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Start point - rates of contraction with

Gaussian priors



Some nonparametric models

• Gaussian white noise model

dX (t) = f (t)dt +
1√
n
dB(t), t ∈ [0, 1]d

• Gaussian nonparametric regression, design points ti ∈ [0, 1]d

Xi = f (ti ) + ϵi , 1 ≤ i ≤ n

• Inverse problems, observe G(f ) subject to noise

• Density estimation, Xi
iid∼ f , 1 ≤ i ≤ n, for f pdf on [0, 1]d

• Nonparametric classification, independent observations Xi |Zi , 1 ≤ i ≤ n,

predictor Z ∈ [0, 1]d , response X ∈ {0, 1}, f (z) = P(X = 1|Z = z)

Interested in inferring unknown function f , as n → ∞
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Classical adaptation problem

Typical minimax estimation rate for ‘β-smooth’ function f

n− β
d+2β

(
n− β

d+2β+2ν , ν ill-posedness
)

• Find estimator T of f converging at minimax rate without knowledge of β

• Some methods: Lepski’s method (90s-), wavelet thresholding (95s-),

model selection (98s-), Bayesian nonparametrics (2000s-)

• Restrict presentation to d = 1
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Bayesian nonparametric framework

• f ∼ Π prior, distribution on parameter space F (say L2)

• X (n)|f ∼ P
(n)
f likelihood (suppress n, write X |f ∼ Pf )

• f |X ∼ Π(·|X ) posterior, given by Bayes’ rule

Π(B|X ) =

∫
B
Pf (X )dΠ(f )∫

F Pf (X )dΠ(f )

• Result is a data-dependent distribution Π(·|X )

• Appealing because of uncertainty quantification and

flexibility in prior’s choice

5



Frequentist performance of Bayesian posteriors

• Assume there exists fixed true f0 such that X ∼ Pf0 (recall suppressed n)

• Study the behaviour of Π(·|X ) under Pf0 as n → ∞:

- convergence to f0

- rate of convergence

• εn is a posterior contraction rate at f0 wrt loss ℓ, if as n → ∞

Ef0Π(f : ℓ(f , f0) > εn|X ) → 0
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Frequentist performance of Bayesian posteriors

Why?

• Mathematical foundation of Bayesian procedures

• Implies existence of point estimator converging at this rate (meaningful to

compare to minimax rate)

• Insight on choice of prior

Trade offs:

- Ability to optimally capture complex unknown functions

- Prior’s complexity

- Computability

7



Frequentist performance of Bayesian posteriors

Why?

• Mathematical foundation of Bayesian procedures

• Implies existence of point estimator converging at this rate (meaningful to

compare to minimax rate)

• Insight on choice of prior

Trade offs:

- Ability to optimally capture complex unknown functions

- Prior’s complexity

- Computability

7



Frequentist performance of Bayesian posteriors

Why?

• Mathematical foundation of Bayesian procedures

• Implies existence of point estimator converging at this rate (meaningful to

compare to minimax rate)

• Insight on choice of prior

Trade offs:

- Ability to optimally capture complex unknown functions

- Prior’s complexity

- Computability

7



Frequentist performance of Bayesian posteriors

Why?

• Mathematical foundation of Bayesian procedures

• Implies existence of point estimator converging at this rate (meaningful to

compare to minimax rate)

• Insight on choice of prior

Trade offs:

- Ability to optimally capture complex unknown functions

- Prior’s complexity

- Computability

7



Frequentist performance of Bayesian posteriors

Why?

• Mathematical foundation of Bayesian procedures

• Implies existence of point estimator converging at this rate (meaningful to

compare to minimax rate)

• Insight on choice of prior

Trade offs:

- Ability to optimally capture complex unknown functions

- Prior’s complexity

- Computability

7



Frequentist performance of Bayesian posteriors

How?

