Fundamentals of Mobility Measurement

Frank Cowell

London School of Economics

Canazei Winter School, January 2025

Outline

Background

Basics

Methods

General considerations

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition

Discussion and summary

Outline

Background

Basics

Methods

General considerations

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition

Discussion and summary

Why a concern for mobility?

- desirable objective for social and economic policy?
- a policy tool?
- part of the discussion of equality of opportunity?

Why a concern for mobility?

- desirable objective for social and economic policy?
- a policy tool?
- part of the discussion of equality of opportunity?

Why an interest in measurement?

- improving data on intra- and inter-generational mobility
- convincing evidence needs appropriate measurement tools
- What is known about mobility?

Why a concern for mobility?

- desirable objective for social and economic policy?
- a policy tool?
- part of the discussion of equality of opportunity?

Why an interest in measurement?

- improving data on intra- and inter-generational mobility
- convincing evidence needs appropriate measurement tools
- What is known about mobility?

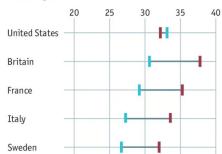
What do people know about mobility?

- do they value mobility?
- do they know it when they see it?

Perceptions and reality

Actual and perceived social mobility of children, 2016

Probability of remaining in the bottom quintile of earnings, %



Source: Alesina et al. (2018)

Actual

■ Perceived*

- Variety of interpretation: (Fields and Ok 1999a; Jäntti and Jenkins 2015)
 - income or wealth mobility
 - wage mobility
 - educational, social status mobility

- Variety of interpretation: (Fields and Ok 1999a; Jäntti and Jenkins 2015)
 - income or wealth mobility
 - wage mobility
 - educational, social status mobility
- Variety of temporal context:
 - 1. inter / intra-generational
 - 2. long term / volatility

- Variety of interpretation: (Fields and Ok 1999a; Jäntti and Jenkins 2015)
 - income or wealth mobility
 - wage mobility
 - · educational, social status mobility
- Variety of temporal context:
 - 1. inter / intra-generational
 - 2. long term / volatility
- Variety of analytical context:
 - in relation to a specific dynamic model
 - in relation to social-welfare issues
 - as an abstract distributional concept

Outline

Background

Rasic

Methods

General considerations

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition

Discussion and summary

The approach

- Appropriate tools?
 - what makes a measure "suitable"?
 - base on simple principles concerning mobility
 - several commonly-used techniques do not conform well

The approach

- Appropriate tools?
 - what makes a measure "suitable"?
 - base on simple principles concerning mobility
 - several commonly-used techniques do not conform well
- An abstract distributional concept
 - independent of value systems
 - application separated from principles
 - subject to practical limitations

The approach

- Appropriate tools?
 - what makes a measure "suitable"?
 - base on simple principles concerning mobility
 - several commonly-used techniques do not conform well
- An abstract distributional concept
 - independent of value systems
 - application separated from principles
 - subject to practical limitations
- This presentation
 - develops ideas in Cowell and Flachaire (2017, 2018)
 - shows how to give meaning of mobility comparisons

000000

Fundamentals

Fundamentals

Deal with mobility in the abstract

- covers income or wealth mobility
- also "rank" mobility where underlying data are categorical
- separates components of measurement problem

Fundamentals

Deal with mobility in the abstract

- covers income or wealth mobility
- also "rank" mobility where underlying data are categorical
- separates components of measurement problem

Ingredients for a theory of mobility measurement:

- 1. a time frame
- 2. measure of individual status within society
- 3. aggregation of changes in status over the time frame

Fundamentals

Deal with mobility in the abstract

- covers income or wealth mobility
- also "rank" mobility where underlying data are categorical
- separates components of measurement problem

Ingredients for a theory of mobility measurement:

- 1. a time frame
- 2. measure of individual status within society
- 3. aggregation of changes in status over the time frame

Ingredient 1:

- Assume discrete time
- Focus on two periods: now (0) and the future (1)

Steps

- Separate the ingredients of problem
 - 1. time frame (two periods)
 - 2. status
 - 3. aggregation method

Steps

- Separate the ingredients of problem
 - 1. time frame (two periods)
 - 2. status
 - 3. aggregation method
- Set out general principles
 - essential
 - desirable
 - check standard mobility measures against these

Steps

- Separate the ingredients of problem
 - 1. time frame (two periods)
 - 2. status
 - 3. aggregation method
- Set out general principles
 - essential
 - desirable
 - check standard mobility measures against these
- Characterise an ordering
 - formulate principles as axioms
 - develop characterisation results

Outline

Background

Rasics

Methods

General consideration

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition

Discussion and summary

First step in an approach to "status":

- define a finite set of K classes
- $n_k \ge 0$: # in class k, k = 1, 2, ..., K
- exclusive and exhaustive
- $\sum_{k=1}^{K} n_k = n$, the size of the population

First step in an approach to "status":

- define a finite set of K classes
- $n_k \ge 0$: # in class k, k = 1, 2, ..., K
- exclusive and exhaustive
- $\sum_{k=1}^{K} n_k = n$, the size of the population

Focus on special case: ordered set of *K* classes

First step in an approach to "status":

- define a finite set of K classes
- $n_k \ge 0$: # in class k, k = 1, 2, ..., K
- exclusive and exhaustive
- $\sum_{k=1}^{K} n_k = n$, the size of the population

Focus on special case: ordered set of *K* classes

- class k associated with attribute level x_k $(x_k < x_{k+1}, k = 1, 2, ..., K-1)$
- cardinality of x is convenient but not crucial

First step in an approach to "status":

- define a finite set of K classes
- $n_k \ge 0$: # in class k, k = 1, 2, ..., K
- exclusive and exhaustive
- $\sum_{k=1}^{K} n_k = n$, the size of the population

Focus on special case: ordered set of *K* classes

- class k associated with attribute level x_k $(x_k < x_{k+1}, k = 1, 2, ..., K 1)$
- cardinality of x is convenient but not crucial

 $k_0(i), k_1(i)$: class occupied by person i at times t^0 and t^1

First step in an approach to "status":

- define a finite set of K classes
- $n_k \ge 0$: # in class k, k = 1, 2, ..., K
- exclusive and exhaustive
- $\sum_{k=1}^{K} n_k = n$, the size of the population

Focus on special case: ordered set of *K* classes

- class k associated with attribute level x_k $(x_k < x_{k+1}, k = 1, 2, ..., K 1)$
- cardinality of x is convenient but not crucial

 $k_0(i), k_1(i)$: class occupied by person i at times t^0 and t^1

• mobility given by $(x_{k_0(1)},...,x_{k_0(n)})$ and $(x_{k_1(1)},...,x_{k_1(n)})$

How to use the attribute movements to compute mobility?

- cardinal attribute: just aggregate the xs?
- don't have to use natural cardinalisation to value the xs
- could use a simple transformation to "revalue" the x s

How to use the attribute movements to compute mobility?

- cardinal attribute: just aggregate the xs?
- don't have to use natural cardinalisation to value the xs
- could use a simple transformation to "revalue" the x s

Alternative: use the *distribution* to revalue the income classes

How to use the attribute movements to compute mobility?

- cardinal attribute: just aggregate the xs?
- don't have to use natural cardinalisation to value the xs
- could use a simple transformation to "revalue" the x s

Alternative: use the *distribution* to revalue the income classes

- for example use $N_0(x_k) := \sum_{h=1}^k n_{0h}, k = 1,...,K$
- number in or below class k using distribution at t_0

How to use the attribute movements to compute mobility?

- cardinal attribute: just aggregate the xs?
- don't have to use natural cardinalisation to value the xs
- could use a simple transformation to "revalue" the x s

Alternative: use the distribution to revalue the income classes

- for example use $N_0(x_k) := \sum_{h=1}^k n_{0h}, k = 1,...,K$
- number in or below class k using distribution at t_0

Suppose sizes $(n_{01},...,n_{0K})$ at t_0 change to $(n_{11},...,n_{1K})$ at t_1

How to use the attribute movements to compute mobility?

- cardinal attribute: just aggregate the xs?
- don't have to use natural cardinalisation to value the xs
- could use a simple transformation to "revalue" the x s

Alternative: use the *distribution* to revalue the income classes

- for example use $N_0(x_k) := \sum_{h=1}^k n_{0h}, k = 1, ..., K$
- number in or below class k using distribution at t_0

Suppose sizes $(n_{01},...,n_{0K})$ at t_0 change to $(n_{11},...,n_{1K})$ at t_1

• Revaluing the income classes: $N_1(x_k) := \sum_{h=1}^k n_{1h}, k = 1,...,K$

Status: information

Individual *i*'s personal history: $z_i := (u_i, v_i)$

- u_i : status in the 0-distribution
- v_i : status in the 1-distribution

Individual *i*'s personal history: $z_i := (u_i, v_i)$

- u_i : status in the 0-distribution
- v_i : status in the 1-distribution

Distribution-independent

Individual *i*'s personal history: $z_i := (u_i, v_i)$

- u_i : status in the 0-distribution
- v_i : status in the 1-distribution

Distribution-independent

• *static* (1). $z_i = (x_{k_0(i)}, x_{k_1(i)})$

Individual *i*'s personal history: $z_i := (u_i, v_i)$

- u_i : status in the 0-distribution
- v_i : status in the 1-distribution

Distribution-independent

- *static* (1). $z_i = (x_{k_0(i)}, x_{k_1(i)})$
- static (2). $z_i = \left(\varphi \left(x_{k_0(i)} \right), \varphi \left(x_{k_1(i)} \right) \right)$
 - φ could be arbitrary (utility of x?)
 - perhaps take as log?

