A new way of achieving Bayesian nonparametric adaptation

Sergios Agapiou
Verona, 7th November 2024

Department of Mathematics and Statistics, University of Cyprus



Table of Contents

1. Start point - rates of contraction with Gaussian priors
2. Waypoint - p-exponential priors
3. Promised land? - oversmoothed heavy-tailed priors

4. Outlook



References and collaborators

e p-exponential priors
- S. Agapiou, M. Dashti and T. Helin, Rates of contraction of posterior distributions
based on p-exponential priors, Bernoulli, 2021
- S. Agapiou and S. Wang, Laplace priors and spatial inhomogeneity in Bayesian inverse
problems, Bernoulli, 2024
- S. Agapiou and A. Savva, Adaptive inference over Besov spaces in the white noise
model using p-exponential priors, Bernoulli, 2024

& |

e Oversmoothed heavy-tailed priors

- S. Agapiou and |. Castillo, Heavy-tailed Bayesian nonparametric adaptation,
The Annals of Statistics, 2024

e Works in progress with Ismaél Castillo and Paul Egels



Start point - rates of contraction with
Gaussian priors



Some nonparametric models

e Gaussian white noise model

dX(t) = f(t)dt + %dB(t), t e [0,1]

e Gaussian nonparametric regression, design points t; € [0, l]d
X,':f(t,')+€,', 1<i<n

e Inverse problems, observe G(f) subject to noise

e Density estimation, X; L f, 1 <i<n, for f pdf on [0,1]¢

e Nonparametric classification, independent observations X;|Z;, 1 <

i < n,
predictor Z € [0,1]%, response X € {0,1}, f(z) = P(X = 1|Z = 2)
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e Nonparametric classification, independent observations X;|Z;, 1 <

i < n,
predictor Z € [0,1]%, response X € {0,1}, f(z) = P(X = 1|Z = 2)

Interested in inferring function f, as n — oo




Classical adaptation problem

Typical estimation rate for ‘B-smooth’ function f

(n~@%25%2v | v ill-posedness)

e Find estimator T of f converging at minimax rate without knowledge of 3

e Some methods: Lepski's method (90s-), wavelet thresholding (95s-),
model selection (98s-), Bayesian nonparametrics (2000s-)



Classical adaptation problem

Typical estimation rate for ‘B-smooth’ function f

(n~@%25%2v | v ill-posedness)

e Find estimator T of f converging at minimax rate without knowledge of 3

e Some methods: Lepski's method (90s-), wavelet thresholding (95s-),
model selection (98s-), Bayesian nonparametrics (2000s-)

e Restrict presentation to d =1



Bayesian nonparametric framework

f ~ T1 prior, distribution on parameter space F (say L»)

XOI|f ~ P,E") likelihood (suppress n, write X|f ~ Py)

f|X ~ MN(:|X) posterior, given by Bayes' rule

Pe(X)dN(f
n(B[x) - Je P00
5 Pr(X)dN(f)
e Result is a data-dependent distribution I(-|.X)

e Appealing because of uncertainty quantification and
flexibility in prior's choice



Frequentist performance of Bayesian posteriors

e Assume there exists fo such that X ~ Py (recall suppressed n)

e Study the behaviour of M(:|X) under Py as n — oo:

- convergence to fy

- rate of convergence
e ¢, is a posterior contraction rate at fy wrt loss /, if as n — oo

EgN(f = 6(f, fo) > en]X) =0
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Frequentist performance of Bayesian posteriors

Why?
e Mathematical foundation of Bayesian procedures

e Implies existence of point estimator converging at this rate (meaningful to

compare to minimax rate)

e Insight on choice of prior

Trade offs:
- Ability to optimally capture complex unknown functions
- Prior's complexity

- Computability
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Frequentist performance of Bayesian posteriors

How?

e Sometimes can do explicit or semi-explicit calculations

e ‘GGV' general theory [Ghosal, Ghosh and van der Vaart 00], [Ghosal and
van der Vaart 07]