• Sometimes can do explicit or semi-explicit calculations

• ‘GGV’ general theory [Ghosal, Ghosh and van der Vaart 00], [Ghosal and
van der Vaart 07]

- Prior mass condition

‘The prior should put enough mass around the truth’

- Testing/entropy condition on sieve sets

- Sieve sets need to capture ‘bulk’ of prior mass

• Prior mass condition alone suffices for contraction of ρ-posteriors

Πρ(B|X ) =

∫
B
(Pf (X ))ρdΠ(f )∫

F (Pf (X ))ρdΠ(f )
, 0 < ρ < 1

[T. Zhang 06, Bhattacharya et al. 19, L’Huillier et al. 24]
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Priors on functions - Gaussian process priors

• [A. van der Vaart and H. van Zanten 08] showed that posterior contraction

rates for GP priors can be studied via their concentration function at f0

ϕf0(ε) = inf
h∈H:∥h−f0∥F≤ε

∥h∥2H − log Π(εBF )

• α-smooth Gaussian priors by random expansions in orthonormal bases, e.g.

f (·) =
∑

k≥1

σkζkφk(·)

with

σk = k−1/2−α, ζk
iid∼ N (0, 1)

α = 1 2 α = 1 α = 3 2
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Posterior contraction rates for Gaussian priors

• Contraction rate for α-smooth GP prior for β-Sobolev smooth truth f0

εn ≲




n−β/(1+2α), if α ≥ β,

n−α/(1+2α), if α ≤ β

• Rate cannot be improved, [Castillo 08]

• GPs are not adaptive to smoothness

• Adaptation can be achieved by making the prior more complex, e.g. by

- making α random, [Belitser and Ghosal 03], [Knapik et al. 16]

- introducing random rescaling, [van der Vaart and van Zanten 09]

- randomly truncating the series expansion, e.g. [Arbel et al 13]
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Spatially inhomogeneous unknowns

In many applications, the unknown function has ‘edges’ and ‘blocky structure’

Shepp-Logan phantom [Shepp and Logan 74], road cut in Chimborazo volcano

[www.geologyin.com], and NMR signal [Donoho et al. 95]

• Empirically, Gaussian priors are known to perform poorly for such spatially

inhomogeneous unknowns
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Waypoint - p-exponential priors



Besov-space priors

• (Hilbert-)Sobolev spaces measure differentiability

in L2-sense, functions with spikes get high norms

• Bβ
11-Besov spaces, ‘measure differentiability in L1-sense’

1/2
|u’|=1/h

h

Besov-space and p-exponential priors

• (Hilbert-)Sobolev spaces measure di↵erentiability in L2-sense and assign

high norms to functions with spikes

• Spatially inhomogeneous functions better modelled in Besov spaces,

e.g. B�
11, ‘measuring di↵erentiability in L1-sense’

• B�
pp-Besov spaces with 1  p < 2, permit spatially inhomogeneous

functions with small norm (p = 2 gives (Hilbert-)Sobolev spaces)

• Besov-space priors [Lassas et al. 2009], penalize Besov norms

��u0��
L2

=
1p
h

��u0��
L1

= 1

12

• Bβ
pp-Besov spaces with 1 ≤ p < 2, permit spatially inhomogeneous

functions with small norm (p = 2 gives Sobolev spaces)

• Motivation for introduction of Bs
pp-Besov priors in [Lassas et al. 2009],

‘penalizing B s
pp norms’, p ∈ [1, 2]

- for p = 2 Gaussian priors

- for p = 1 Laplace priors, permitting SI functions with non-trivial probability
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p-exponential priors

• [Agapiou et al 21] consider p-exponential priors, p ∈ [1, 2]

f (·) =
∑

k≥1

σkζkφk(·)

with

(σk) ∈ ℓ2, ζk
iid∼ cp exp(−|x |p/p)

• p = 1 Laplace, p = 2 Gaussian, for appropriate σk get Besov priors

• Developed abstract concentration theory, strongly relying on log-concavity

• Let Z be the Banach space with norm ∥h∥Z =
(∑∞

k=1 |hk/σk |p
)1/p

.