Individual *i*'s personal history: $z_i := (u_i, v_i)$

- u_i : status in the 0-distribution
- v_i : status in the 1-distribution

Distribution-independent

- *static* (1). $z_i = (x_{k_0(i)}, x_{k_1(i)})$
- static (2). $z_i = \left(\varphi \left(x_{k_0(i)} \right), \varphi \left(x_{k_1(i)} \right) \right)$
 - φ could be arbitrary (utility of x?)
 - perhaps take as log?

Distribution-dependent

Individual *i*'s personal history: $z_i := (u_i, v_i)$

- u_i : status in the 0-distribution
- v_i : status in the 1-distribution

Distribution-independent

- *static* (1). $z_i = (x_{k_0(i)}, x_{k_1(i)})$
- static (2). $z_i = \left(\varphi \left(x_{k_0(i)} \right), \varphi \left(x_{k_1(i)} \right) \right)$
 - φ could be arbitrary (utility of x?)
 - perhaps take as log?

Distribution-dependent

- *static*. $z_i = (N_0(x_{k_0(i)}), N_0(x_{k_1(i)}))$
 - cumulative numbers in class "value" the class

Individual *i*'s personal history: $z_i := (u_i, v_i)$

- u_i : status in the 0-distribution
- v_i : status in the 1-distribution

Distribution-independent

- *static* (1). $z_i = (x_{k_0(i)}, x_{k_1(i)})$
- static (2). $z_i = \left(\varphi \left(x_{k_0(i)} \right), \varphi \left(x_{k_1(i)} \right) \right)$
 - φ could be arbitrary (utility of x?)
 - · perhaps take as log?

Distribution-dependent

- *static*. $z_i = (N_0(x_{k_0(i)}), N_0(x_{k_1(i)}))$
 - cumulative numbers in class "value" the class
- *dynamic*. $z_i = (N_0(x_{k_0(i)}), N_1(x_{k_1(i)}))$

Consider the following example:

Consider the following example:

	t_0	t_1	t_2	<i>t</i> ₃
χ_5	_	_	_	_
χ_4	_	C	C	C
x_3	C	В	В	A
x_2	В	_	A	В
x_1	A	A	_	_

Consider the following example:

	t_0	t_1	t_2	<i>t</i> ₃
<i>x</i> ₅	_	_	_	_
x_4	_	C	C	C
<i>x</i> ₃	C	В	В	A
x_2	В	_	A	В
x_1	A	A	_	_

• $0 \rightarrow 1$: growth and inequality increase

Consider the following example:

	t_0	t_1	t_2	<i>t</i> ₃
<i>x</i> ₅	_	_	_	_
x_4	_	C	C	C
<i>x</i> ₃	C	В	В	A
x_2	В	_	A	В
x_1	A	A	_	_

- $0 \rightarrow 1$: growth and inequality increase
- $1 \rightarrow 2$: growth and inequality decrease

Consider the following example:

	t_0	t_1	t_2	<i>t</i> ₃
<i>x</i> ₅	_	_	_	_
χ_4	_	C	C	C
x_3	C	В	В	A
x_2	В	_	A	В
x_1	A	A	_	_

- $0 \rightarrow 1$: growth and inequality increase
- $1 \rightarrow 2$: growth and inequality decrease
- $2 \rightarrow 3$: pure reranking

Consider the following example:

	t_0	t_1	t_2	<i>t</i> ₃
<i>x</i> ₅	_	_	_	_
x_4	_	C	C	C
<i>x</i> ₃	C	В	В	A
x_2	В	_	A	В
x_1	A	A	_	_

- $0 \rightarrow 1$: growth and inequality increase
- $1 \rightarrow 2$: growth and inequality decrease
- $2 \rightarrow 3$: pure reranking

Different status definitions produce different evaluations

Consider the following example:

	t_0	t_1	t_2	<i>t</i> ₃
<i>x</i> ₅	_	_	_	_
χ_4	_	C	C	C
<i>x</i> ₃	C	В	В	A
x_2	В	_	A	В
x_1	A	A	_	_

- $0 \rightarrow 1$: growth and inequality increase
- $1 \rightarrow 2$: growth and inequality decrease
- $2 \rightarrow 3$: pure reranking

Outline

Background

Rasic

Methods

General considerations

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition

Discussion and summary

- Many empirical studies use off-the-shelf tools
 - let income be y
 - status is $x = \log(y)$
 - history of person (dynasty) i: (x_{0i}, x_{1i})

- Many empirical studies use off-the-shelf tools
 - let income be y
 - status is $x = \log(y)$
 - history of person (dynasty) *i*: (x_{0i}, x_{1i})
- Two widely used "statistical" methods:

- Many empirical studies use off-the-shelf tools
 - let income be y
 - status is $x = \log(y)$
 - history of person (dynasty) i: (x_{0i}, x_{1i})
- Two widely used "statistical" methods:
- 1. elasticity coefficient
 - linear regression of status-1 on status-0
 - $x_{1i} = \alpha + \beta x_{0i} + \varepsilon_i$
 - $1 \hat{\beta}$ as a measure of mobility?

- Many empirical studies use off-the-shelf tools
 - let income be y
 - status is $x = \log(y)$
 - history of person (dynasty) i: (x_{0i}, x_{1i})
- Two widely used "statistical" methods:
- elasticity coefficient
 - linear regression of status-1 on status-0
 - $x_{1i} = \alpha + \beta x_{0i} + \varepsilon_i$
 - $1 \hat{\beta}$ as a measure of mobility?
- 2. correlation coefficient
 - use Pearson correlation coefficient $\hat{\rho}$
 - $1 \hat{\rho}$ as a measure of mobility?

Statistical measures: elasticity coefficient

• A high value of $1 - \beta$ evidence of significant mobility?

Statistical measures: elasticity coefficient

- A high value of 1β evidence of significant mobility?
- Low value does not necessarily imply low mobility
 - can have $1 \hat{\beta} = 0$ where there is indeed mobility
 - since $\hat{\beta} = \frac{cov(\mathbf{x}_0, \mathbf{x}_1)}{var(\mathbf{x}_0)}$: $1 \hat{\beta} = 0 \Leftrightarrow cov(\mathbf{x}_0, \mathbf{x}_1) = var(\mathbf{x}_0)$.

Statistical measures: elasticity coefficient

- A high value of 1β evidence of significant mobility?
- Low value does not necessarily imply low mobility
 - can have $1 \hat{\beta} = 0$ where there is indeed mobility
 - since $\hat{\beta} = \frac{cov(\mathbf{x}_0, \mathbf{x}_1)}{var(\mathbf{x}_0)}$: $1 \hat{\beta} = 0 \Leftrightarrow cov(\mathbf{x}_0, \mathbf{x}_1) = var(\mathbf{x}_0)$.
- A difficulty:
 - take $\mathbf{x}_0 = (x_{01}, x_{01} + k, x_{01} + 2k), \mathbf{x}_1 = (x_{11}, x_{12}, x_{11} + 2k)$
 - we have $1 \hat{\beta} = 0$, $\forall x_{01}, x_{11}, x_{12}$
- Example:
 - $\mathbf{x}_0 = (1, 2, 3)$
 - $\mathbf{x}_1 \in \{(2,0,4), (2,1,4), (2,1760,4), (2100,1,2102), \dots\}$
 - zero mobility in all cases?

Statistical measures: correlation coefficient

- Both scale and translation independent:
 - if $x_1 = ax_0 + b$, then $\hat{\rho} = 1 \Leftrightarrow 1 \hat{\rho} = 0$
 - so $\mathbf{x}_0 = (1, 2, 3)$ and $\mathbf{x}_1 = (0, 2, 4)$ imply $x_1 = 2x_0 2$; $1 \hat{\rho} = 0$
 - Is this attractive?

