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Data arises naturally in high-dimensional array (tensor) structure in many applications,
neural-imaging, spatial-temporal analysis, computer vision, financial networks, etc.

Often people are interested in characterizing the relationship between a scalar outcome
and tensor covariates (predictors), high-dimensinality of the covariates introduces a
natural challenge in estimating a large number of parameters given a limited sample size.

Contributions:

@ Introduce a new flexible tensor model for multiple-equation regression that accounts
for common latent regime changes.

@ Provide a suitable inference framework to deal with over-parametrization and
overfitting.

@ Propose an efficient MCMC algorithm for posterior approximation (Random Scan
Gibbs Sampling and back-fitting strategy).
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Literature review

High-dimensional data:
@ A brutal way: vectorize the tensor predictors and regress the response variable on a
large vector of tensor entries with some form of penalization and variable selection.
Overparametrization, ignorance of structural relationship of tensor predictors.

@ Dimensionality reduction:

o Covariates/Predictors: Zhang et al. (2019) and Caffo et al. (2010) performed PCA and
SVD on tensor predictors to obtain a lower dimensional summaries of the predictors.
Unsupervised nature of PCA and interpretability issues.

o Coefficients: Yu and Liu (2016); Wang and Xu (2022); Spencer et al. (2022) performed
Tucker decomposition on the tensor coefficients, Guhaniyogi et al. (2017); Billio et al.
(2023); Papadogeorgou et al. (2021) performed PARAFAC decompositions.
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Literature review

Inference
@ Frequentist: Yu and Liu (2016) proposed an algorithm to minimize the empirical loss
function. Zhou et al. (2013) proposed a MLE estimator.

@ Bayesian: Guhaniyogi et al. (2017) proposed a novel multi-way shrinkage prior to
induce further sparsity on the PARAFAC decomposed tensor elements.
Papadogeorgou et al. (2021) extended their work by adding another layer of flexibility
on the PARAFAC decomposition to achieve better inference performance.

Sampling strategy:
@ Random Partial Scan Gibbs Sampling: Latuszynski et al. (2013), Yang et al. (2019).
@ Backfitting strategy: Hardle and Hall (1993).
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Tensor Algebra
Tensor Representation

Two major tensor representation methods often used in the literature: CP
(CANDECOMP/PARAFAC) and Tucker. (Kolda and Bader (2009))

CP Representation: given a 3-mode tensor B € R/*/*K

D
B:Zad®bd®cd
d=1

where ay € R/, by € RY, ¢4 € RX are the marginals from the CP decomposition, D is the
rank of the tensor, ® represents the outer product.

Dimensionality reduction: / x J x K — (I+ J + K)D.
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Tensor Algebra

Hard vs Soft PARAFAC
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Figure: Hard vs Soft PARAFAC (Papadogeorgou et al., 2021)
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The Model

A Markov-Switching Multiple-equation Tensor Regression Model:
Yie = p(St)+ < Bi(st), Xt > +o1(st)ert

Yne = pn(St)+ < Bn(St), Xt > +on(St)ent

where t=1,..., T, X;, Be(s;) are pi x p» matrices, < -,- > denotes inner product. The latent
process is a K-state Markov chain process and the parametrization used is
K K
pe(st) = pel(st = k), Bu(sr) Z Bul(st = k), ou(st) =Y oul(si =k
k=1 k=1

Assume the following decomposition:

D
Bu = B, « B,
d=1

where x is the Hadamard product, Bﬁ) m» M= 1,2 are the multiplicative factors. D is the number of
components used to decompose the tensor.
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Hierarchical Priors

We use shrinkage priors to favor sparsity:
BY ~ MNpyp, (G 705C D . I, @)
Y~ Noo(0, 7¢O W)
Wi~ Exp(\5)2/2)

o b

m ~ Ga(ax,bx
02 ~ Ga(a,, b,
T ~ Ga(ar, b,
¢M,....¢®Y ~ Dir(a/D,...,a/D)
where m = {1, 2} is the number of mode, p1, p> are the size of each mode.

d
Gﬁ?):{vg)wpz m =1

N — ~—~ ~—

A~ N~~~ ~
N O
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(2]

Lp, © 7(2d) m=2
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Selection of Hyperparameters

The choice of hyperparameters can have a large effect on the performance of the model.
We follow the strategy in (Papadogeorgou et al. (2021)) to choose the hyperparameters
by studying the properties of induced prior variance on the coefficients B.

In particular, we choose the hyperparameters such that Var(B;;) = V* and the additional
variance introduced by the softening equals to AV*. B; denotes the entry of B.

