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Motivation

Dissimilarity comparisons of sets of distributions.

Question: which of the two distribution matrices displays more dissimilarity
between its rows?

cl1 cl2 cl3( )gr1 0.6 0 0.4
A = gr2 0 0.25 0.75

gr3 6
16

2
16

8
16

and

cl1 cl2 cl3( )gr1 0.6 0.2 0.2
B = gr2 0.375 0.25 0.375

gr3 8
16

4
16

4
16

Focus on matrices representing relative frequencies distributions of groups across
classes in Md , like:

A =




a11 a12 . . . a1n

...
...

ad1 ad2 . . . adn


 with aij ∈ [0, 1] ∀i , j and

n∑

j=1

aij = 1 ∀i .
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Motivation

Proposal : underpin statistical tools that allows to rank B as better than A when
B is closer to a similarity matrix than B is.

Similarity matrix: =




a1, a2, · · · , ak

a1, a2, · · · , ak

...
...

. . .
...

a1, a2, · · · , ak




Gini 1914 defines two or more (say d) (relative) frequency distributions of the
same variate (taking on k values) to be similar if:

“for any modality [. . .] the absolute frequencies are proportional. If two
distributions are similar they can have different sizes but their syntheses
which are based on relative frequencies are equal”
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Motivation

Many potential applications:

I Segregation
(Duncan Duncan ASR55, Massey Denton SF88, Hutchens MSS91, Frankel Volij
JET2011)

I Discrimination
(Le Breton et al. JET2012, Gastwirth AS75, Jenkins JEmetrics94, Butler McDonald
JBES87)

I (Intergenerational) mobility analysis
(Shorrocks ECMA78, Tchen 1981, Markandya EER82, Dardanoni JET93)

I Inequality, uni- and multi-dimensional
(Marshal Olking Arnolds 2011, Koshevoy Mosler JASA96, Ebert Moyes ECMA2005)

I Distance analysis
(Ebert JET1984)

I Statistics/Linear algebra/Informativeness
(Ali Sivlerey RRSA61, Blackwell AMS53, Koshevoy Mosler JASA96, Torgersen 1992,
Dahl LAA99)
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Partial and complete orders

These phenomena are all related to dissimilarity comparisons of two or more distributions

One simple principle of evaluation consists in compressing the distributional information into
an evaluation function (which is an index number)

I This is conclusive: given two situations, they can always be ranked.
I This is not robust: if you challenge the evaluation function, you may obtain different

rankings.

Geometric tests have been proposed to reflect agreement in a class of evaluation functions.

I Geometric means that they can be empirically assessed via linear programming.

In the case of two groups, research has focused on comparisons (”lies always above or
below” tyeps of arguments) of curves, i.e. transformations of the data.

I Ex: Segregation curves, Discrimination curves, Concentration curves, Lorenz curves.
I These tests produce robust evaluations that reflect agreement in interesting classes of

evaluation functions.
I These tests might be inconclusive, since when two curves cross, nothing can be said on

the extent of agreement.

When there are many groups (more than two), robust partial orders implemented by
geometric tests become tricky. This is where indicators kick in.

I The extensions of the geometric tests, and their characterization, for the multigroup
case are in Andreoli Zoli (2014).

In dissimilarity analysis, we consider two situations where different empirical criteria apply:
the cases where classes are permutable and where they are exogenously ordered.
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Empirical cases

Phenomenon: Classes: Groups:
Non-order Order Cardinal Non-order Order

School segregation X X

Inequality X X

Earnings discrimination X X X

Mobility X X X

Objective : We will study partial orders of distribution matrices ranking B 4 A iff A
displays “at leas as much dissimilarity/segregation/discrimination/mobility as” B,
that are based on geometric comparisons of curves. These curves represent the
degree of dissimilarity among the distributions involved in the comparisons.
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Geometric criteria

Consider a distribution matrix A and the cumulation of its classes:

A =




0 0.6 0.4
0.25 0 0.75

X X X




Zonotope Z(A):

0

1

1
row1

row2

(1, 1)

Path Polytope Z∗(A):

1O

1

F1

F2

Francesco Andreoli () Statistical tools IT2015 7 / 18



Motivation Permutable classes Ordered classes Indices

Geometric criteria

Consider a distribution matrix A and the cumulation of its classes:

A =




0 0.6 0.4
0.25 0 0.75

X X X




Zonotope Z(A):