Statistical measures: correlation coefficient

- Both scale and translation independent:
 - if $x_1 = ax_0 + b$, then $\hat{\rho} = 1 \Leftrightarrow 1 \hat{\rho} = 0$
 - so $\mathbf{x}_0 = (1,2,3)$ and $\mathbf{x}_1 = (0,2,4)$ imply $x_1 = 2x_0 2$; $1 \hat{\rho} = 0$
 - Is this attractive?
- Measure can behave strangely:
 - take equidistant status
 - $\mathbf{x}_0 = (x_{01}, x_{01} + k, x_{01} + 2k), \, \mathbf{x}_1 = (x_{11}, x_{12}, x_{11})$
 - Get $1 \hat{\rho} = 1$ and $1 \hat{\beta} = 1$, $\forall x_{01}, x_{11}, x_{12}$

Statistical measures: correlation coefficient

- Both scale and translation independent:
 - if $x_1 = ax_0 + b$, then $\hat{\rho} = 1 \Leftrightarrow 1 \hat{\rho} = 0$
 - so $\mathbf{x}_0 = (1, 2, 3)$ and $\mathbf{x}_1 = (0, 2, 4)$ imply $x_1 = 2x_0 2$; $1 \hat{\rho} = 0$
 - Is this attractive?
- Measure can behave strangely:
 - take equidistant status
 - $\mathbf{x}_0 = (x_{01}, x_{01} + k, x_{01} + 2k), \, \mathbf{x}_1 = (x_{11}, x_{12}, x_{11})$
 - Get $1 \hat{\rho} = 1$ and $1 \hat{\beta} = 1$, $\forall x_{01}, x_{11}, x_{12}$
- Example
 - $\mathbf{x}_0 = (1, 2, 3)$
 - $\mathbf{x}_1 \in \{(3,2,3),(3,0,3),(3,100,3),(1,2,1),(10,1,10),(2,1,2),\dots\}$
 - in all cases $1 \hat{\rho} = 1$ and $1 \hat{\beta} = 1$

Inequality-based measures

- Fields and Ok (1996) measure based on income differences:
 - $FO_1 = \frac{1}{n} \sum_{i=1} |y_{0i} y_{1i}|$

Inequality-based measures

- Fields and Ok (1996) measure based on income differences:
 - $FO_1 = \frac{1}{n} \sum_{i=1} |y_{0i} y_{1i}|$
- Fields and Ok (1999b) measure based on log-income differences:
 - $FO_2 = \frac{1}{n} \sum_{i=1} |\log y_{1i} \log y_{0i}|$

Inequality-based measures

- Fields and Ok (1996) measure based on income differences:
 - $FO_1 = \frac{1}{n} \sum_{i=1} |y_{0i} y_{1i}|$
- Fields and Ok (1999b) measure based on log-income differences:
 - $FO_2 = \frac{1}{n} \sum_{i=1} |\log y_{1i} \log y_{0i}|$
- Shorrocks (1978) measures related to inequality:
 - $S_I = 1 \frac{I(y_0 + y_1)}{\frac{\mu y_0}{\mu y_0 + y_1} I(y_0) + \frac{\mu y_1}{\mu y_0 + y_1} I(y_1)}$
 - where I(.) is a predefined inequality measure

• Ray and Genicot (2023) upward mobility index (absolute):

•
$$RG_1 = -\frac{1}{\alpha} \log \left(\frac{\sum_{i=1}^n y_{1i}^{-\alpha}}{\sum_{i=1}^n y_{0i}^{-\alpha}} \right), \alpha > 0$$

• Ray and Genicot (2023) upward mobility index (absolute):

•
$$RG_1 = -\frac{1}{\alpha} \log \left(\frac{\sum_{i=1}^n y_{1i}^{-\alpha}}{\sum_{i=1}^n y_{0i}^{-\alpha}} \right), \alpha > 0$$

• Ray and Genicot (2023) upward mobility index (relative):

•
$$RG_2 = -\frac{1}{\alpha} \log \left(\frac{\sum_{i=1}^{n} y_{1i}^{-\alpha}}{\sum_{i=1}^{n} y_{0i}^{-\alpha}} \right) + \log \left(\frac{\sum_{i=1}^{n} y_{0i}}{\sum_{i=1}^{n} y_{1i}} \right)$$

- Ray and Genicot (2023) upward mobility index (absolute):
 - $RG_1 = -\frac{1}{\alpha} \log \left(\frac{\sum_{i=1}^n y_{1i}^{-\alpha}}{\sum_{i=1}^n y_{0i}^{-\alpha}} \right), \alpha > 0$
- Ray and Genicot (2023) upward mobility index (relative):
 - $RG_2 = -\frac{1}{\alpha} \log \left(\frac{\sum_{i=1}^{n} y_{1i}^{-\alpha}}{\sum_{i=1}^{n} y_{0i}^{-\alpha}} \right) + \log \left(\frac{\sum_{i=1}^{n} y_{0i}}{\sum_{i=1}^{n} y_{1i}} \right)$
- Bárcena and Cantó (2025) downward mobility index
 - $BC_{\mathrm{D}} = \frac{1}{n} \sum_{i \in D} \left(\frac{y_{0i} y_{1i}}{y_{0i}} \right)^{\alpha}, \qquad \alpha \geq 0$

• Ray and Genicot (2023) upward mobility index (absolute):

•
$$RG_1 = -\frac{1}{\alpha} \log \left(\frac{\sum_{i=1}^n y_{1i}^{-\alpha}}{\sum_{i=1}^n y_{0i}^{-\alpha}} \right), \alpha > 0$$

• Ray and Genicot (2023) upward mobility index (relative):

•
$$RG_2 = -\frac{1}{\alpha} \log \left(\frac{\sum_{i=1}^{n} y_{1i}^{-\alpha}}{\sum_{i=1}^{n} y_{0i}^{-\alpha}} \right) + \log \left(\frac{\sum_{i=1}^{n} y_{0i}}{\sum_{i=1}^{n} y_{1i}} \right)$$

Bárcena and Cantó (2025) downward mobility index

•
$$BC_{\mathrm{D}} = \frac{1}{n} \sum_{i \in D} \left(\frac{y_{0i} - y_{1i}}{y_{0i}} \right)^{\alpha}, \qquad \alpha \ge 0$$

Bárcena and Cantó 2018 upward mobility index

•
$$BC_{\mathrm{U}} = \frac{1}{n} \sum_{i \in U} \left(\frac{y_{1i} - y_{0i}}{y_{0i}} \right)^{\alpha}, \qquad \alpha \geq 0$$

Comparative performance: 3-person society

Comparative performance: 3-person society

	period				period			
	0	1^a	1^b	1^c	1^d	1^e	1^f	1^g
A	10	20	15	20	40	25	10	10
В	20	40	25	40	80	45	30	40
C	40	80	45	10	20	15	40	160

Comparative performance: 3-person society

	period				period			
	0	1^a	1^b	1^c	1^d	1^e	1^f	1^g
A	10	20	15	20	40	25	10	10
В	20	40	25	40	80	45	30	40
\mathbf{C}	40	80	45	10	20	15	40	160
Elasticity	$1 - \hat{\beta}$	0	0.208	1.500	1.500	1.368	0	-1.000
Pearson correlation	$1 - \hat{\rho}$	0	0.001	1.500	1.500	1.465	0.053	0
Fields-Ok 1	FO_1	23.333	5.000	20.000	36.667	21.667	3.333	46.667
Fields-Ok 2	FO_2	0.693	0.249	0.924	1.155	0.903	0.135	0.693
Shorrocks 1	$S_{\rm Theil}$	0	0.011	0.736	0.680	0.739	0.034	0.053
Shorrocks 2	S_{Gini}	0	0	0.500	0.444	0.500	0	0
Ray-Genicot absolute	RG_1	0.693	0.306	0	0.693	0.306	0.100	0.288
Ray-Genicot relative	RG_2	0	0.112	0	0	0.112	-0.033	-0.811
Bárcena-Cantó downwar	$d BC_{\rm D}$	0	0	0.250	0.167	0.208	0	0
Bárcena-Cantó upward	$BC_{\mathbf{U}}$	1.000	0.292	0.667	2.000	0.917	0.167	1.333

Comparative performance: China

- Intragenerational income mobility in China
- Did it rise or fall around the millennium?
- Example based on Chen and Cowell (2017)

Comparative performance: China

- Intragenerational income mobility in China
- Did it rise or fall around the millennium?
- Example based on Chen and Cowell (2017)

	1989-2000	2000-2011
$1-\beta$	0.7564	0.6928
$1-\rho$	0.7947	0.7257
FO_1	6506.5	16979.62
FO_2	0.9619	1.1726

- Interpretation 1:
 - more movement in a person's history: more mobility
 - more movement in a dynasty's history: more mobility

- Interpretation 1:
 - more movement in a person's history: more mobility
 - more movement in a dynasty's history: more mobility
- Interpretation 2:
 - more matched movement-in-pairs: more mobility
 - changes for a marginal distribution with given mean

- Interpretation 1:
 - more movement in a person's history: more mobility
 - more movement in a dynasty's history: more mobility
- Interpretation 2:
 - more matched movement-in-pairs: more mobility
 - changes for a marginal distribution with given mean
- Each captures a different concept of mobility :
 - 1. mobility and unbalanced growth: (Bourguignon 2011)
 - inequality change and exchange mobility (Jäntti and Jenkins 2015; Kessler and Greenberg 1981, McClendon 1977)

