Earnings inequality: Trends, explanations, implications

Cecilia García Peñalosa

Aix-Marseille School of Economics

Winter School on Inequality and Social Welfare Canazei, January 8-11, 2018

Median real wages by education: US, males

Source: Blundell, Norris-Keiler and Ziliak (2017)

Earnings change by education: US, 1976-2014

Source: Blundell, Norris-Keiler and Ziliak (2017)

Earnings inequality: D9/D1 ratio

Source: OECD

Earnings inequality: D9/D1 ratio

Earnings p190/p10

Source: OECD

Plan of the talk

- Causes of earnings dispersion
 - Skill-biased technical change
 - Cyclical variations
- Consequences of earnings dispersion
 - Unusual shocks
 - Gender gaps
- Earnings and inequality in hours of work

Biased technical change?

The supply of skills

The skill premium

Biased technical change?

- Standard theory: biased technical change complements certain skill groups (factor-augmenting)
- Cannot explain certain patterns:
 - 1. Low skill workers have experienced a decline in real earnings
 - 2. The skill-premium has increased monotonically, yet there have been non-monotone changes in earnings across the distribution (polarization)
 - 3. Non-monotone shift in the composition of employment across occupations

The evolution of real hourly earning: US

Dynamics at the top and the bottom: US

Employment polarization: US

Tasks vs biased technical change

- Think not only of skill levels but also of tasks
- Single good produced by a continuum of tasks
- Three skill levels (L, M and H) and comparative advantage in the various tasks
- Labour market equilibrium: two task-thresholds
- Technological change: change the productivity of a skill group in all tasks or in a particular task
- In a task-based model technological change can reduce the wages of certain categories of workers

Cyclical variations

Cyclical variations

Bonhomme and Hospido (2017)

- Spain 1990-2010, male earnings
- Earnings inequality strongly countercyclical
- Wage sensitivity to the cycle has been strongest in the middle of the earnings distribution

Earnings inequality and unemployment: Spain, males

Decomposing inequality changes: 1996-2006

Notes: Source Social Security data. Black bars denote composition effects, dark gray bars denote betweengroup price effects, and light gray bars denote within-group price effects.

Decomposing inequality changes: 2007-2010

Notes: Source Social Security data. Black bars denote composition effects, dark gray bars denote between-group price effects, and light gray bars denote within-group price effects.

Arellano, Blundell and Bonhomme (2017)

- Consider alternative ways of modelling earnings persistence at the individual level
- Key element: impact of past shocks on current earnings can be altered by the size and sign of new shocks

Standard model

$$y_{it} = Z'_{it} \varphi + \eta_{it} + \varepsilon_{it}$$
$$\eta_{it} = \rho \eta_{it-1} + v_{it}$$

- Problem : administrative data has revealed alternative patterns
- Non-linear persistence
- Role for unusual shocks: an unusual bad shock to those on high income can wipe out income history
- Develop a quantile-based analysis

Non-linear persistence in PSID: US, household earnings

Model

$$y_{it} = Z'_{it} \varphi + \eta_{it} + \varepsilon_{it}$$

and a conditional quantile model where the persistence depends on the sign and size of the shock as well as on the past shock

$$\eta_{it} = Q_t(\eta_{it-1}, u_{it})$$

which replaces

$$\eta_{it} = \rho \eta_{it-1} + v_{it}$$

Much better fit of the data

Canonical model

Non-linear model

Mulligan and Rubinstein (2008)

- Implications of increasing wage inequality for the gender earnings gap
- Growing wage inequality within gender should cause women to invest more in their market productivity and should differentially pull able women into the workforce.
- US data (CPS) for the 1970s and 1990s

Wage process

$$w_{it} = \mu_t^w + g_i \gamma_t + \sigma_t^w \varepsilon_{it}^w,$$

Change in the wage gap is given by

$$\Delta G_t = \Delta \gamma_t + b_{t-1} \Delta \sigma_t^w + \sigma_t^w \Delta b_t.$$

- Three terms:
 - change in gender specific component
 - change in variance of the returns to skills
 - change in selection bias due to women's change in behaviour
- Paper uses Heckman's two-step estimator

TABLE I

CORRECTING THE GENDER WAGE GAP USING THE HECKMAN TWO-STEP ESTIMATOR

	Method		
Period	OLS	Two-Step	Bias
	Panel A: Vari	able Weights	
1975–1979	-0.414	-0.337	-0.077
	(0.003)	(0.014)	(0.015)
1995–1999	-0.254	-0.339	0.085
	(0.003)	(0.014)	(0.015)
Change	0.160	-0.002	0.162
	(0.005)	(0.020)	(0.021)
	Panel B: Fix	xed Weights	
1975–1979	-0.404	-0.330	-0.075
	(0.003)	(0.014)	(0.014)
1995–1999	-0.264	-0.353	0.089
	(0.004)	(0.015)	(0.016)
Change	0.140	-0.024	0.164
	(0.005)	(0.021)	(0.021)

- Selection into the female workforce shifted
 - negative in the 1970s
 - positive in the 1990s
- Majority of the apparent narrowing of the gender wage gap reflects changes in female workforce composition
- Findings explain why greater earnings *equality* between genders coincided with growing inequality within gender

Fortin, Bell and Böhm (2017)

- What is the effect of increasing earnings inequality at the top of the distribution for the wage gap
- Administrative annual earnings data from Canada,
 Sweden, and the United Kingdom
- Applies the approach used in the analysis of earnings inequality in top incomes to the analysis of the gender pay gap.