Theorem (A., Dashti, Helin 21)

Can study rates of contraction under p-exponential priors via concentration function

ϕf0(ε) = inf
h∈Z:∥h−f0∥F≤ε

∥h∥pZ − log Π(εBF )
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Rates of contraction under Besov smoothness in the WNM

• In WNM, [Donoho and Johnstone 98]

- minimax rate over Bβ
rq , r ∈ [1, 2] in L2-loss is n

− β
1+2β

- for r ∈ [1, 2) Iinear estimators limited by slower rate n
− β−γ/2

1+2β−γ , γ = 2−r
r

(for r = 2 linear estimators achieve minimax rate)

‘Linear estimators not flexible enough to fit both smooth and spiky part’

• α-smooth p-exponential priors, p ∈ [1, 2],

f (·) =
∑

k≥1

σkζkφk(·), σk = k−1/2−α, ζk
iid∼ cp exp(−|x |p/p)

or wavelet version

f (·) =
∑

l≥0

2l−1∑

k=0

σlζlkψlk(·), σl = 2−(1/2+α)l , ζlk
iid∼ cp exp(−|x |p/p)

14



Rates of contraction under Besov smoothness in the WNM

• [Agapiou et al 21], see also [Savva - PhD thesis 23], derived upper bounds

• Over Sobolev spaces, p-exponential priors with any p ∈ [1, 2] contract at

the minimax rate only for α = β

• Over Bβ
rq, r ∈ [1, 2)

- Rates for α-smooth Gaussian priors at best match the

(suboptimal) linear minimax rate

- Laplace priors can achieve the minimax rate for α = β − 1 and

appropriate rescaling

• In [Agapiou and Wang 24] established lower bound over Bβ
rq, for arbitrary

sequences of Gaussian priors: GP priors limited by linear minimax rate!

• Open problem whether Laplace rates can be improved
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Adaptive rates of contraction in the WNM

• [Agapiou and Savva 24], see also [Savva - PhD thesis 23], studied

adaptation in WNM

• No conjugacy to exploit, used general theory of [Rousseau and Szabo 17]

• Adaptation over Sobolev spaces with p-exponential priors for any

p ∈ [1, 2], by making α random or introducing random rescaling

• Adaptation over Besov spaces Bβ
rq, r ∈ [1, 2], q ∈ [1,∞] with Laplace

priors, by simultaneously randomizing α and introducing random rescaling

• MMLE empirical Bayes choice of hyper-parameters leads to same rates
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Other models

• [Agapiou and Wang 24] rates of contraction with Laplace priors in

(nonlinear) PDE inverse problems, for Besov truths

• [Giordano and Ray 22] rates of contraction with p-exponential priors over

Sobolev spaces, in drift estimation of multidimensional diffusions

• [Giordano 23] adaptation over Besov spaces with Laplace priors in

density estimation

17



Can we do better?

• Sampling hyper-parameters [Agapiou et al 14] or maximizing the marginal

likelihood can be computationally hard

• Rates for α-smooth p-exponential prior in WNM for β-Sobolev truth f0

εn ≲




n−β/(1+2β+p(α−β)), if α ≥ β,

n−α/(1+2α), if α ≤ β

‘Oversmoothing’ rate slightly improves when p goes from 2 to 1

• If heuristic correct

- adaptation ‘for free’ if α ≥ β (prior oversmoothing)

- rate still limited by prior’s smoothness, try ‘α→ ∞’
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Promised land? - oversmoothed

heavy-tailed priors



Nonparametric regression

• Model: project WNM on given orthonormal basis (φk) of L
2[0, 1]

Xk
ind∼ N (fk , 1/n)

Observation is sequence X = (X1,X2, . . . ) and unknown f = (f1, f2, . . . )

• Truth: suppose f0 is β-smooth in Sobolev sense

f0 ∈ Sβ(L) =
{
f = (fk),

∑

k≥1

k2βf 2k ≤ L2
}

• Prior on f : for ζk iid of heavy-tailed density h, h(x) ≍ |x |−m

fk
ind∼ σkζk

σk = k−1/2−α, HT(α)-prior

σk = e−(log k)2 , OT-prior (‘α→ ∞’)

19



Nonparametric regression - main result

Theorem (A. and Castillo 24+)

If h has two moments (m > 3), then for the OT-prior and any β > 0

Ef0Π
[{

f : ∥f − f0∥2 > εn
}
|X

]
→ 0

εn = Lnn
−β/(1+2β) (Ln = (log n)ω)

For HT(α)-prior the same holds provided β ≤ α.

• OT-prior leads to fully adaptive posterior (up to logs) over Sobolev

smoothness!