- Interpretation 1:
 - more movement in a person's history: more mobility
 - more movement in a dynasty's history: more mobility
- Interpretation 2:
 - more matched movement-in-pairs: more mobility
 - changes for a marginal distribution with given mean
- Each captures a different concept of mobility:
 - 1. mobility and unbalanced growth: (Bourguignon 2011)
 - inequality change and exchange mobility (Jäntti and Jenkins 2015; Kessler and Greenberg 1981, McClendon 1977)
- Essential for mobility measurement?
 - ensures a minimum-mobility property
 - situation with some movement registers higher mobility than a situation without movement

Principles: decomposition

- Applied to other aspects of distributional analysis
 - inequality
 - welfare evaluation

Principles: decomposition

- Applied to other aspects of distributional analysis
 - inequality
 - welfare evaluation
- Several aspects of decomposability may be desirable
 - decomposition by population characteristics
 - decomposition by region

Principles: decomposition

- Applied to other aspects of distributional analysis
 - inequality
 - welfare evaluation
- Several aspects of decomposability may be desirable
 - decomposition by population characteristics
 - decomposition by region
- Special for mobility:
 - decompose by direction
 - mobility in terms of upward and downward movements (Bárcena and Cantó 2018; Bárcena and Cantó 2025)

Principles: consistency

- Consistency in comparisons:
 - comparing one bivariate distribution of (status-in-0, status-in-1) with another

Principles: consistency

- Consistency in comparisons:
 - comparing one bivariate distribution of (status-in-0, status-in-1) with another
- Suppose one pair of distributions is "similar" to another
 - one pair of bivariate distributions is a simple transformation of the other pair
 - rescaling all the status values by a common factor?
 - translating the distributions by the same given amount?

Principles: consistency

- Consistency in comparisons:
 - comparing one bivariate distribution of (status-in-0, status-in-1) with another
- Suppose one pair of distributions is "similar" to another
 - one pair of bivariate distributions is a simple transformation of the other pair
 - rescaling all the status values by a common factor?
 - translating the distributions by the same given amount?
- Under such circumstances should each pair of distributions be ranked the same?

Outline

Background

Basics

Methods

General considerations

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition

Discussion and summary

- Basic concepts
 - status
 - individual observation
 - derived from distribution
 - Individual *i*'s status history $z_i = (u_i, v_i)$
 - profile: a list of histories $\mathbf{z} = (z_1, z_2, ... z_n)$

- Basic concepts
 - status
 - individual observation
 - derived from distribution
 - Individual i's status history $z_i = (u_i, v_i)$
 - profile: a list of histories $\mathbf{z} = (z_1, z_2, ... z_n)$
- Use a priori axiomatisation
 - describe meaning of mobility comparisons
 - characterise an ordering over set Z of all profiles
 - gives a class of indices (Cowell and Flachaire 2017, 2018)

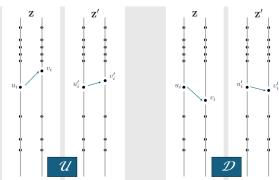
- Basic concepts
 - status
 - individual observation
 - derived from distribution
 - Individual i's status history $z_i = (u_i, v_i)$
 - profile: a list of histories $\mathbf{z} = (z_1, z_2, ... z_n)$
- Use a priori axiomatisation
 - describe meaning of mobility comparisons
 - characterise an ordering over set Z of all profiles
 - gives a class of indices (Cowell and Flachaire 2017, 2018)
- Key axioms:
 - correspond to main principles
 - movement, decomposition consistency
 - do this in two stages

Monotonicity

[Monotonicity] Let $\mathbf{z}, \mathbf{z}' \in Z^n$ differ only in their *i*th history and $u_i' = u_i$ and define two conditions $\mathscr{U} := "v_i > v_i' \ge u_i$ " and $\mathscr{D} := "v_i < v_i' \le u_i$ ". If z_i satisfies either \mathscr{U} or \mathscr{D} then $\mathbf{z} \succ \mathbf{z}'$

Monotonicity

[Monotonicity] Let $\mathbf{z}, \mathbf{z}' \in Z^n$ differ only in their ith history and $u_i' = u_i$ and define two conditions $\mathscr{U} := "v_i > v_i' \ge u_i"$ and $\mathscr{D} := "v_i < v_i' \le u_i"$. If z_i satisfies either \mathscr{U} or \mathscr{D} then $\mathbf{z} \succ \mathbf{z}'$

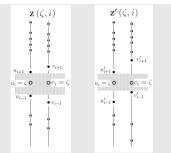


Independence

[Independence] Consider two profiles $\mathbf{z}, \mathbf{z}' \in Z^n$ where there is some $i \in \{2, ..., n-1\}$ such that $u_{i-1} < u_i < u_{i+1}, v_{i-1} < v_i < v_{i+1},$ $u'_{i-1} < u_i < u'_{i+1}, v'_{i-1} < v_i < v'_{i+1}$. Let $\mathbf{z}(\zeta, i)$ denote the profile formed by replacing the ith history in \mathbf{z} by the history $\zeta \in Z$ and let $\hat{Z}_i := [u_{i-1}, u_{i+1}] \times [v_{i-1}, v_{i+1}]$. If $\mathbf{z} \sim \mathbf{z}'$ and $z_i = z'_i$ then $\mathbf{z}(\zeta, i) \sim \mathbf{z}'(\zeta, i)$ for all $\zeta \in \hat{Z}_i \cap \hat{Z}'_i$.

Independence

[Independence] Consider two profiles $\mathbf{z}, \mathbf{z}' \in Z^n$ where there is some $i \in \{2, ..., n-1\}$ such that $u_{i-1} < u_i < u_{i+1}, v_{i-1} < v_i < v_{i+1},$ $u'_{i-1} < u_i < u'_{i+1}, v'_{i-1} < v_i < v'_{i+1}$. Let $\mathbf{z}(\zeta, i)$ denote the profile formed by replacing the ith history in \mathbf{z} by the history $\zeta \in Z$ and let $\hat{Z}_i := [u_{i-1}, u_{i+1}] \times [v_{i-1}, v_{i+1}]$. If $\mathbf{z} \sim \mathbf{z}'$ and $z_i = z'_i$ then $\mathbf{z}(\zeta, i) \sim \mathbf{z}'(\zeta, i)$ for all $\zeta \in \hat{Z}_i \cap \hat{Z}'_i$.



A basic result

- *Monotonicity]* If $\mathbf{z}, \mathbf{z}' \in Z^n$ differ only in their *i*th history and $u'_i = u_i$ then, if $v_i > v'_i \ge u_i$, or if $v_i < v'_i \le u_i$, $\mathbf{z} \succ \mathbf{z}'$
- [Independence] Let $\mathbf{z}(\zeta,i)$ be profile found by replacing z_i by ζ and let $\hat{Z}_i := [u_{(i-1)}, u_{(i+1)}] \times [v_{(i-1)}, v_{(i+1)}]$. If $\mathbf{z} \sim \mathbf{z}'$ and $z_i = z_i'$ for some $i \in 2, ..., n-1$ then $\mathbf{z}(\zeta,i) \sim \mathbf{z}'(\zeta,i)$ for all $\zeta \in \hat{Z}_i$

A basic result

- *Monotonicity]* If $\mathbf{z}, \mathbf{z}' \in Z^n$ differ only in their *i*th history and $u'_i = u_i$ then, if $v_i > v'_i \ge u_i$, or if $v_i < v'_i \le u_i$, $\mathbf{z} \succ \mathbf{z}'$
- [Independence] Let $\mathbf{z}(\zeta,i)$ be profile found by replacing z_i by ζ and let $\hat{Z}_i := [u_{(i-1)}, u_{(i+1)}] \times [v_{(i-1)}, v_{(i+1)}]$. If $\mathbf{z} \sim \mathbf{z}'$ and $z_i = z_i'$ for some $i \in 2, ..., n-1$ then $\mathbf{z}(\zeta,i) \sim \mathbf{z}'(\zeta,i)$ for all $\zeta \in \hat{Z}_i$
- [Continuity] \succeq is continuous on Z^n
- [Local immobility] Let $\mathbf{z}, \mathbf{z}' \in Z^n$ where for some $i, u_i = v_i, v_i' = u_i'$ and, for all $j \neq i, u_j' = u_j, v_j' = v_j$. Then $\mathbf{z} \sim \mathbf{z}'$

A basic result

- *Monotonicity*] If $\mathbf{z}, \mathbf{z}' \in Z^n$ differ only in their *i*th history and $u'_i = u_i$ then, if $v_i > v'_i \ge u_i$, or if $v_i < v'_i \le u_i$, $\mathbf{z} \succ \mathbf{z}'$
- [Independence] Let $\mathbf{z}(\zeta,i)$ be profile found by replacing z_i by ζ and let $\hat{Z}_i := [u_{(i-1)}, u_{(i+1)}] \times [v_{(i-1)}, v_{(i+1)}]$. If $\mathbf{z} \sim \mathbf{z}'$ and $z_i = z_i'$ for some $i \in 2, ..., n-1$ then $\mathbf{z}(\zeta,i) \sim \mathbf{z}'(\zeta,i)$ for all $\zeta \in \hat{Z}_i$
- [Continuity] \succeq is continuous on Z^n
- [Local immobility] Let $\mathbf{z}, \mathbf{z}' \in Z^n$ where for some $i, u_i = v_i, v_i' = u_i'$ and, for all $j \neq i, u_j' = u_j, v_j' = v_j$. Then $\mathbf{z} \sim \mathbf{z}'$

Theorem 1: given these axioms then $\forall \mathbf{z} \in \mathbb{Z}^n$ the mobility ordering \succeq is an increasing monotonic transform of $\sum_{i=1}^n \phi_i(z_i)$

Outline

Background

Basics

Methods

General considerations

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition

Discussion and summary

• What happens to mobility comparisons if incomes are rescaled by a common factor?

