : \| f - f_0 \|_2 > \varepsilon_n \big\} | X \Big] \to 0$$
$$\varepsilon_n = \mathcal{L}_n n^{-\beta/(1+2\beta)} \qquad (\mathcal{L}_n = (\log n)^{\omega})$$

For $HT(\alpha)$ -prior the same holds provided $\beta \leq \alpha$.

- OT-prior leads to fully adaptive posterior (up to logs) over Sobolev smoothness!
- Conjecture in limit $p \downarrow 0$ of p-exponential priors, holds true for $HT(\alpha)$ -prior
- Moment assumption not necessary (ongoing with I. Castillo and P. Egels, cover, e.g. Cauchy and horseshoe priors)

Idea underlying proof

Consider univariate model $X \sim \mathcal{N}(\mu, 1/n)$, $\mu \in \mathbb{R}$ unknown, prior $\mu \sim \sigma \Pi$

- For Π standard Gaussian: $E[\mu|X] = n\sigma^2 X/(1 + n\sigma^2)$
 - shrinking of data X determined by $n\sigma^2$
- For Π standard Student ($n = 10^7$)

- for large σ posterior mean preserves the data X
- for small σ posterior mean resembles thresholding estimator
- good recovery independently of $\sigma,$ for $|X|\gg 1/\sqrt{n}$

Idea used in semi-explicit bounds

 $\bullet\,$ For $\nu\,$ 'degree of ill-posedness', one observes

$$X_k \stackrel{\mathsf{ind}}{\sim} \mathcal{N}(\kappa_k f_k, 1/n), \qquad \kappa_k symp k^{-
u}$$

• Example (Volterra equation, $\nu = 1$)

$$X(t) = \int_0^t \int_0^s f(u) du ds + \frac{1}{\sqrt{n}} B(t), \quad t \in [0, 1]$$

Theorem (A. and Castillo 24+)

If *h* has two moments (m > 3), then for the OT-prior and any $\beta > 0$

$$E_{f_0} \Pi \Big[\{ f : \| f - f_0 \|_2 > \varepsilon_n \} \, | \, X \Big] \to 0$$
$$\varepsilon_n = \mathcal{L}_n n^{-\beta/(1+2\beta+2\nu)} \qquad (\mathcal{L}_n = (\log n)^{\omega})$$

For $HT(\alpha)$ -prior the same holds provided $\beta \leq \alpha$.

Simulations I: Volterra operator with homogeneously smooth truth

Left: GP+random regularity; Middle: HT(α)-prior; Right: OT-prior True $\beta = 1$, here $\alpha = 5$

Simulations I: Volterra operator with homogeneously smooth truth

Left: GP+random regularity; Middle: HT(α)-prior; Right: OT-prior True $\beta = 1$, here $\alpha = 5$

Comments on computation

Multiscale OT prior

- Consider (ψ_{lk}, l ≥ 0, k ∈ K_l) appropriate wavelet basis. Adapt scaling of OT-prior accordingly
- Prior on $f = \sum_{l=0}^{\infty} \sum_{k \in \mathcal{K}_l} f_{lk} \psi_{lk}$: for ζ_{lk} iid of heavy-tailed density h

$$f_{lk} \stackrel{ind}{\sim} \sigma_l \zeta_{lk}$$
 $\sigma_l = 2^{-l^2}, \qquad h(x) \asymp x^{-m} \qquad ext{OT-prior}$

• For $1 \le r \le 2$ set

$$\mathcal{B}_{rr}^{\beta}(L) = \left\{ f = (f_{lk}), \quad \sum_{l \ge 0} 2^{rl(\beta+1/2-1/r)} \sum_{k \in \mathcal{K}_l} |f_{lk}|^r < L^r \right\}$$

Theorem (A. and Castillo 24+)

If *h* has two moments (m > 3), then for the multiscale OT-prior, any $1 \le r \le 2$ and $\beta > 1/r - 1/2$, and any $f_0 \in \mathcal{B}_{rr}^{\beta}(L)$,

$$E_{f_0} \Pi \Big[\{ f : \| f - f_0 \|_2 > \varepsilon_n \} \, | \, X \Big] \to 0$$
$$\varepsilon_n = \mathcal{L}_n n^{-\beta/(1+2\beta)} \qquad (\mathcal{L}_n = (\log n)^{\omega})$$

OT-prior adaptive (up to logs) on spatially inhomogeneous Besov spaces without the need of randomizing hyperparameters

Simulations II: direct regression with spatially inhomogeneous truth

Model truths from [Donoho and Johnstone 94]

Simulations II: noisy observations

Signal-to-noise ratio ≈ 7

Simulations II: Gaussian prior with random smoothness and scaling

non-centered Gibbs sampler

Simulations II: Laplace prior with random smoothness and scaling

wpCN-within NC-GS (200 draws of f per hyperparameter update) [Chen et al 18]

