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2.1 Validation set 
 
We may be interested in decomposing inequality by sources or by groups. An example of this the 
estimation of inequality of opportunity. In its simplest version this estimation consists in the 
measurement of inequality in the predicted values obtained by a linear regression. The dependent 
variable is typically income and the independent variables are circumstances beyond individual control 
such as area of birth or socioeconomic background.  
 
In the 1993 Italian dataset we have, together with income, a number of exogenous determinants of 
income: father and mother education, father and mother occupation and area of birth.  So inequality of 
opportunity estimate can be obtained as: 
 
data<-read.dta("[your directory]Brunori_IT93.dta") 
 
# inequality of opportunity 
mod<-lm(y~m_edu+f_edu+f_occ+m_occ+birth_area, data=data) 
summary(mod) 
yhat<-predict(mod, data=data) 
IOp<-ineq(yhat,0, type="entropy")/ineq(data$y,0, type="entropy") 
IOp 
 
Now, in the dataset we have two possible ways of coding the variable “area of birth”: 20 regions and 5 
macro-area, what happens if we use the latter? 
 
# alternative model 
 
mod.area<-lm(y~m_edu+f_edu+f_occ+m_occ+birth_area2, data=data) 
summary(mod.area) 
yhat.area<-predict(mod.area, data=data) 
IOp.area<-mean(log(mean(yhat.area)/yhat.area)) 
IOp.area 
 
As expected we get a different result. Which one is to be preferred? A possible criterion to decide is to 
compare the accuracy of the two models using a validation set. We choose the model that minimizes 
the mean squared error when the models is used to predict the dependent variable out-of-sample. To do 
so the original sample is divided in two subsamples: a training sample and a test sample. The two 
models are estimated on the training sample. The parameters of both models are stored and used to 
predict the dependent variable in the test sample. The mean squared error (MSE) in the test sample is 
an unbiased estimate of the MSE out-of-sample (see Gareth et al. (2013) Chapter 5 for an introduction 
to model validation.)  
 
We are going to implement it in R. 
 
 
 
 
 
 
 
 



set.seed(1) 
 
tr<-sample(nrow(data), nrow(data)/2) 
te<-(1:nrow(data))[-tr] 
 
train<-data[tr,] 
test<-data[te,] 
 
mod<-lm(y~m_edu+f_edu+f_occ+m_occ+birth_area,  data=train) 
MSE_region<-mean((test$y-predict(mod, data=test))^2) 
 
mod.area<-lm(y~m_edu+f_edu+f_occ+m_occ+birth_area2, data=train) 
MSE_area<-mean((test$y-predict(mod.area, subset=test))^2) 
 
if (MSE_region<MSE_area){ 
 print("chose region") 
 } else { 
 print("go for macro-area") 
} 
 
MSE_area/MSE_region 
 
 
2.2 Cross validation 
 

One of the weaknesses of the validation-set approach is that its results can be sensitive to the random 
assignment of observations to the test or training sample. Moreover, only half of the observation are 
used to estimate the model. This can induce an overestimation of the out-of-sample MSE, penalizing 
models with more regressors in favour of more parsimonious models.  
A more popular approach to estimate out-of-sample MSE is cross validation. k-fold cross validation is 
based on partition of the original data on a number of non-overlapping subsamples (generally k ranges 
between 2 and 10). The algorithm produces k estimates of the MSE for each model. Each estimate is 
obtained removing the k-th fold (the test sample), estimating the model on all the remaining 
observations, and then predicting the dependent variable on the test sample. Out of sample MSE is 
estimated averaging the k MSE estimates. The package “boot” contains a function to implement k-fold 
cross validation for GLM models (which is equivalent to an OLS when the option “family” is not 
specified).  
 
Setting k equal to the number of observation we get the so called “Leave-One-Out Cross-Validation” 
(LOOCV).  
 
library(boot) 
 
glm.fit=glm(y~m_edu+f_edu+f_occ+m_occ+birth_area,data=data) 
MSE_region <-cv.glm(data, glm.fit)$delta[1] 
glm.fit.area=glm(y~m_edu+f_edu+f_occ+m_occ+birth_area2,data=data) 
MSE_area <-cv.glm(data, glm.fit.area)$delta[1] 
 
MSE_area/MSE_region 



Setting k=n may be computationally infeasible. Moreover, LOOCV tends 
to underestimate the MSE because the observation used in the test 
sample are almost identical each time.  
 