- What happens to mobility comparisons if incomes are rescaled by a common factor?
- Three versions to consider: Origin SI, Destination SI, Profile SI.

- What happens to mobility comparisons if incomes are rescaled by a common factor?
- Three versions to consider: Origin SI, Destination SI, Profile SI.
 - [OSI] $\forall \lambda > 0 : (\lambda \mathbf{u}, \mathbf{v}) \sim (\lambda \mathbf{u}', \mathbf{v}')$
 - [DSI] $\forall \lambda > 0 : (\mathbf{u}, \lambda \mathbf{v}) \sim (\mathbf{u}', \lambda \mathbf{v}')$.
 - [PSI] $\forall \lambda > 0 : \lambda \mathbf{z} \sim \lambda \mathbf{z}'$.

- What happens to mobility comparisons if incomes are rescaled by a common factor?
- Three versions to consider: Origin SI, Destination SI, Profile SI.
 - [OSI] $\forall \lambda > 0 : (\lambda \mathbf{u}, \mathbf{v}) \sim (\lambda \mathbf{u}', \mathbf{v}')$
 - [DSI] $\forall \lambda > 0 : (\mathbf{u}, \lambda \mathbf{v}) \sim (\mathbf{u}', \lambda \mathbf{v}')$.
 - [PSI] $\forall \lambda > 0 : \lambda \mathbf{z} \sim \lambda \mathbf{z}'$.
- **SI property:** If any two of the three SI versions holds, the third version holds as well.

Implication of SI (1)

• We can extend Theorem 1 to take into account scale invariance.

Implication of SI (1)

- We can extend Theorem 1 to take into account scale invariance.
- Theorem 2: \succeq is representable by $\sum_{i=1}^{n} \phi_i(z_i)$, where the evaluation function ϕ_i is given by

$$\phi_{i}(u,v) = \begin{cases} A_{i}(v) \left[u^{\alpha} - v^{\alpha} \right] & \text{if OSI holds,} \\ A'_{i}(u) \left[v^{\alpha} - u^{\alpha} \right] & \text{if DSI holds,} \\ v^{\beta} h_{i} \left(\frac{u}{v} \right) & \text{if PSI holds,} \end{cases}$$

where A_i, A_i', h are functions of one variable and α, β are constants.

Implication of SI (2)

- OSI and DSI together imply
- $h_i\left(\frac{u}{v}\right) = A_i\left(v\right)\left[u^{\alpha}v^{-\beta} v^{\alpha-\beta}\right]$

Implication of SI (2)

- OSI and DSI together imply
- $h_i\left(\frac{u}{v}\right) = A_i\left(v\right)\left[u^{\alpha}v^{-\beta} v^{\alpha-\beta}\right]$
- For this to hold RHS must be a function of u/v which means
 - $A_i(v) = v^{\beta \alpha}$
 - So $\phi_i(u,v) = c_i v^{\beta} \left[\left[\frac{u}{v} \right]^{\alpha} 1 \right]$
 - where c_i is a constant specific to each history i

Implication of SI (2)

- OSI and DSI together imply
- $h_i\left(\frac{u}{v}\right) = A_i\left(v\right)\left[u^{\alpha}v^{-\beta} v^{\alpha-\beta}\right]$
- For this to hold RHS must be a function of u/v which means
 - $A_i(v) = v^{\beta \alpha}$
 - So $\phi_i(u,v) = c_i v^{\beta} \left[\left[\frac{u}{v} \right]^{\alpha} 1 \right]$
 - where c_i is a constant specific to each history i
- Provides the basis for a class of mobility measures

Translation Invariance (TI)

- An alternative consistency concept
- What happens to mobility comparisons if you add a given \$ amount to all incomes?

Translation Invariance (TI)

- An alternative consistency concept
- What happens to mobility comparisons if you add a given \$
 amount to all incomes?
- Again there are three versions to consider: Origin TI, Destination TI, Profile TI

Translation Invariance (TI)

- An alternative consistency concept
- What happens to mobility comparisons if you add a given \$ amount to all incomes?
- Again there are three versions to consider: Origin TI, Destination TI, Profile TI
 - [OTI]: $(\mathbf{u} + \delta \mathbf{1}, \mathbf{v}) \sim (\mathbf{u}' + \delta \mathbf{1}, \mathbf{v}')$
 - *[DTI]*: $(\mathbf{u}, \mathbf{v} + \delta 1) \sim (\mathbf{u}', \mathbf{v}' + \delta \mathbf{1})$
 - [PTI]: $\mathbf{z} + \delta \mathbf{1} \sim \mathbf{z}' + \delta \mathbf{1}$

Translation Invariance (TI)

- An alternative consistency concept
- What happens to mobility comparisons if you add a given \$ amount to all incomes?
- Again there are three versions to consider: Origin TI, Destination TI, Profile TI
 - [OTI]: $(\mathbf{u} + \delta \mathbf{1}, \mathbf{v}) \sim (\mathbf{u}' + \delta \mathbf{1}, \mathbf{v}')$
 - [DTI]: $(u, v + \delta 1) \sim (u', v' + \delta 1)$
 - [PTI]: $\mathbf{z} + \delta \mathbf{1} \sim \mathbf{z}' + \delta \mathbf{1}$

TI property: If any two of the three TI versions holds, the third version holds as well

Implications of TI

• We can extend Theorem 1 to take into account translation invariance.

Implications of TI

- We can extend Theorem 1 to take into account translation invariance.
- Theorem 3: \succeq is representable by $\sum_{i=1}^{n} \phi_i(z_i)$, where ϕ_i is given by

$$\phi_i(u,v) = \begin{cases} A_i(v) [u-v] \text{ or } A_i(v) [e^{au} - e^{av}] & \text{if OTI holds,} \\ A_i'(u) [v-u] \text{ or } A_i'(u) [e^{av} - e^{au}] & \text{if DTI holds,} \\ e^{au} g_i(v-u) \text{ or } e^{av} g_i'(u-v) & \text{if PTI holds,} \end{cases}$$

where A_i, A'_i, g_i, g'_i are functions of one variable, a is a constant, and $g_i(0) = 0$

Implications of TI

- We can extend Theorem 1 to take into account translation invariance.
- **Theorem 3:** \succeq is representable by $\sum_{i=1}^{n} \phi_i(z_i)$, where ϕ_i is given by

$$\phi_i(u,v) = \begin{cases} A_i(v) [u-v] \text{ or } A_i(v) [e^{au} - e^{av}] & \text{if OTI holds,} \\ A_i'(u) [v-u] \text{ or } A_i'(u) [e^{av} - e^{au}] & \text{if DTI holds,} \\ e^{au} g_i(v-u) \text{ or } e^{av} g_i'(u-v) & \text{if PTI holds,} \end{cases}$$

where A_i, A'_i, g_i, g'_i are functions of one variable, a is a constant, and $g_{i}(0) = 0$

Combining PTI with OTI or DTI: either $\phi_i(u, v) = a_i[v - u]$, or $\phi_i(u,v) = a_i \left[e^{\beta[v-u]} - 1 \right]$

Scale and Translation Invariance

- There is no reason why we can't have **both** SI and TI
- We are talking about **orderings**, not **levels**, of mobility

Scale and Translation Invariance

- There is no reason why we can't have **both** SI and TI
- We are talking about **orderings**, not **levels**, of mobility
- Suppose we apply the invariance criteria to profiles
- So, for any pair of profiles \mathbf{z}, \mathbf{z}' such that $\mathbf{z} \sim \mathbf{z}'$, we want:
 - both PSI: $\forall \lambda > 0 : \lambda \mathbf{z} \sim \lambda \mathbf{z}'$
 - and PTI: $\mathbf{z} + \delta \mathbf{1} \sim \mathbf{z}' + \delta \mathbf{1}$

Scale and Translation Invariance

- There is no reason why we can't have **both** SI and TI
- We are talking about orderings, not levels, of mobility
- Suppose we apply the invariance criteria to profiles
- So, for any pair of profiles \mathbf{z}, \mathbf{z}' such that $\mathbf{z} \sim \mathbf{z}'$, we want:
 - both PSI: $\forall \lambda > 0 : \lambda \mathbf{z} \sim \lambda \mathbf{z}'$
 - and PTI: $\mathbf{z} + \delta \mathbf{1} \sim \mathbf{z}' + \delta \mathbf{1}$
- Then $\phi_i(u_i, v_i)$ must take the form

$$\phi_i(u,v) = a_i[v-u],$$

where a_i is a constant, specific to each history

• The term a_i can do a lot of work!