0

1

1
row1

row2

(1, 1)

Path Polytope Z∗(A):

1O

1

F1

F2

Francesco Andreoli () Statistical tools IT2015 7 / 18



Motivation Permutable classes Ordered classes Indices

Geometric criteria

Consider a distribution matrix A and the cumulation of its classes:

A =




0 0.6 0.4
0.25 0 0.75

X X X




Zonotope Z(A):

0

1

1
row1

row2

(1, 1)

Path Polytope Z∗(A):

1O

1

F1

F2

Francesco Andreoli () Statistical tools IT2015 7 / 18



Motivation Permutable classes Ordered classes Indices

Geometric criteria

Consider a distribution matrix A and the cumulation of its classes:

A =




0 0.6 0.4
0.25 0 0.75

X X X




Zonotope Z(A):

0

1

1
row1

row2

(1, 1)

Path Polytope Z∗(A):

1O

1

F1

F2

Francesco Andreoli () Statistical tools IT2015 7 / 18



Motivation Permutable classes Ordered classes Indices

Geometric criteria

Consider a distribution matrix A and the cumulation of its classes:

A =




0 0.6 0.4
0.25 0 0.75

X X X




Zonotope Z(A):

0

1

1
row1

row2

(1, 1)

Path Polytope Z∗(A):

1O

1

F1

F2

Francesco Andreoli () Statistical tools IT2015 7 / 18



Motivation Permutable classes Ordered classes Indices

Geometric criteria

Consider a distribution matrix A and the cumulation of its classes:

A =




0 0.6 0.4
0.25 0 0.75

X X X




Zonotope Z(A):

0

1

1
row1

row2

(1, 1)

Path Polytope Z∗(A):

1O

1

F1

F2

Francesco Andreoli () Statistical tools IT2015 7 / 18



Motivation Permutable classes Ordered classes Indices

Geometric criteria

Consider a distribution matrix A and the cumulation of its classes:

A =




0 0.6 0.4
0.25 0 0.75

X X X




Zonotope Z(A):

0

1

1
row1

row2

(1, 1)

Path Polytope Z∗(A):

1O

1

F1

F2

Francesco Andreoli () Statistical tools IT2015 7 / 18



Motivation Permutable classes Ordered classes Indices

The Zonotopes inclusion test (d = 2)
A suitable test for segregation comparisons, where matrices A and B may represent two
cities/school districts/labor markets, and classes are neighborhoods/schools/jobs.

I Segregation curves (Duncan Duncan ASR1955, Hutchens MSS1991) are the lower
bound of the Zonotope. Thei ordering is related related to segregation-reducing
movements of population: when some members of the group overrepresented in a class
move to a class where their group is underrepresented, segregation is reduced.

I Local segregation curves (Alonso-Villar, del Rio MSS2010) are segregation curves
contrasting the distriution of each group overall population.

Bivariate case: d = 2 groups and n = 3 classes

A′ :=




0.6 0 0.4
0 0.25 0.75
X X X




B′ :=




0.6 0.2 0.2
0.375 0.25 0.375

X X X




0

1

1
row1

row2

(1, 1)
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The Zonotopes inclusion test (d > 2)

Extend to the multi-group case the segregation curve analysis (characterized by
Andreoli and Zoli 2014)

Its bivariate projections induce orderings coherent with segregation curves, although
Zonotopes inclusion reflects the perspective of all projections.

Multi-group case: d = 3 groups and n = 3 classes

A :=




0.6 0 0.4
0 0.25 0.75
6

16
2

16
8

16




B :=




0.6 0.2 0.2
0.375 0.25 0.375

8
16

4
16

4
16




(0, 0, 0)

z0

z2

z1

(1, 1, 1)

1

1
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Motivation Permutable classes Ordered classes Indices

Inequality as dissimilarity

Every inequality comparison is a dissimilarity comparison, not the other way-round.

Income distributions: a = (1, 1, 4) and b = (1, 2, 3)

I b is obtained from a through a set of rich to poor transfers.

I vector b is obtained from a by a T-transform:

(1, 1, 4) · (T− transform) = (1, 2, 3)

where:

(T− transform) :=
2

3




1 0 0
0 1 0
0 0 1


 +

1

3




1 0 0
0 0 1
0 1 0



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Inequality as dissimilarity

T-transform are related to operations that reduce the overall dissimilarity between
income shares distributions and the population weight distribution.