- Prior mass condition
‘The prior should put enough mass around the truth’
- Testing/entropy condition on sieve sets

- Sieve sets need to capture ‘bulk’ of prior mass

e Prior mass condition alone suffices for contraction of p-posteriors

Je(P(X))"dN(f)
Jr(Pe(X))rdn(f)’

[T. Zhang 06, Bhattacharya et al. 19, L'Huillier et al. 24]

N,(B|X) = 0<p<l1



Priors on functions - Gaussian process priors

e [A. van der Vaart and H. van Zanten 08] showed that posterior contraction
rates for GP priors can be studied via their concentration function at fy

96() = it I, ~logN(eBy)

e a-smooth Gaussian priors by random expansions in orthonormal bases, e.g.
= orupr()
k>1
with

iid

ok =k G N(0,1)

a=1/2 a=1 a=3/2
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Posterior contraction rates for Gaussian priors

e Contraction rate for a-smooth GP prior for 5-Sobolev smooth truth f
nfﬁ/(1+2a)’ if Z 67
E ~Y
n n—cy/(l-%—2o¢)7 if o S B

e Rate cannot be improved, [Castillo 08]

GPs are not adaptive to smoothness

Adaptation can be achieved by making the prior more complex, e.g. by

- making o random, [Belitser and Ghosal 03], [Knapik et al. 16]
- introducing random rescaling, [van der Vaart and van Zanten 09]

- randomly truncating the series expansion, e.g. [Arbel et al 13]

10



Spatially inhomogeneous unknowns

In many applications, the unknown function has ‘edges’ and ‘blocky structure’

Shepp-Logan phantom [Shepp and Logan 74], road cut in Chimborazo volcano
[www.geologyin.com], and NMR signal [Donoho et al. 95]

e Empirically, Gaussian priors are known to perform for such spatially
inhomogeneous unknowns

11



Waypoint - p-exponential priors



Besov-space priors

lwl=1/h
1/2 1
e (Hilbert-)Sobolev spaces measure differentiability lle'll,, = —=
in L2-sense, functions with spikes get high norms 1], =1
ull, =
e B -Besov spaces, ‘measure differentiability in L!-sense’
e
° ng—Besov spaces with 1 < p < 2, permit spatially inhomogeneous
functions with small norm (p = 2 gives Sobolev spaces)
e Motivation for introduction of 3;,-Besov priors in [Lassas et al. 2009],

‘penalizing B, norms’, p € [1,2]
- for p = 2 Gaussian priors

- for p =1 Laplace priors, permitting Sl functions with non-trivial probability

12



p-exponential priors

e [Agapiou et al 21] consider p-exponential priors, p € [1,2]

F(-)=>_ owlepr(’)

k>1
with
iid
(ok) € o, C ~ cpexp(—|x|*/p)

e p =1 Laplace, p = 2 Gaussian, for appropriate o« get Besov priors

e Developed abstract concentration theory, strongly relying on

13



p-exponential priors

e [Agapiou et al 21] consider p-exponential priors, p € [1,2]

= okCupn(’)

k>1
with
jid
(0k) € L2, Gk~ coexp(—|x|"/p)

e p =1 Laplace, p = 2 Gaussian, for appropriate o« get Besov priors

e Developed abstract concentration theory, strongly relying on

e Let Z be the Banach space with norm ||Al; = (3>_p2, |hk/ak|")1/p.
Theorem (A., Dashti, Helin 21)
Can study rates of contraction under p-exponential priors via concentration function

b () = [All% — log N(eBF)

hez: Hh fo\l <e

13



Rates of contraction under Besov smoothness in the WNM

e In WNM, [Donoho and Johnstone 98|

__B
- minimax rate over B,/i,, re[1,2] in Ly-loss is n 1428
3 — 2
B—~/ Py

- for r € [1,2) linear estimators limited by slower rate n= 1#28-7, v = ==~

(for r = 2 linear estimators achieve minimax rate)