• Conjecture in limit p ↓ 0 of p-exponential priors, holds true for HT(α)-prior

• Moment assumption not necessary (ongoing with I. Castillo and P. Egels,

cover, e.g. Cauchy and horseshoe priors)
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Idea underlying proof

Consider univariate model X ∼ N (µ, 1/n), µ ∈ R unknown, prior µ ∼ σΠ

• For Π standard Gaussian: E [µ|X ] = nσ2X/(1 + nσ2)

- shrinking of data X determined by nσ2

• For Π standard Student (n = 107)

−0.002

0.000

0.002

−0.002 0.000 0.002
Data X

P
os

te
rio

r 
M

ea
ns Scaling

σ = 1e − 2

σ = 1e − 4

σ = 1e − 6

σ = 1e − 8

−3e−07

−2e−07

−1e−07

0e+00

1e−07

2e−07

−0.001 0.000 0.001

- for large σ posterior mean preserves the data X

- for small σ posterior mean resembles thresholding estimator

- good recovery independently of σ, for |X | ≫ 1/
√
n

Idea used in semi-explicit bounds
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Linear inverse problems

• For ν ‘degree of ill-posedness’, one observes

Xk
ind∼ N (κk fk , 1/n), κk ≍ k−ν

• Example (Volterra equation, ν = 1)

X (t) =

∫ t

0

∫ s

0

f (u)duds +
1√
n
B(t), t ∈ [0, 1]

Theorem (A. and Castillo 24+)

If h has two moments (m > 3), then for the OT-prior and any β > 0

Ef0Π
[
{f : ∥f − f0∥2 > εn} |X

]
→ 0

εn = Lnn
−β/(1+2β+2ν) (Ln = (log n)ω)

For HT(α)-prior the same holds provided β ≤ α.
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Simulations I: Volterra operator with homogeneously smooth truth

16

FIG 2. White noise model: true function (black), posterior mean (blue), 95% credible regions (grey), for n =
103,105,107,109,1011 top to bottom and for the three considered priors left to right.

Left: GP+random regularity; Middle: HT(α)–prior; Right: OT-prior

True β = 1, here α = 5

Comments on computation

23
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Multiscale OT prior

• Consider (ψlk , l ≥ 0, k ∈ Kl) appropriate wavelet basis. Adapt scaling of

OT-prior accordingly

• Prior on f =
∑∞

l=0

∑
k∈Kl

flkψlk : for ζlk iid of heavy–tailed density h

flk
ind∼ σlζlk

σl = 2−l2 , h(x) ≍ x−m OT–prior

• For 1 ≤ r ≤ 2 set

Bβ
rr (L) =

{
f = (flk),

∑

l≥0

2rl(β+1/2−1/r)
∑

k∈Kl

|flk |r < Lr

}

24



Nonparametric Regression - Contraction in Besov classes

Theorem (A. and Castillo 24+)

If h has two moments (m > 3), then for the multiscale OT-prior, any

1 ≤ r ≤ 2 and β > 1/r − 1/2, and any f0 ∈ Bβ
rr (L),

Ef0Π
[
{f : ∥f − f0∥2 > εn} |X

]
→ 0

εn = Lnn
−β/(1+2β) (Ln = (log n)ω)

OT-prior adaptive (up to logs) on spatially inhomogeneous Besov spaces

without the need of randomizing hyperparameters
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Simulations II: direct regression with spatially inhomogeneous truth
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Simulations II: noisy observations
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Simulations II: Gaussian prior with random smoothness and scaling
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Simulations II: Laplace prior with random smoothness and scaling
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wpCN-within NC-GS (200 draws of f per hyperparameter update) [Chen et al 18]
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Simulations II: OT-prior

no GS, wMALA [Chen et al 18], similar results with coordinate-wise sampling in Stan
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Nonparametric Regression - Supremum norm contraction

Hβ(L) =
{
f = (flk), max

k∈Kl

|flk | ≤ 2−l(1/2+β)L for all l ≥ 0
}

Theorem (A. and Castillo 24+)

If h has two moments (m > 3), then for the multiscale OT-prior, any β > 0

and f0 ∈ Hβ(L)

Ef0Π
[
{f : ∥f − f0∥∞ > εn} |X

]
→ 0

εn = Ln(log n/n)
β/(1+2β) (Ln = (log n)ω)

• Adaptation also holds in supremum norm (up to logs)

• So far existing results for priors with spikes (spike–and–slab, BCART) only

• Can also derive adaptive nonparametric Bernstein–von Mises theorem in

multiscale space for the OT-prior
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Posterior contraction in general models