Equivalently for dissimilarity matrices:
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Motivation Permutable classes Ordered classes Indices

Incoherence of the merge in the ordered case

Ordered case: cdfs are defined over exogenously ordered classes:

A′ =




cdf of group 1
cdf of group 2
cdf of group 3


 =




0 0.6 0.4
0.25 0 0.75

X X X


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ya cb
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Motivation Permutable classes Ordered classes Indices

Dissimilarity reducing transfers for ordered classes

Axiom (The exchange operation (Tchen AP1980, Van de gaer et al Ecmica2001):)

Every transfer of population masses (ε) across adjacent classes that is progressive for the
dominating group and regressive for the dominated group reduces dissimilarity.

A′ =




0 0.25 0 0.75
0.25 0 0.35 0.40

X X X X


 with

−→
A′ =




0 0.25 0.25 1
0.25 0.25 0.6 1

X X X X




IL IMIL IM1 IHIM2 IL IMIL IM1 IHIM2

1

.2

.4

.6

.8

IM IHIL
0
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Motivation Permutable classes Ordered classes Indices

Exchange operations and the Path Polytope

The Path Pilytope inclusion order detects the existence of exchanges, as below:

(i) consider the p% ∈ [0%, 100%] of the overall population

(ii) construct the unique configuration of groups covering the first p% of the overall
population, resulting from the unique sequence of classes

(iii) The configuration in A Lorenz dominates the configuration in B for every p%.

I1 I2 I3 I4 I5 I6
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0.2

F1 F2

1O
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Exchange operations and the Path Polytope

The Path Pilytope inclusion order detects the existence of exchanges, as below:
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(ii) construct the unique configuration of groups covering the first p% of the overall
population, resulting from the unique sequence of classes
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Discrimination comparisons with many distributions.

Have do do with reductions in dispersion across distributions at every population
proportion.

1

O
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Ooutcome outcome

Configuration A Configuration B

A defined on classes c1, c2, c3,. . .

B defined on classes c1, c4, c6, c7, c3,. . .

A∗ and B∗ defined on all classes, after interchanging groups.
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Path Polytopes in the literature

The concentration curves for d = 2 (Butler McDonald JBES1987) correspond to the
arrangement of the ordered segments (corresponding to exogenously ordered classes)

When one of the two groups (say 2) stochastic dominates the other (say 1), i.e.

k∑

j=1

a1j ≥
k∑

j=1

a2j ∀k = 1, . . . , n

then the concentration curve delimits a discrimination curve (LeBreton at al JET2011)

When group 2 coincides in A and B and group 2 sotchastic dominates group 1, dominance
in discrimination curves can be related to dominance for all Gastwirth measures of
discrimination.

The test of the orthant (Dardanoni JET1993, Tchen AP1980) is a robust tests for
assessing changes in mobility.

I Perfect mobility is achieved when the group of departure (income of the father) is not
informative of the class of destination (income of the children) (see Stiglitz 2012).

I The test applies to monotone matrices (groups are ordered by stochastic dominance).
I The test has normative content when mobility matrices have fixed margins (exchange

mobility).
I In this specific context, the test is implemented by the sequential Lorenz comparisons

defined above.
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Indices coherent with Zonotope inclusion

Define the following family of dissimilarity indicators

Dh(A) :=
1

d

nA∑

j=1

aj · h (a1j/aj , . . . , adj/aj ) .

with h convex. It is a model for segregation indices.
I Dissimilarity index (Duncan Duncan ASR1955)

D(A) :=
1

2

nA∑

j=1

∣∣a1j − a2j

∣∣

I Atkinson and Mutual information indices (Frankel Volji JET2010):

Aω(A) := 1−
nA∑

j=1

∏d

i=1

(
aij

)ωi

M(A) := log2(d)−
nA∑

j=1

(
aj

d

) d∑

i=1

aij

aj
· log2

(
aj

aij

)
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Motivation Permutable classes Ordered classes Indices

Indices coherent with Zonotope inclusion

The Gini inequality index is “half the area between the diagonal and the Lorenz
curve”, i.e. the area of a Zonotope when d = 2.

The Lorenz Zonotope (Koshevoy Mosler JASA1996) extend univariate inequality
analysis to the multidimensional level.

It is a Zonotope in the d + 1 space: d attributes distributions and 1 demographic
weights distribution.

The Lorenz Zonotope volume (like any Zonotope volume) defines the Multivariate
Gini Index.
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