We found that:

N al(a-+1) . (a 262 2
ve) = = e (s ) ®
a _ br a. Vv .
= 7(3T+1)C(1—m) (10)
where C = 2111

In simulation we use V* =1 and AV* = 10%.
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Full Conditionals

Let 8 = (04, ...,0k) be the collection of the state-specific parameters 6, = (B«, Y« k>
Tks Mks Wk, 02, i) and denote withy = (y4,...,yr), X = (Xi,..., X7) and s = (sy,..., 1)
the collection of response variables, covariates and state variables, respectively.

The joint posterior of the unknowns of the model is given by

p(6,s|y,X) (11)

The joint posterior is not tractable, we approximate using the full conditionals for each of
the parameters.
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MCMC-Gibbs Sampler

We propose a MCMC procedure based on Gibbs sampling to sample the unknowns from 3 blocks.

@ Block 1: Sampling ﬁm/ ,fyf,f}m o2, 0 ,ufromp(ﬁmjm,fy,%m o2, 0% 1| Y,X1,...,XT)
@ Block 2: Sampling ¢(9) and 7 from p(¢(9), 7 | B,~,w)
@ Block 3: Sampling A{? and w! from p(\Y m/m|’7m/m 7, (@)

For the hidden states, we apply a Forward Filtering Backward Sampling (FFBS) strategy:

@ Draw transitional probabilities (pix, - . ., Pkk) from Dirichlet distribution p (pix, - - . , Pkk | S)-

@ Compute iteratively the vector of smoothed probabilities &+ by using Hamilton Filter, and
draw the state vector s; from a multinomial distribution M (1 ,§,|T).

For the first 10 Gibbs iterations, we run full scan for every rank and every mode to recover the
main structure of the coefficients. Then we perform Random-Partial-Scan Gibbs to randomly
select a subset of components to update for each iteration.
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Simulations

Tensor Regression

True Sampled Sampled Sampled
coefficients rank=3 rank = 5 rank = 7
0 0 0

Simulation settings:
@ 4 experimental settings
ranging from different

ranks and different levels
of sparsity.

@ Matrix predictor with
dimensions 20 x 20

@ Number of observations:
400

@ Gibbs iterations: 3000

Figure: Estimated coefficients for four experimental settings using three different ranks
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Simulations

Tensor Regression
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Figure: Raw MCMC output and progressive average of
entry By 1 for different types of coefficients
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Approximated posterior distribution for By, 1
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Figure: Approximated posterior distribution
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Simulation

Markov Switching

Simulation settings

@ 2 sets of true coefficients are used to
represent 2 different regimes, both i.i.d
covariates and AR(1) covariates are used
in the simulation.

0

0s0

02

@ Matrix predictor with dimensions 12 x 12

100

@ Regime specific intercepts: p1 = pu2 =0
Regime specific variances:
02 =2,05=0.1.

@ Number of observations: 800

@ Gibbs iterations: 3000

VL 2N

Figure: Markov-switching model with Diagonal and Anti-diagonal coefficients
(first row) and with Cross and Diagonal coefficients (second row).
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Simulation

Convergence diagnostic

Table: MCMC convergence and efficiency

Setting SM° (anti-diag / diag)
ACF(1)  ACF(5) ACF(10) | MSE(10) MSE(100)
0.4085 0.3279 0.3158

(0.3145) (0.2328) (0.0980) | 0-0%%9 ~ 0.0083
0.5624 0.5437 0.5333
(0.5448) (0.3878) (0.1942)

Setting SM° (cross / diag)
0.5139 0.4425 0.4410
(0.4247)  (0.2819)  (0.1650)
0.5294 0.5166 0.5077
(0.5153) (0.3649) (0.1831)

Coefficients (B)

States(s;) 0.2725 0.0113

Coefficients (B) 0.1773 0.0106

States(s;) 0.3013  0.0050

Table 1 documents the results on convergence for the two different experimental settings. The second column of the table reports the ACFs of the parameters and
the hidden states before and after thinning, where the results after thinning are reported in parentheses. The third column reports the MSE of the parameters and
hidden states at the 10th and 100th Gibbs iteration.
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Empirical Applications

Time series model with many lags, mixed-frequency data sampling can take the
advantage of tensor data structure.

Applications
Two relevant applications: i) financial market volatility and ii) oil prices data.
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Macro Application
Stock return and oil prices

We examine the impact of oil price volatility on the stock market returns (S&P 500) at an
aggregate level and on the financial sector, energy sector and other sectors of S&P500 at
disaggregate level. We follow Xiao and Wang (2022) to distinguish the oil price volatility
into Good QOil Volatility (GV) where the realized volatility is postitive and Bad Oil Volatility
(BV) where the realized volatility is negative.