Female presence by centile of the annual earnings distribution: Canada

Female presence

Female/male earning ratios by centile of the annual earnings distribution: Canada

- For close to 95% of women the gender earnings ratio is substantially more favourable than the overall ratio
- Women in the next 9% and next 0.9% face even more favourable gender ratio in the upper nineties.
- Glass ceiling effects seem to be increasing only for women in the top 0.1%.
- Increasing inequality in top incomes and the underrepresentation of women among top earners contributes to slower progress in the gender pay ratio.

Hours inequality

Hours worked and earnings inequality

Average hours worked

Source: Alesina et al., 2006

Hours worked and earnings inequality

• Some work claiming that higher wage inequality induces higher average hours

Bell and Freeman 2001, Bowles and Park 2005

- But what about the distribution of hours?
- Recent work joint with Daniele Checchi and Lara Vivian
- Are there differences in the distribution of hours?
 - How do they contribute to earnings inequality?
 - Can we say something about their causes?

Decomposing earnings inequality

Mean Log Deviation (MLD)

Absolute Contributions

$$\underbrace{\frac{1}{N}\sum_{i=1}^{N}ln(\frac{\bar{y}}{y_i})}_{I_y} = \underbrace{\frac{1}{N}\sum_{i=1}^{N}ln(\frac{\bar{w}}{w_i})}_{I_w} + \underbrace{\frac{1}{N}\sum_{i=1}^{N}ln(\frac{\bar{h}}{h_i})}_{I_h} + \underbrace{log(\frac{cov}{\bar{w}\bar{h}} + 1)}_{\rho}$$

Relative Contributions

$$1 = \underbrace{\frac{I_w}{I_y}}_{RC_w} + \underbrace{\frac{I_h}{I_y}}_{RC_h} + \underbrace{\frac{\rho}{I_y}}_{RC_\rho}$$

The data

4 countries over the period 1990-2012

- US Current Population Survey
- UK British Household Panel + Understanding Society
- Germany German Socio-Economic Panel
- France Labour Force Survey

Main variables

- Gross weekly earnings in the main current job
- Weekly usual hours worked in the main current job including overtime (between 2 and 90 hours)
- Hourly wage for the representative week considered
- Prime-aged workers (25<age<55, no self-employed)</p>

The distribution of hours of work 2007-12

□US□UK□DE□FR

Time trends: inequality in hours worked

Contribution to changes in inequality

Country	year	ly	lw	lh	corr
US	1995	0.225	0.165	0.039	0.021
	2012	0.247	0.183	0.037	0.027
	$\Delta\%$	9.78			
	δ		0.81	-0.09	0.27
UK	1995	0.260	0.136	0.091	0.033
	2012	0.248	0.147	0.073	0.028
	$\Delta\%$	-4.61			
	δ		0.91	-1.5	-0.42
DE	1995	0.147	0.103	0.060	-0.016
	2012	0.229	0.122	0.077	0.030
	$\Delta\%$	55.78			
	δ		0.23	0.21	0.56
FR	1995	0.133	0.101	0.040	-0.008
	2012	0.137	0.086	0.042	0.010
	$\Delta\%$	3			
	δ		-3.75	0.5	4.5

Contribution to changes in inequality

Country	year	ly	lw	lh	corr
US	1995	0.225	0.165	0.039	0.021
	2012	0.247	0.183	0.037	0.027
	$\Delta\%$	9.78			
	δ		0.81	-0.09	0.27
UK	1995	0.260	0.136	0.091	0.033
	2012	0.248	0.147	0.073	0.028
	$\Delta\%$	-4.61			
	δ		0.91	-1.5	-0.42
DE	1995	0.147	0.103	0.060	-0.016
	2012	0.229	0.122	0.077	0.030
	$\Delta\%$	55.78			
	δ		0.23	0.21	0.56
FR	1995	0.133	0.101	0.040	-0.008
	2012	0.137	0.086	0.042	0.010
	$\Delta\%$	3			
	δ	(-3.75	0.5	4.5

Relative contribution to changes in inequality

Relative contribution to changes in inequality

Average hours by quintile of the wage distribution

Correlation and elasticity of hours w.r.t. wages

Change in hours worked: Decomposition by skill and gender

Elasticity of hours w.r.t. wages: Selected occupations

-US-UK-DE-FR

Conclusions of the paper

- Hours inequality contributes up to 50% of total dispersion
- Importance of change in the hours-wage correlation In some countries, it has moved from having an equalizing effect to having an unequalising one
- Need to understand what determines hours worked
 - Are a low hours chosen?
 - Are they a characteristic of certain jobs?
- Caveat are low hours always bad for equality?
 German case

Conclusions of the lecture

- Earnings inequality surprisingly non-monotonic
 - Very different story if we look at the skill premium or annual earnings
- Secular trends that need to be explained
 - still need for new theories (task?)
- Better data allows us to look at short-term effects
 - raised questions about the cyclicality of earnings dispersion
 - What are the implications of this cyclicality?

Conclusions of the lecture

- What are the implications of is this cyclicality?
 - unusual shocks can have long-term impacts
- Growing earnings dispersion has had consequences for the gender ratio
 - changed the sign of the employment bias reducing the gender gap
 - but increased this gap for top incomes
- Hours inequality contributes considerably to earnings dispersion
 - need to understand its dynamics

Additional tables and figures

Time trends: average hours worked

Average Hours Worked

Contribution to changes in earnings inequality

What about zero hours?

Gini coefficient of earnings	Employed	Entire population	
France			
2000	0.131	0.551	
2012	0.137	0.533	
Germany			
2000	0.185	0.474	
2012	0.229	0.469	

Unions and inequality