• To go to more general models, the standard path is via the theory of
[Ghosal, Ghosh and van der Vaart 00]

- prior mass condition

- testing/entropy condition on sieve set

- sieve set needs to contain ‘bulk’ of prior mass

• For heavy-tailed priors sets containing ‘bulk’ of prior mass are too big to

be used as sieve sets

• Use ρ-posteriors, ρ ∈ (0, 1), for which the prior mass condition

Π(Bn(f0, εn)) ≥ exp(−nε2n)

suffices for contraction with rate εn in Rényi divergence
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Generic prior mass for OT priors

εn := (log n)ωn−β/(1+2β)

where ω may vary along lines below

Theorem (A. and Castillo 24+)

Consider OT-prior (no moment condition). Given β, L > 0,

• if f0 ∈ Sβ(L), for any d2 > 0 there exists d1 > 0 sufficiently large s.t.

Π
[
∥f − f0∥2 < d1εn

]
≥ e−d2nε

2
n

• if f0 ∈ Hβ(L), for any d2 > 0, for d1 > 0 large enough

Π
[
∥f − f0∥∞ < d1εn

]
≥ e−d2nε

2
n

Similar prior mass control can be derived for HT(α)-prior
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Application: density estimation

• X = (X1, . . . ,Xn) where Xj
iid∼ g0(x), x ∈ [0, 1], unknown pdf g0 ≥ c > 0

• Define prior on density g : [0, 1] → R+ via prior on f and

g(x) = gf (x) =
e f (x)∫
e f (x)dx

Theorem (A. and Castillo 24+)

Suppose f0 := log g0 ∈ Hβ(L) for some β, L > 0. Let Π be the prior induced

on densities through gf with f from OT-prior . Then for any ρ < 1, there

exists M > 0 such that

Eg0Πρ

[
∥g − g0∥1 > Mεn |X

]
→ 0

• OT-prior leads to adaptation (up to logs) in density estimation

• Similar results in classification
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Simulations III: density estimation

HEAVY-TAILED BAYESIAN NONPARAMETRIC ADAPTATION 29

Fig E.8: Density estimation: true density (black dashed), posterior mean (blue), 95% credible
regions (grey), for n = 102,104,106 top to bottom and for the three considered priors left to
right.
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Fig E.9: True density (blacked dashed) and kernel density estimator with Gaussian kernel
(red) for n = 102,104,106 left to right.

Left: GP(α); Middle: HT(α)–prior; Right: OT-prior

True β = 2 (Hölder), here α = 5 [Top n = 102, Bottom n = 104]

Comments on computation
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Simulations III: density estimation
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Fig E.8: Density estimation: true density (black dashed), posterior mean (blue), 95% credible
regions (grey), for n = 102,104,106 top to bottom and for the three considered priors left to
right.
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Fig E.9: True density (blacked dashed) and kernel density estimator with Gaussian kernel
(red) for n = 102,104,106 left to right.

Left: GP(α); Middle: HT(α)–prior; Right: OT-prior

True β = 2 (Hölder), here α = 5 [Top n = 102, Bottom n = 104]

Comments on computation
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Outlook

Bayesian 
Adaptation in WNM

Notes on Computation

Gaussian 
hierarchical

Knapik et al 2016 ___ Agapiou and 
Wang 2024

Conditionally conjugate, GS 
required

Laplace 
hierarchical

Agapiou and 
Savva 2024

___ Agapiou and 
Savva 2024

Metropolis within Gibbs

OT Agapiou and 
Castillo 2024+

Agapiou and 
Castillo 2024+

Agapiou and 
Castillo 2024+

Plain MCMC (no GS)

Spike and Slab Hoffman et al 
2015

Hoffman et al 
2015

___ Combinatorial number of 
models to explore

Sieve Ray 2013 Castillo and 
Rockova (2021)

___ Depends on base distribution, 
reversible jump required

Hölder ( )L∞ Besov ( )L2Sobolev ( )L2

• New approach to Bayesian adaptation to smoothness

• Main idea: combine heavy tails with oversmoothing deterministic scaling

• Computationally attractive algorithms (eg easy distributed learning)

• Applies for many models, also for broader adaptation, eg to compositional

structure [Castillo and Egels 24+]
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Thank you!
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