‘Linear estimators not flexible enough to fit both smooth and spiky part’

e a-smooth p-exponential priors, p € [1,2],

F() =D ouCipn(-), ox =k % cpexp(—|xI/p)

k>1
or wavelet version

21

) =3 o), or=2"4>" i & c,exp(—|xI"/p)

>0 k=0
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Rates of contraction under Besov smoothness in the WNM

o [Agapiou et al 21], see also [Savva - PhD thesis 23], derived upper bounds

e Over Sobolev spaces, p-exponential priors with any p € [1,2] contract at
the minimax rate only for a = (3

e Over BY,re[1,2)

- Rates for a-smooth Gaussian priors at best match the
(suboptimal) linear minimax rate

- Laplace priors can achieve the minimax rate for « = 3 — 1 and
appropriate rescaling

e In [Agapiou and Wang 24| established lower bound over B,Bq,

sequences of Gaussian priors: GP priors limited by linear minimax rate!

for arbitrary

e Open problem whether Laplace rates can be improved

15



Adaptive rates of contraction in the WNM

e [Agapiou and Savva 24], see also [Savva - PhD thesis 23], studied
adaptation in WNM

e No conjugacy to exploit, used general theory of [Rousseau and Szabo 17]

e Adaptation over Sobolev spaces with p-exponential priors for any
p € [1,2], by making a random or introducing random rescaling

e Adaptation over Besov spaces Bﬁ,, r€[1,2],q € [1,00] with Laplace

priors, by simultaneously randomizing o and introducing random rescaling

e MMLE empirical Bayes choice of hyper-parameters leads to same rates

16



Other models

e [Agapiou and Wang 24] rates of contraction with Laplace priors in
(nonlinear) PDE inverse problems, for Besov truths

e [Giordano and Ray 22] rates of contraction with p-exponential priors over
Sobolev spaces, in drift estimation of multidimensional diffusions

e [Giordano 23] adaptation over Besov spaces with Laplace priors in

density estimation

17



Can we do better?

e Sampling hyper-parameters [Agapiou et al 14] or maximizing the marginal
likelihood can be computationally hard

e Rates for a-smooth p-exponential prior in WNM for 3-Sobolev truth fo

n—B/(+28+ )’ if > 8,

En nfoc/(1+2o¢)7 if o < 6

‘Oversmoothing’ rate slightly improves when p goes from 2 to 1

18
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Can we do better?

e Sampling hyper-parameters [Agapiou et al 14] or maximizing the marginal
likelihood can be computationally hard

e ‘Heavy’ tails correspond to p — 0 and would give

,77,8/(1+2B)7 ifa> 8,

en (77)
nfoz/(l+20z)7 if « < 6

‘Oversmoothing’ rate is minimax!

o If correct

- adaptation ‘for free’ if & > B (prior oversmoothing)

- rate still limited by prior's smoothness, try ‘a — oo’

18



Promised land? - oversmoothed
heavy-tailed priors




Nonparametric regression

e Model: project WNM on given orthonormal basis (x) of L2[0, 1]
X % N (fi, 1/n)

Observation is sequence X = (X1, Xa,...) and unknown f = (i, f,...)

e Truth: suppose fy is S-smooth in Sobolev sense

fo € Sﬂ(L) = {f = (f), kasz < L2}

k>1

e Prior on f: for (i iid of heavy-tailed density h, h(x) =< |x|™™
i ™ ouli
or = kY27 HT(«a)-prior

o = e (¢ k)Q, OT-prior (‘av — 00')

19



Nonparametric regression - main result

Theorem (A. and Castillo 24+)
If h has two moments (m > 3), then for the OT-prior and any § > 0

EFOI'I[{f: If -6, > en}|x] =0

en = Lon P08 (£ — (log n)¥)
For HT («)-prior the same holds provided 5 < a.
e OT-prior leads to posterior (up to logs) over Sobolev
smoothness!
e Conjecture in limit p | 0 of p-exponential priors, holds true for HT(«)-prior

e Moment assumption not necessary (ongoing with |. Castillo and P. Egels,
cover, e.g. Cauchy and horseshoe priors)

20



Idea underlying proof

Consider univariate model X ~ N (u,1/n), u € R unknown, prior p ~ oTl

Idea

For M standard Gaussian: E[u|X] = no®X/(1 + no?)