Outline

Background

Basics

Methods

General consideration

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition

Discussion and summary

• Evaluation function: $\phi_i(u, v) = c_i v^{\beta} \left[\left[\frac{u}{v} \right]^{\alpha} - 1 \right]$

- Evaluation function: $\phi_i(u,v) = c_i v^{\beta} \left[\left[\frac{u}{v} \right]^{\alpha} 1 \right]$
- Anonymity: Mobility is a transform of $c(n)\sum_{i=1}^{n} \left[u_i^{\alpha} v_i^{\beta-\alpha} v_i^{\beta} \right]$

- Evaluation function: $\phi_i(u, v) = c_i v^{\beta} \left[\left[\frac{u}{v} \right]^{\alpha} 1 \right]$
- Anonymity: Mobility is a transform of $c(n)\sum_{i=1}^{n} \left[u_i^{\alpha} v_i^{\beta-\alpha} v_i^{\beta} \right]$
- If representation of \succeq is constant under replication: c(n) = c'/n

- Evaluation function: $\phi_i(u, v) = c_i v^{\beta} \left[\left[\frac{u}{v} \right]^{\alpha} 1 \right]$
- Anonymity: Mobility is a transform of $c(n)\sum_{i=1}^{n} \left[u_i^{\alpha} v_i^{\beta-\alpha} v_i^{\beta} \right]$
- If representation of \succeq is constant under replication: c(n) = c'/n
- Normalise: $\beta = 1$, $c' = \frac{1}{\alpha[\alpha 1]}$, impose mobility property:

- Evaluation function: $\phi_i(u, v) = c_i v^{\beta} \left[\left[\frac{u}{v} \right]^{\alpha} 1 \right]$
- Anonymity: Mobility is a transform of $c(n)\sum_{i=1}^{n} \left[u_i^{\alpha} v_i^{\beta-\alpha} v_i^{\beta} \right]$
- If representation of \succeq is constant under replication: c(n) = c'/n
- Normalise: $\beta = 1$, $c' = \frac{1}{\alpha(\alpha 1)}$, impose mobility property:
- Mobility is given by $\psi\left(\frac{1}{n}\sum_{i=1}^{n}u_{i}^{\alpha}v_{i}^{1-\alpha}-\theta\left(\mu_{u},\mu_{v}\right),\mu_{u},\mu_{v}\right)$
 - $\mu_u := \frac{1}{n} \sum_{i=1}^n u_i, \, \mu_v := \frac{1}{n} \sum_{i=1}^n v_i, \, \theta \left(\mu, \mu \right) = \mu$

• Evaluation function: $\phi_i(u, v) = a_i[v - u]$

- Evaluation function: $\phi_i(u, v) = a_i[v u]$
 - for any history $z_i = (v_i, u_i)$
 - write the (signed) distance $d_i := v_i u_i$
- Overall mobility index $\sum_{i=1}^{n} a_i d_{(i)}$
 - $d_{(i)}$ is the *i*th component of vector $(d_1,...,d_n)$ in ascending order
 - $d_{(1)} < 0$ is greatest downward mobility
 - $d_{(n)} > 0$ is greatest upward mobility
- Monotonicity?
 - $a_i < 0$ whenever $d_{(i)} < 0$
 - $a_i > 0$ whenever $d_{(i)} > 0$
- Population
 - a_i should be proportional to 1/n
 - up to a change in scale we have $\frac{1}{n}\sum_{i=1}^{n}a_{i}d_{(i)}$

Outline

Background

Basics

Methods

General consideration

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition

Discussion and summary

- Analysis so far suitable for cardinal data: income, wealth
 - but beware of negative/zero values with some Class-1 measures

- Analysis so far suitable for cardinal data: income, wealth
 - but beware of negative/zero values with some Class-1 measures
- Status concept extends to ordinal data (Cowell and Flachaire 2017)

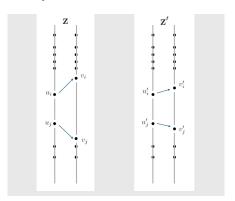
- Analysis so far suitable for cardinal data: income, wealth
 - but beware of negative/zero values with some Class-1 measures
- Status concept extends to ordinal data (Cowell and Flachaire 2017)
- What about data where overall size is given ("shares")?

- Analysis so far suitable for cardinal data: income, wealth
 - but beware of negative/zero values with some Class-1 measures
- Status concept extends to ordinal data (Cowell and Flachaire 2017)
- What about data where overall size is given ("shares")?
- Measures so far consistent with Interpretation 1 of "movement"

- Analysis so far suitable for cardinal data: income, wealth
 - but beware of negative/zero values with some Class-1 measures
- Status concept extends to ordinal data (Cowell and Flachaire 2017)
- What about data where overall size is given ("shares")?
- Measures so far consistent with Interpretation 1 of "movement"
- Now consider how to handle Interpretation 2 of "movement"

[Monotonicity-2] If \mathbf{z}, \mathbf{z}' differ only in components $i, j: u_i' = u_i$, $u_j' = u_j, v_i' - v_i = v_j - v_j'$; then, if $v_i > v_i' \ge u_i$ and if $v_j < v_j' \le u_j$, $\mathbf{z} \succ \mathbf{z}'$

[Monotonicity-2] If \mathbf{z}, \mathbf{z}' differ only in components $i, j: u_i' = u_i$, $u_j' = u_j, v_i' - v_i = v_j - v_j'$; then, if $v_i > v_i' \ge u_i$ and if $v_j < v_j' \le u_j$, $\mathbf{z} \succ \mathbf{z}'$



• Interpretation 2 allows a further step in normalising mobility measures

- Interpretation 2 allows a further step in normalising mobility measures
- Should the mobility measure remain *unchanged* under a scale change $\lambda_0 > 0$ of **u** and a scale change $\lambda_1 > 0$ of **v**?

- Interpretation 2 allows a further step in normalising mobility measures
- Should the mobility measure remain *unchanged* under a scale change $\lambda_0 > 0$ of **u** and a scale change $\lambda_1 > 0$ of **v**?
- Strengthens scale-invariance to *scale independence* of resulting mobility measure.

- Interpretation 2 allows a further step in normalising mobility measures
- Should the mobility measure remain *unchanged* under a scale change $\lambda_0 > 0$ of **u** and a scale change $\lambda_1 > 0$ of **v**?
- Strengthens scale-invariance to *scale independence* of resulting mobility measure.
- Mean-normalised version
 - divide each u_i by μ_u and each v_i by μ_v

000000

Outline

Background

Basics

Methods

General consideration

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition

Discussion and summary

0000

Mobility indices: Class 1

Mobility indices: Class 1

• We have a *class* of aggregate mobility measures

$$M_{\alpha} = \frac{1}{\alpha \left[\alpha - 1\right] n} \sum_{i=1}^{n} \left[\left[\frac{u_i}{\mu_u} \right]^{\alpha} \left[\frac{v_i}{\mu_v} \right]^{1-\alpha} - 1 \right]$$

$$M_0 = -\frac{1}{n} \sum_{i=1}^{n} \frac{v_i}{\mu_v} \log \left(\frac{u_i}{\mu_u} \middle/ \frac{v_i}{\mu_v} \right)$$

$$M_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{u_i}{\mu_u} \log \left(\frac{u_i}{\mu_u} \middle/ \frac{v_i}{\mu_v} \right)$$

Mobility indices: Class 1

• We have a *class* of aggregate mobility measures

$$M_{\alpha} = \frac{1}{\alpha \left[\alpha - 1\right] n} \sum_{i=1}^{n} \left[\left[\frac{u_i}{\mu_u} \right]^{\alpha} \left[\frac{v_i}{\mu_v} \right]^{1-\alpha} - 1 \right]$$

$$M_0 = -\frac{1}{n} \sum_{i=1}^{n} \frac{v_i}{\mu_v} \log \left(\frac{u_i}{\mu_u} \middle/ \frac{v_i}{\mu_v} \right)$$

$$M_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{u_i}{\mu_u} \log \left(\frac{u_i}{\mu_u} \middle/ \frac{v_i}{\mu_v} \right)$$

- Parameter gives sensitivity to types of mobility.
 - high $\alpha > 0$: M sensitive to downward movements
 - α < 0: *M* sensitive to upward movements

Mobility indices: Class 1

• We have a *class* of aggregate mobility measures

$$M_{\alpha} = \frac{1}{\alpha \left[\alpha - 1\right] n} \sum_{i=1}^{n} \left[\left[\frac{u_i}{\mu_u} \right]^{\alpha} \left[\frac{v_i}{\mu_v} \right]^{1-\alpha} - 1 \right]$$

$$M_0 = -\frac{1}{n} \sum_{i=1}^{n} \frac{v_i}{\mu_v} \log \left(\frac{u_i}{\mu_u} \middle/ \frac{v_i}{\mu_v} \right)$$

$$M_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{u_i}{\mu_u} \log \left(\frac{u_i}{\mu_u} \middle/ \frac{v_i}{\mu_v} \right)$$