Simulations II: OT-prior

no GS, wMALA [Chen et al 18], similar results with coordinate-wise sampling in Stan

$$\mathcal{H}^{\beta}(L) = \left\{ f = (f_{lk}), \quad \max_{k \in \mathcal{K}_l} |f_{lk}| \le 2^{-l(1/2+\beta)}L \text{ for all } l \ge 0 \right\}$$

Theorem (A. and Castillo 24+)

If *h* has two moments (m > 3), then for the multiscale OT-prior, any $\beta > 0$ and $f_0 \in \mathcal{H}^{\beta}(L)$ $E_{f_0} \Pi \Big[\{f : \|f - f_0\|_{\infty} > \varepsilon_n\} \,|\, X \Big] \to 0$ $\varepsilon_n = \mathcal{L}_n (\log n/n)^{\beta/(1+2\beta)} \qquad (\mathcal{L}_n = (\log n)^{\omega})$

- Adaptation also holds in supremum norm (up to logs)
- So far existing results for priors with spikes (spike-and-slab, BCART) only
- Can also derive adaptive nonparametric Bernstein-von Mises theorem in multiscale space for the OT-prior

Posterior contraction in general models

- To go to more general models, the standard path is via the theory of [Ghosal, Ghosh and van der Vaart 00]
 - prior mass condition
 - testing/entropy condition on sieve set
 - sieve set needs to contain 'bulk' of prior mass
- For heavy-tailed priors sets containing 'bulk' of prior mass are too big to be used as sieve sets
- Use ρ -posteriors, $\rho \in (0,1)$, for which the prior mass condition

$$\Pi(B_n(f_0,\varepsilon_n))\geq \exp(-n\varepsilon_n^2)$$

suffices for contraction with rate ε_n in Rényi divergence

$$\varepsilon_n := (\log n)^{\omega} n^{-\beta/(1+2\beta)}$$

where ω may vary along lines below

Theorem (A. and Castillo 24+) Consider OT-prior (no moment condition). Given β , L > 0,

- if $f_0 \in S^{\beta}(L)$, for any $d_2 > 0$ there exists $d_1 > 0$ sufficiently large s.t. $\prod [||f - f_0||_2 < d_1 \varepsilon_n] \ge e^{-d_2 n \varepsilon_n^2}$
- if $f_0 \in \mathcal{H}^{\beta}(L)$, for any $d_2 > 0$, for $d_1 > 0$ large enough $\Pi[\|f - f_0\|_{\infty} < d_1\varepsilon_n] \ge e^{-d_2n\varepsilon_n^2}$

Similar prior mass control can be derived for $HT(\alpha)$ -prior

Application: density estimation

- $X = (X_1, \ldots, X_n)$ where $X_j \stackrel{iid}{\sim} g_0(x), x \in [0, 1]$, unknown pdf $g_0 \ge c > 0$
- Define prior on density $g:[0,1] \rightarrow R^+$ via prior on f and

$$g(x) = g_f(x) = \frac{e^{f(x)}}{\int e^{f(x)} dx}$$

Theorem (A. and Castillo 24+)

Suppose $f_0 := \log g_0 \in \mathcal{H}^{\beta}(L)$ for some $\beta, L > 0$. Let Π be the prior induced on densities through g_f with f from OT-prior. Then for any $\rho < 1$, there exists M > 0 such that

$$E_{g_0}\Pi_{\rho}\Big[\|g-g_0\|_1>M\varepsilon_n\,|\,X\Big]\to 0$$

- OT-prior leads to adaptation (up to logs) in density estimation
- Similar results in classification

Simulations III: density estimation

Left: GP(α); Middle: HT(α)-prior; Right: OT-prior True $\beta = 2$ (Hölder), here $\alpha = 5$ [Top $n = 10^2$, Bottom $n = 10^4$]

Simulations III: density estimation

Left: GP(α); Middle: HT(α)-prior; Right: OT-prior True $\beta = 2$ (Hölder), here $\alpha = 5$ [Top $n = 10^2$, Bottom $n = 10^4$]

Comments on computation

Outlook

Outlook

Bayesian Adaptation in WNM	Sobolev (L^2)	Hölder (L^{∞})	Besov (L ²)	Notes on Computation
Gaussian hierarchical	Knapik et al 2016		Agapiou and Wang 2024	Conditionally conjugate, GS required
Laplace hierarchical	Agapiou and Savva 2024		Agapiou and Savva 2024	Metropolis within Gibbs
от	Agapiou and Castillo 2024+	Agapiou and Castillo 2024+	Agapiou and Castillo 2024+	Plain MCMC (no GS)
Spike and Slab	Hoffman et al 2015	Hoffman et al 2015		Combinatorial number of models to explore
Sieve	Ray 2013	Castillo and Rockova (2021)		Depends on base distribution, reversible jump required

- New approach to Bayesian adaptation to smoothness
- Main idea: combine heavy tails with oversmoothing deterministic scaling
- Computationally attractive algorithms (eg easy distributed learning)
- Applies for many models, also for broader adaptation, eg to compositional structure [Castillo and Egels 24+]

Thank you!