- shrinking of data X determined by no?
For M standard Student (n = 107)

//;
7
0.002 Pt
7 )
2 SO Scaling
I LN
2 aitiaa/ —- o=le-2
&% o
s 0000 @ pm———— S -2t Lt N / - g=le-
§ o000 = c=le-4
k2 ] c=1le-6
3 i _
a T4uond -=- o=le-8
S
ot
-0.002 i

L7

=

53

-0.002 0.000 0.002

Data X
- for large o posterior mean preserves the data X

- for small o posterior mean resembles thresholding estimator
- good recovery independently of o, for | X| > 1/y/n

used in semi-explicit bounds
21



Linear inverse problems

e For v ‘degree of ill-posedness’, one observes
Xk m’j./\/’(ﬂkfhl/n), KR < k™Y

e Example (Volterra equation, v = 1)
t s 1 ]
X(t :/ / f(u)duds + —=B(t), te]o,1
(t) A (u) NG (1)

Theorem (A. and Castillo 24+)
If h has two moments (m > 3), then for the OT-prior and any 5 > 0

Efol_l[{f: If = Bl > sn}|x] =0

en = Lan /XY (£, — (log n)*)

For HT («)-prior the same holds provided 3 < «.

22



Simulations |: Volterra operator with homogeneously smooth truth

) o
7 & |
o o i
S =
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00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
) o
7 & 7
o | o | i
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00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Left: GP+random regularity; Middle: HT (a)—prior; Right: OT-prior

True =1, here « =5
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Simulations |: Volterra operator with homogeneously smooth truth

) o
7 & |
o o i
S =
T T T T T T T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
) o
7 & 7
o | o | 4
S =

Left: GP+random regularity; Middle: HT (a)—prior; Right: OT-prior

Comments on computation

True =1, here « =5
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Multiscale OT prior

e Consider (¢, ! > 0,k € K;) appropriate wavelet basis. Adapt scaling of
OT-prior accordingly

e Prioron f = Z,C:O Zke’c/ fixtoi: for (i iid of heavy—tailed density h

ind
i ~ o1Cik

_ P - M g
o=2"", h(x) < x OT—prior
e Forl<r<2set

Bfi(L):{ (fi), Y _2"EH2IN ) < Lf}

>0 ke,

24



Nonparametric Regression - Contraction in Besov classes

Theorem (A. and Castillo 24+)

If h has two moments (m > 3), then for the multiscale OT-prior, any
1<r<2and f>1/r—1/2, and any fo € B5(L),

Efol'l[{f: If — foll2 > en}|x] =0

En = []nnfﬁ/(li»ZB) (E” = (lOg n)”)

OT-prior adaptive (up to logs) on spatially inhomogeneous Besov spaces
the need of randomizing hyperparameters

25



Simulations |l: direct regression with spatially inhomogeneous truth
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Model truths from [Donoho and Johnstone 94]
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Simulations |l: noisy observations

Noisy Blocks
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I

-5

Noisy HeaviSine

-10
I

-15

Signal-to-noise ratio ~7
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-10

Noisy Bumps

Noisy Doppler
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Simulations Il: Gaussian prior with random smoothness and scaling

Blocks, Gaussian Bumps, Gaussian
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non-centered Gibbs sampler

28



Simulations |l: Laplace prior with random smoothness and scaling

Blocks, Laplace pseudomode Bumps, Laplace pseudomode
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wpCN-within NC-GS (200 draws of f per hyperparameter update) [Chen et al 18]
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Simulations Il: OT-prior