- Parameter gives sensitivity to types of mobility.
 - high $\alpha > 0$: M sensitive to downward movements
 - α < 0: *M* sensitive to upward movements
- Concerned with *ranks* not *income levels*? Make status ordinal:
 - use estimated distribution function

0000

Mobility indices: Class 1 extended

Mobility indices: Class 1 extended

- The class can be extended by redefining status
- measure status from -c rather than from 0

•
$$\frac{\theta(c)}{n} \sum_{i=1}^{n} \left[\left[\frac{u_i + c}{\mu_u + c} \right]^{\alpha(c)} \left[\frac{v_i + c}{\mu_v + c} \right]^{1 - \alpha(c)} - 1 \right], \alpha(c) \neq 0, 1$$

where
$$\theta\left(c\right):=rac{1+c^2}{lpha(c)^2-lpha(c)}$$

Mobility indices: Class 1 extended

- The class can be extended by redefining status
- measure status from -c rather than from 0

•
$$\frac{\theta(c)}{n} \sum_{i=1}^{n} \left[\left[\frac{u_i + c}{\mu_u + c} \right]^{\alpha(c)} \left[\frac{v_i + c}{\mu_v + c} \right]^{1 - \alpha(c)} - 1 \right], \alpha(c) \neq 0, 1$$

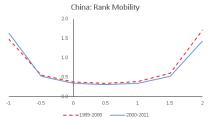
where
$$\theta\left(c\right):=\frac{1+c^2}{\alpha(c)^2-\alpha(c)}$$

- In limit, as c as $c \to \infty$: $M'_{\beta} := \frac{1}{n\beta^2} \sum_{i=1}^n \left[e^{\beta [u_i \mu_u v_i + \mu_v]} 1 \right]$.
 - · remains unchanged with abolute additions to status
 - β is a sensitivity parameter

00000

M_{α} as a function of α : example

M_{α} as a function of α : example



Mobility measures: Class 2

• Focuses on aggregation of status differences $\sum_{i=1}^{n} a_i d_{(i)}$

Mobility measures: Class 2

- Focuses on aggregation of status differences $\sum_{i=1}^{n} a_i d_{(i)}$
- Case (a)

•
$$a_i = \begin{cases} -1 & \text{if } i < i^* \\ +1 & \text{if } i \ge i^* \end{cases}$$
 where i^* is largest i s.t. $d_{(i)} < 0$

- then measure becomes $\Gamma_0 := \frac{1}{n} \sum_{i=1}^n \left| d_{(i)} \right|$
- if status is income, equal weight on u and v: FO_1 index
- if status is log-income: the FO₂ index

- Modificy measures. Class 2
- Focuses on aggregation of status differences $\sum_{i=1}^{n} a_i d_{(i)}$
- Case (a)
 - $a_i = \begin{cases} -1 & \text{if } i < i^* \\ +1 & \text{if } i \ge i^* \end{cases}$ where i^* is largest i s.t. $d_{(i)} < 0$
 - then measure becomes $\Gamma_0 := \frac{1}{n} \sum_{i=1}^n \left| d_{(i)} \right|$
 - if status is income, equal weight on u and v: FO_1 index
 - if status is log-income: the FO₂ index
- Case (b)
 - make a_i sensitive to position i
 - $a_i = \phi(\frac{i}{n} p \frac{1}{2n}); p := i^*/n$
 - then measure becomes $\Gamma := \frac{1}{n} \sum_{i=1}^{n} \phi\left(\frac{i}{n} p \frac{1}{2n}\right) d_{(i)}$

Mobility measures: Class 2

- Focuses on aggregation of status differences $\sum_{i=1}^{n} a_i d_{(i)}$
- Case (a)
 - $a_i = \begin{cases} -1 & \text{if } i < i^* \\ +1 & \text{if } i \ge i^* \end{cases}$ where i^* is largest i s.t. $d_{(i)} < 0$
 - then measure becomes $\Gamma_0 := \frac{1}{n} \sum_{i=1}^n \left| d_{(i)} \right|$
 - if status is income, equal weight on u and v: FO_1 index
 - if status is log-income: the FO_2 index
- Case (b)
 - make a_i sensitive to position i
 - $a_i = \phi(\frac{i}{n} p \frac{1}{2n}); p := i^*/n$
 - then measure becomes $\Gamma := \frac{1}{n} \sum_{i=1}^{n} \phi\left(\frac{i}{n} p \frac{1}{2n}\right) d_{(i)}$
- Special Case (b): linear ϕ
 - weights are: $a_i = \frac{i}{n} p \frac{1}{2n}$
 - so $\Gamma_1 := \frac{1}{n} \sum_{i=1}^n \frac{i}{n} d_{(i)} [p + \frac{1}{2n}] \mu_d$,
 - $\Gamma_1 = 1/2G + \mu_d \left[\frac{1}{2} p \right]$

•00000

Outline

Background

Basics

Methods

General considerations

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition

Discussion and summary

Decomposition: issues

- Decomposition property follows from independence axiom
 - get different types of decomposition
 - depends on interpretation of the independence axiom

Decomposition: issues

- Decomposition property follows from independence axiom
 - get different types of decomposition
 - depends on interpretation of the independence axiom
- Aspects in common with decomposition in other fields (social welfare, inequality):
 - by personal characteristics
 - by regions or countries

- Decomposition property follows from independence axiom
 - get different types of decomposition
 - depends on interpretation of the independence axiom
- Aspects in common with decomposition in other fields (social welfare, inequality):
 - by personal characteristics
 - by regions or countries
- Special for mobility:
 - Up and Down
 - similar to rich / poor decomposition for inequality
 - often treated as defining aspects of mobility
 - U: Ray and Genicot (2023); D: Bárcena and Cantó (2025)

000000

Decomposition: Class 1

• K groups; proportion in group k is p_k

• K groups; proportion in group k is p_k

• Scale-independent mobility measures:

•
$$M_{\alpha} = \sum_{k=1}^{K} p_{k} \left[\frac{\mu_{u,k}}{\mu_{u}} \right]^{\alpha} \left[\frac{\mu_{v,k}}{\mu_{v}} \right]^{1-\alpha} M_{\alpha,k} + \frac{1}{\alpha^{2}-\alpha} \left(\sum_{k=1}^{K} p_{k} \left[\frac{\mu_{u,k}}{\mu_{u}} \right]^{\alpha} \left[\frac{\mu_{v,k}}{\mu_{v}} \right]^{1-\alpha} - 1 \right)$$

- $p_k \left[\frac{\mu_{u,k}}{\mu_u} \right]^{\alpha} \left[\frac{\mu_{v,k}}{\mu_v} \right]^{1-\alpha}$ weight on group k
- $M_{\alpha,k}$: mobility in group k

- K groups; proportion in group k is p_k
- Scale-independent mobility measures:

•
$$M_{\alpha} = \sum_{k=1}^{K} p_{k} \left[\frac{\mu_{u,k}}{\mu_{u}} \right]^{\alpha} \left[\frac{\mu_{v,k}}{\mu_{v}} \right]^{1-\alpha} M_{\alpha,k} + \frac{1}{\alpha^{2}-\alpha} \left(\sum_{k=1}^{K} p_{k} \left[\frac{\mu_{u,k}}{\mu_{u}} \right]^{\alpha} \left[\frac{\mu_{v,k}}{\mu_{v}} \right]^{1-\alpha} - 1 \right)$$

- $p_k \left[\frac{\mu_{u,k}}{\mu_u} \right]^{\alpha} \left[\frac{\mu_{v,k}}{\mu_v} \right]^{1-\alpha}$ weight on group k
- $M_{\alpha,k}$: mobility in group k
- Between group:
 - aggregation over mean changes of groups
 - $M_{\alpha}^{\text{btw}} = \frac{1}{\alpha^2 \alpha} \left(\sum_{k=1}^{K} p_k \left[\frac{\mu_{u,k}}{\mu_u} \right]^{\alpha} \left[\frac{\mu_{v,k}}{\mu_v} \right]^{1-\alpha} 1 \right)$

- K groups; proportion in group k is p_k
- Scale-independent mobility measures:

•
$$M_{\alpha} = \sum_{k=1}^{K} p_{k} \left[\frac{\mu_{u,k}}{\mu_{u}} \right]^{\alpha} \left[\frac{\mu_{v,k}}{\mu_{v}} \right]^{1-\alpha} M_{\alpha,k} + \frac{1}{\alpha^{2}-\alpha} \left(\sum_{k=1}^{K} p_{k} \left[\frac{\mu_{u,k}}{\mu_{u}} \right]^{\alpha} \left[\frac{\mu_{v,k}}{\mu_{v}} \right]^{1-\alpha} - 1 \right)$$