# K-fold Cross-Validation 
 
k<-10 
set.seed(111) 
glm.fit=glm(y~m_edu+f_edu+f_occ+m_occ+birth_area,data=data) 
MSE_region <-cv.glm(data,glm.fit,K=k)$delta[1] 
 
glm.fit.area=glm(y~m_edu+f_edu+f_occ+m_occ+birth_area2,data=data) 
MSE_area <-cv.glm(data,glm.fit.area,K=k)$delta[1] 
 
MSE_area/MSE_region 
 
 
# try with k=3, k=5 and k=10 
 
 
2.3 Best subset selection 
 
The number of models that one can specify explodes with the number of potential regressors and 
number of possible way of coding the same variable. Statistical learning algorithms provide ways to 
search for the best possible model without having to cross-validate all possible models. We consider 
here one example for linear models called best subset selection. There are many alternatives to this 
approach you can read though Garet et al. (2013) to understand whether one or more machine learning 
algorithm can solve your problem.  
 
Best subset selection is nothing else than a trick to reduce the number of models for which one has to 
calculate K times the MSE. Assume we have p potential regressors and we restrict our analysis to linear 
models (no interactions).  To cross validate all possible models means to estimate 𝐾×2$ MSE. For 10 
folds and 10 regressors the number of MSE to be estimated is above 10,000. This number is reduced to 
1,100 if one follows the best subset selection algorithm: 
 

1. For all 𝑗 = 1, … , 𝑝: 
2. Fit all 

𝑝
𝑗  models that contains exactly j predictors 

3. Call the model with highest 𝑅, the “j-th best” model 
4. Select by cross validation the model that minimizes MSE among “best” models 
 
The trick works because for given number of regressors the 𝑅2 is a good criterion to judge out-of-
sample MSE.  
 
We are going to best subset selection with R.  
The package “leaps”  
 
# model selection  
 



data=na.omit(data) 
 
library(leaps) 
 
regfit.full=regsubsets(y~m_edu+f_edu+f_occ+m_occ+birth_area2,data=dat
a, nvmax=NULL) 
 
summary(regfit.full) 
 
We get a matrix showing which variables are chosen for each number of variables. The object 
obtained has a number of post estimation diagnostic tools. We can plot  𝑅2 against number of 
variables getting the well known monotonic trend.  
 
plot(summary(regfit.full)$rsq) 
 
 

 
 
 
 
We want to cross validates all 23 models to choose the most appropriate. We do it following the 
validation set approach (k-fold cross validation may be preferable here).  
 
We need a function to predict in the test set all models chosen by the regsubset function.  Likely 
some user (John St. John) wrote a function for us that seems to work perfectly for us: 
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predict.regsubsets = function(object, newdata, id, ...) { 
        form  <-  as.formula(~.) 
        mat  <-  model.matrix(form, newdata) 
        coefi  <-  coef(object, id) 
        xvars  <-  names(coefi) 
        mat[, xvars] %*% coefi 
} 
 
 
Where the code first transforms categorical variables into dummy (“model.matrix”) and then 
extracts the name of the variables used in each model to predict the outcome.  
 
 
We then select the model with minimum MSE in the test set.  
 
# validation 
 
nmds<-length(summary(regfit.full)$rsq) 
MSE<-rep(0,nmds) 
 
regfit.full=regsubsets(y~m_edu+f_edu+f_occ+m_occ+birth_area2,data=tra
in, nvmax=NULL) 
 
for (i in 1:nmds) { 
  MSE[i]<- sum(test$y - predict.regsubsets(regfit.full, test,i))^2 
} 
 
best<-which.min(MSE) 
 
summary(regfit.full)$which[best,][summary(regfit.full)$which[best,]==
TRUE] 
 
 