Blocks, Cauchy Bumps, Cauchy

HeaviSine, Cauchy Doppler, Cauchy

AN Tallh A\
c,_/ \\ /\P\ N W ‘

\‘w‘f“LJY;\:\ / \
. \ // \/ ﬁ‘w\/v \/

\

no GS, wMALA [Chen et al 18], similar results with coordinate-wise sampling in Stan
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Nonparametric Regression - Supremum norm contraction

H‘*(L):{ = (fu), max|fi] <27"42L foral /zo}
exy

Theorem (A. and Castillo 24+)

If h has two moments (m > 3), then for the multiscale OT-prior, any 8 > 0
and fo € HP(L)

Efon[{f: If = folloo > en} \X] -0

€n = La(log n/n)?/02 (£ — (log n)*)

e Adaptation also holds in supremum norm (up to logs)
e So far existing results for priors with spikes (spike—and-slab, BCART) only

e Can also derive adaptive nonparametric Bernstein—von Mises theorem in
multiscale space for the OT-prior
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Posterior contraction in general models

e To go to more general models, the standard path is via the theory of
[Ghosal, Ghosh and van der Vaart 00]

- prior mass condition
- testing/entropy condition on sieve set

- sieve set needs to contain ‘bulk’ of prior mass

e For heavy-tailed priors sets containing ‘bulk’ of prior mass are too big to
be used as sieve sets

e Use p-posteriors, p € (0,1), for which the prior mass condition
N(Ba(fo,en)) > exp(—nes)

suffices for contraction with rate €, in Rényi divergence

32



Generic prior mass for OT priors

en := (log n)* n~P/11+28)

where w may vary along lines below
Theorem (A. and Castillo 24+)
Consider OT-prior (no moment condition). Given 3,L > 0,
o iffy € S’B(L), for any d» > 0 there exists di > 0 sufficiently large s.t.
N[||f — foll2 < dien] > e~ %"
o iffy € HH(L), for any d» > 0, for di > 0 large enough

N[If = flloe < chen] > &%

Similar prior mass control can be derived for HT(«)-prior
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Application: density estimation

e X =(Xi,...,X,) where X; L'Ego(x), x € [0,1], unknown pdf go > ¢ >0

e Define prior on density g : [0,1] — R™ via prior on f and
ef(x)
g(x) = gr(x) = W

Theorem (A. and Castillo 24+)

Suppose fy := log go € ’Hﬁ(L) for some 3, L > 0. Let I be the prior induced
on densities through gr with f from OT-prior . Then for any p < 1, there
exists M > 0 such that

Eullp[lg — goll1 > Mzy | X] =0

e OT-prior leads to adaptation (up to logs) in density estimation

e Similar results in classification
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Simulations lll: density estimation

GP(a) HT(a) oT

Left: GP(«); Middle: HT(a)—prior; Right: OT-prior
True B = 2 (Hdlder), here o = 5 [Top n = 102, Bottom n = 10*]
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Simulations lll: density estimation

GP(a) HT(a) oT

Left: GP(«); Middle: HT(a)—prior; Right: OT-prior
True B = 2 (Hdlder), here o = 5 [Top n = 102, Bottom n = 10*]

Comments on computation
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Outlook

Bayesian Sobolev (LZ) Holder (L*) Besov (LZ) Notes on Computation
Adaptation in WNM

Gaussian Knapik et al 2016 Agapiou and Conditionally conjugate, GS
hierarchical Wang 2024 required

Laplace Agapiou and Agapiou and Metropolis within Gibbs
hierarchical Savva 2024 Savva 2024

oT Agapiou and Agapiou and Agapiou and Plain MCMC (no GS)
Castillo 2024+ Castillo 2024+ Castillo 2024+
Spike and Slab Combinatorial number of

models to explore

Sieve Depends on base distribution,
reversible jump required

e New approach to Bayesian adaptation to smoothness

Main idea: combine heavy tails with oversmoothing deterministic scaling

Computationally attractive algorithms (eg easy distributed learning)

Applies for many models, also for broader adaptation, eg to compositional
structure [Castillo and Egels 24+]
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Thank you!
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