- $p_k \left[\frac{\mu_{u,k}}{\mu_u} \right]^{\alpha} \left[\frac{\mu_{v,k}}{\mu_v} \right]^{1-\alpha}$ weight on group k
- $M_{\alpha,k}$: mobility in group k
- Between group:
 - aggregation over mean changes of groups

•
$$M_{\alpha}^{\text{btw}} = \frac{1}{\alpha^2 - \alpha} \left(\sum_{k=1}^{K} p_k \left[\frac{\mu_{u,k}}{\mu_u} \right]^{\alpha} \left[\frac{\mu_{v,k}}{\mu_v} \right]^{1-\alpha} - 1 \right)$$

- Partition population into "upward" U and "downward" D groups:
 - $M_{\alpha} = w^{\mathsf{U}} M_{\alpha}^{\mathsf{U}} + w^{\mathsf{D}} M_{\alpha}^{\mathsf{D}} + M_{\alpha}^{\mathsf{btw}}$
 - compare Bárcena and Cantó (2025), Ray and Genicot (2023)eq (27)

000000

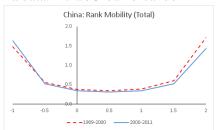
Decomposition: Class 1 (Example)

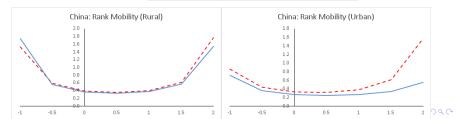
• Key feature in China data: Rural/Urban breakdown

000000

Decomposition: Class 1 (Example)

• Key feature in China data: Rural/Urban breakdown





Exact decomposition by subgroups not possible for arbitrary partition

- Exact decomposition by subgroups not possible for arbitrary partition
- But Up/Down decompositions work

- Exact decomposition by subgroups not possible for arbitrary partition
- But Up/Down decompositions work
- FO indices:
 - $\Gamma_0 = -pd^D + [1-p]d^U$

- Exact decomposition by subgroups not possible for arbitrary partition
- But Up/Down decompositions work
- FO indices:

•
$$\Gamma_0 = -pd^{\mathsf{D}} + [1-p]d^{\mathsf{U}}$$

• For general case $a_i = \phi \left(\frac{i}{n} - p - \frac{1}{2n} \right)$

•
$$\Gamma_{\gamma} = p^{\gamma+1}\Gamma_{\gamma}^{D} + [1-p]^{\gamma+1}\Gamma_{\gamma}^{U}$$

•
$$\phi(x) = x^{\gamma}$$

00000

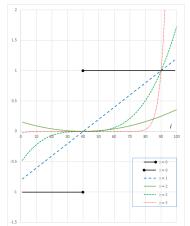
Class 2: individual weights

• Mobility index: $\sum_{i=1}^{n} a_i d_{(i)}$. Plot a_i against i

00000

Class 2: individual weights

• Mobility index: $\sum_{i=1}^{n} a_i d_{(i)}$. Plot a_i against i



Outline

Background

Rasics

Methods

General considerations

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition

Discussion and summary

• Suppose the destination is an equal distribution

- Suppose the destination is an equal distribution
- Class-1 mobility measures if $\forall i : v_i = \mu_u$
 - $\frac{1}{\alpha[\alpha-1]n}\sum_{i=1}^{n}\left[\left[\frac{u_i}{\mu_u}\right]^{\alpha}\left[\frac{v_i}{\mu_v}\right]^{1-\alpha}-1\right]$ become GE measures
 - $\frac{1}{n\beta^2} \sum_{i=1}^n \left[e^{\beta [u_i \mu_u v_i + \mu_v]} 1 \right]$ become Kolm indices
 - other cases become intermediate ineq measures

- Suppose the destination is an equal distribution
- Class-1 mobility measures if $\forall i : v_i = \mu_u$
 - $\frac{1}{\alpha[\alpha-1]n}\sum_{i=1}^n \left[\left[\frac{u_i}{\mu_u} \right]^{\alpha} \left[\frac{v_i}{\mu_v} \right]^{1-\alpha} 1 \right]$ become GE measures
 - $\frac{1}{n\beta^2}\sum_{i=1}^n \left[e^{\beta [u_i \mu_u v_i + \mu_v]} 1 \right]$ become Kolm indices
 - other cases become intermediate ineq measures
- Class-2 mobility measures if $\forall i : v_i = \mu_u$
 - Γ_0 becomes the mean deviation
 - Γ_1 becomes the Gini index
 - Γ_{γ} becomes the generalised Gini

- Suppose the destination is an equal distribution
- Class-1 mobility measures if $\forall i : v_i = \mu_u$
 - $\frac{1}{\alpha[\alpha-1]n}\sum_{i=1}^n \left[\left[\frac{u_i}{\mu_u} \right]^{\alpha} \left[\frac{v_i}{\mu_v} \right]^{1-\alpha} 1 \right]$ become GE measures
 - $\frac{1}{n\beta^2}\sum_{i=1}^n \left[e^{\beta[u_i \mu_u v_i + \mu_v]} 1 \right]$ become Kolm indices
 - other cases become intermediate ineq measures
- Class-2 mobility measures if $\forall i : v_i = \mu_u$
 - Γ_0 becomes the mean deviation
 - Γ_1 becomes the Gini index
 - Γ_{γ} becomes the generalised Gini
- Blackorby and Donaldson (1980, Bossert and Pfingsten (1990, Cowell and Flachaire (2021)

Outline

Background

Basics

Methods

General considerations

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

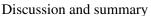
Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition



Summary

- The approach:
 - separate "status" from "aggregation" issues
 - focus on meaning of mobility comparisons.
 - characterise "suitable" measures

Summary

- The approach:
 - separate "status" from "aggregation" issues
 - focus on meaning of mobility comparisons.
 - characterise "suitable" measures
- The results
 - two broad classes of mobility indices
 - each class satisfies the minimal set of requirements for mobility comparisons
 - each of these classes has a natural interpretation in terms of distributional analysis

Outline

Background

Basics

Methods

General considerations

Status

Measures: Intuitive and others

Principles

Analysis

Basic structure

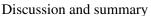
Consistency

Classes of measures

Data issues

Mobility indices: two classes

Decomposition



Bibliography I

- Alesina, A., S. Stantcheva, and E. Teso (2018). Intergenerational mobility and support for redistribution. American Economic Review 108, 521–554.
- Bárcena, E. and O. Cantó (2018). A simple subgroup decomposable measure of downward (and upward) income mobility. ECINEQ Working Paper Series 2018-472, ECINEQ.
- Bárcena, E. and O. Cantó (2025). The three I's of downward income mobility: A directional subgroup decomposable measure. The Review of Income and Wealth.
- Blackorby, C. and D. Donaldson (1980). A theoretical treatment of indices of absolute inequality. International Economic Review 21, 107–136.
- Bossert, W. and A. Pfingsten (1990). Intermediate inequality: concepts, indices and welfare implications. Mathematical Social Science 19, 117–134.
- Bourguignon, F. (2011). Non-anonymous growth incidence curves, income mobility and social welfare dominance. The Journal of Economic Inequality 9(4), 605–627.
- Chen, Y. and F. A. Cowell (2017). Mobility in China. Review of Income and Wealth 63, 203-218.
- Cowell, F. A. and E. Flachaire (2017). Inequality with ordinal data. Economica 84, 290-321.
- Cowell, F. A. and E. Flachaire (2018). Measuring mobility. Quantitative Economics 9, 865-901.
- Cowell, F. A. and E. Flachaire (2021). Inequality measurement: Methods and data. In K. Zimmerman and E. Sierminska (Eds.), Handbook of Labor, Human Resources and Population Economics. https://linyurl.com/mtbadrzd.

Bibliography II

- Fields, G. S. and E. A. Ok (1996). The meaning and measurement of income mobility. *Journal of Economic Theory* 71(2), 349–377.
- Fields, G. S. and E. A. Ok (1999a). The measurement of income mobility: an introduction to the literature. In J. Silber (Ed.), Handbook on Income Inequality Measurement. Dewenter: Kluwer.
- Fields, G. S. and E. A. Ok (1999b). Measuring movement of incomes. *Economica* 66, 455–472.
- Jäntti, M. and S. P. Jenkins (2015). Income mobility. In A. B. Atkinson and F. Bourguignon (Eds.), Handbook of Income Distribution, Volume 2, pp. 807–935. Elsevier.
- Kessler, R. C. and D. F. Greenberg (1981). Linear Panel Analysis: Models of Quantitative Change. Academic Press.
- McClendon, M. J. (1977). Structural and exchange components of vertical mobility. American Sociological Review 42, 56–74.
- Ray, D. and G. Genicot (2023). Measuring upward mobility. American Economic Review 113, 3044-3089.
- Shorrocks, A. F. (1978). Income inequality and income mobility. Journal of Economic Theory 19, 376-393.
- Tsui, K. (2009). Measurement of income mobility: A re-examination. Social Choice and Welfare 33, 629-645.
- Van Kerm, P. (2004). What lies behind income mobility? Reranking and distributional change in Belgium, Western Germany and the USA. Economica 71, 223–239.