Furthermore, we explore the problem in a Mixed Data Sampling (MIDAS) (Ghysels et al.,

2004) framework and construct the covariates into a 3d array to take advantage of the
tensor regression. To fix the idea:

@ Response variable: stock return Ry ; (4-weekly data), ¢ = {S&P 500, financial sector,
energy sector, other sectors in S&P 500}

@ Regressors: Good oil (GV) and Bad oil (BV) volatilities, exchange rate volatility (ER),
TED spread volatility (IR) and VIX index (VI). (Weekly data)
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Macro Application

Stock return and oil prices

The tensor regression model
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Figure: Graphic Representation of Tensor Regression for Macro Application
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Macro Application

Stock return and oil prices
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Figure: Tensor Regression with Markov Switching (blue dashed line) and estimated hidden states (red solid
line). True data is shown in solid silver line)
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Model Performance

Out of Sample

1-day (month) ahead  5-day (month) ahead
MSE MAE MSE MAE MSE MAE

Application 1: VIX and OVX on macro indicators
Least Square 0.3049 0.4266 | 0.1945 0.3474 0.3668 0.5211
LASSO 0.4207 0.5259 | 0.5199 0.6363 0.6940 0.7589
Tensor 0.3097 0.4324 | 0.2540 0.4232 0.3581 0.5182
MS Tensor 0.0907 0.2393 | 0.1409 0.3342 0.1379 0.3063
Application 2: S&P 500 on oil prices (Aggregate Analysis)
Least Square 0.4418 0.5126 | 0.2394 0.4893 0.1986 0.4073
LASSO 0.4692 0.5264 | 0.2058 0.4537 0.1487 0.3548
Tensor 0.6073 0.6084 | 0.0445 0.2111 0.3442 0.4227
MS Tensor 0.3901 0.4794 | 0.5248 0.7244 0.2664 0.4522
Application 2: Financial Sector on oil prices (Disaggregated S&P 500 analysis)
Least Square 0.5198 0.5530 | 0.3082 0.5551 0.1107 0.2631
LASSO 0.5532 0.5650 | 0.2684 0.5181 0.1111 0.2555
Tensor 0.6968 0.6204 | 0.0035 0.0594 0.0574 0.2025
MS Tensor 0.3370 0.4308 | 0.0586 0.2421 0.0878 0.2696
Application 2: Energy Sector on oil prices (Disaggregated S&P 500 analysis)
Least Square 0.4587 0.5354 | 0.6606 0.8128 0.2879 0.4931
LASSO 0.4869 0.5516 | 0.1756 0.4191 0.2740 0.4545
Tensor 0.5379 0.5731 | 0.2414 0.4914 0.2788 0.4949
MS Tensor 0.3323  0.4362 | 0.0090 0.0949 0.3325 0.5153
Application 2: Other sectors on oil prices (Disaggregated S&P 500 analysis)
Least Square 0.4389 0.5097 | 0.5919 0.7694 0.4054 0.5672
LASSO 0.4675 0.5254 | 0.3940 0.6277 0.2908 0.5071
Tensor 0.4643 0.5219 | 0.1072 0.3274 0.2935 0.4871
MS Tensor 0.3064 0.4105 | 0.9498 0.9746 0.7229 0.7488

In Sample

Table: In-sample fitting and out-of-sample forecasting performance. Results for the best performing model
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Concluding Remarks

@ A new Markov switching multiple-equation tensor regression model capable of
extracting a common latent factor (latent regime changes) is proposed.

@ A low-rank representation of the coefficient tensor and hierarchical prior distribution
are proposed to introduce shrinkage effects to overcome overparametrization.

@ An efficient MCMC sampler is proposed based on back-fitting and random scan
strategies.

@ The tensor regression model is readily to be used with tensor covariates with order 2
or 3.
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Robustness Check

We tweaked a bit with hyperparameters to change the piror mean and variance of the
scales while still maintaining V* = 1, AV* = 10%.

True Sampled Sampled Sampled
coefficients rank=3 rank = 4 rank =5
0

0

0
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Robustness Check

Noisy True Coefficients

True Sampled Sampled
coefficients rank = 5 rank = 7
0 4 0 0

0 10
0
wl:u
0 10

Figure: Estimation results with noisy true coefficients
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Simulations Results

Computational cost

Computational cost (mins)
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Figure: Computational cost (mins)
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Simulations Results

Autocorrelation

Autocorrelation Function
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Figure: Autocorrelation before and after thining
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Simulation Results

Intercepts and Variance of MS

Estimated Means of Regimes Estimated Variances of Regimes

— Regime 1 — Regime 1
—— Regime 2 25 —— Regime 2

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Figure: Trace plots after removing the burn-in samples for regime specific intercepts (left) and variances
(right) for the S experimental setting. True values are iy = uz = 0,0 = 2,02 = 0.1.
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