Integrating mortality into poverty measurement through the Poverty-Adjusted Life Expectancy

Canazei Winter school 2025

JM Baland, G Cassan, B Decerf

Namur University and World Bank

January, 2025

イロト イボト イヨト イヨト

Globally, premature mortality is one of the main source of well-being losses.

	Extreme poverty	Premature mortality		
	PY	YLL (wrt 50 years)		
	(millions of person-years)	(millions of person-years)		
Developing world	705	402		
(2015)				

The case for integrating mortality into poverty measurement.

- Mortality reduces lifespan, which has high *intrinsic* value.
- Mortality has *instrumental* impact on poverty

Age in year <i>t</i>	0	1	2	3
Birth year	t	t-1	t-2	t - 3
Poor dynasty A	Р	D	D	D
Non-poor dynasty A	NP	NP	NP	NP
Poor dynasty B	Р	Р	Р	D
Non-poor dynasty B	NP	NP	NP	NP

 $H(A) = \frac{1}{5} < \frac{3}{7} = H(B)$, mortality paradox (Kanbur & Mukherjee, 2007)

 \Rightarrow Poverty measures that ignore mortality may yield counterintuitive comparisons

Empirical relevance: a society's mortality is not perfectly correlated with its income

- Wellbeing comparisons substantially affected when accounting for mortality
 Becker et al (2005), Murphy and Topel (2006), Jones and Klenow (2016)
- The covid pandemic *reduced* poverty estimates in some countries.

No poverty measures accounts for mortality in a way that both

- (i) always attributes intrinsic value to longevity
- (*ii*) avoids the mortality paradox

This paper proposes the poverty-adjusted life expectancy (PALE) index:

- PALE satisfies both (i) and (ii)
- PALE is a simplified version of well-being à la Harsanyi
- under some conditions, PALE comparisons are independent on the value selected for its normative parameter
- we quantify the impact of integrating mortality with extreme poverty

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへの

Definition of PALE

PALE in a given year t:

 $PALE_{\theta} = LE(1 - \theta H),$

Definition of PALE

PALE in a given year t:

$$PALE_{\theta} = LE(1 - \theta H),$$

= $LE(1 - H)$
#years non-poor + $(1 - \theta)$ LEH
#years poor

where

- *LE* is life expectancy at birth in *t* (quantity of life)
- *H* is the poverty head-count ratio in *t* (quality of life)

Definition of PALE

PALE in a given year t:

$$PALE_{\theta} = LE(1 - \theta H),$$

= $LE(1 - H)$
#years non-poor + $(1 - \theta)$ LEH
#years poor

where

- LE is life expectancy at birth in t (quantity of life)
- *H* is the poverty head-count ratio in *t* (quality of life)
- $heta \in [0,1]$ is normative parameter

 \diamond if $\theta = 0$, then PALE = LE, i.e., one PY is neglibible wrt one YLL.

 \diamond if $\theta = 1$, then *PALE* = *PFLE*, i.e., one PY is "as bad as" one YLL.

 \diamond if $\theta > 1$, then "being poor" is assumed worse than "being dead".

Rational preferences over consumption streams (Koopmans 1960)

$$U=\sum_{a=0}^d\beta^a u(c_a)$$

Rational preferences over consumption streams (Koopmans 1960)

$$U=\sum_{a=0}^d\beta^a u(c_a)$$

Welfare approach a la Harsanyi (1953)

$$\mathsf{EU} = \mathbb{E} \sum_{a=0}^{a^*} \beta^a u(c_a) S(a).$$

Rational preferences over consumption streams (Koopmans 1960)

$$U=\sum_{a=0}^d\beta^a u(c_a)$$

Welfare approach a la Harsanyi (1953)

$$EU = \mathbb{E}\sum_{a=0}^{a^*}\beta^a u(c_a)S(a).$$

Approximation of welfare a la Harsanyi:

- $\beta = 1$: attribute same weight to individuals of all ages
- c_a is either being poor (P) or being non-poor (NP)

Rational preferences over consumption streams (Koopmans 1960)

$$U=\sum_{a=0}^d\beta^a u(c_a)$$

Welfare approach a la Harsanyi (1953)

$$EU = \mathbb{E}\sum_{a=0}^{a^*}\beta^a u(c_a)S(a).$$

Approximation of welfare a la Harsanyi:

- $\beta = 1$: attribute same weight to individuals of all ages
- c_a is either being poor (P) or being non-poor (NP)
- $\mathbb{E}\left[u(c_a)\right] = \pi(a)u_P + (1 \pi(a))u_{NP}$
 - ♦ Assumption: $\pi(a)$ is independent on age and mortality, i.e. $\pi(a) = H$

Rational preferences over consumption streams (Koopmans 1960)

$$U=\sum_{a=0}^d\beta^a u(c_a)$$

Welfare approach a la Harsanyi (1953)

$$EU = \mathbb{E}\sum_{a=0}^{a^*}\beta^a u(c_a)S(a).$$

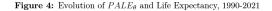
Approximation of welfare a la Harsanyi:

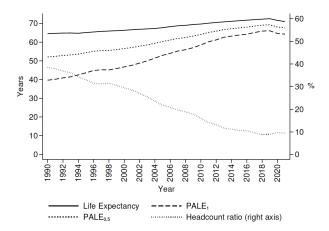
- $\beta = 1$: attribute same weight to individuals of all ages
- c_a is either being poor (P) or being non-poor (NP)
- $\mathbb{E}\left[u(c_a)\right] = \pi(a)u_P + (1 \pi(a))u_{NP}$
 - ♦ Assumption: $\pi(a)$ is independent on age and mortality, i.e. $\pi(a) = H$

As $LE = \sum_{a=0}^{a^*} S(a)$, we get

$$\frac{EU}{u_{NP}} = LE\left(1 - \underbrace{\frac{u_{NP} - u_{P}}{u_{NP} - u_{D}}}_{\theta}H\right).$$

PALE global trend



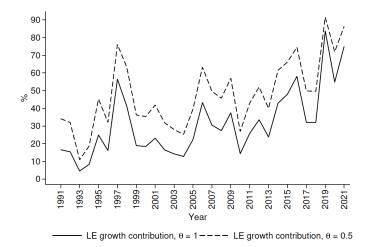


Reading: in 1990, Poverty-Adjusted Life Expectancy was about 40 years according to $PALE_1$ and 52 years according to $PALE_{0.5}.$

୬ ବ ୧୦ 8

Э

Decomposition of PALE's growth

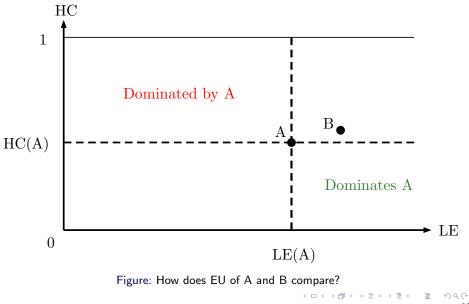


Reading: in 1991, the growth of life expectancy contributed to 17% of the growth of $PALE_1$ and to 34% to that of $PALE_{0.5}$.

92C

Э

PALE comparisons sometimes valid for all $\theta \in [0, 1]$



PALE comparisons valid for all $\theta \in [0, 1]$

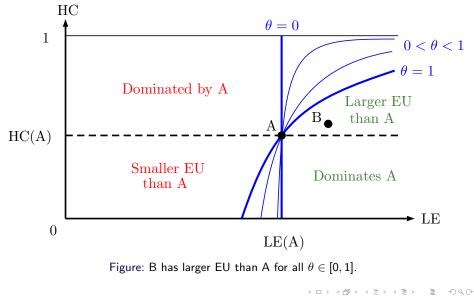
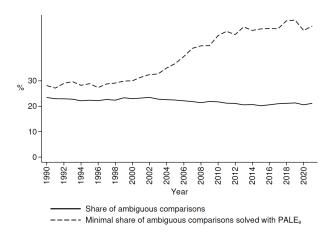


Table: Pakistan and Bangladesh in 2021.

	Headcount ratio	Life Expectancy	Poverty Expectancy (<i>LE</i> * <i>H</i>)	Poverty Free Life Expectancy $LE * (1 - H) = PALE_1$
Pakistan	4.2%	64.0	2.7	61.3
Bangladesh	6.0%	71.4	4.3	67.2

Robust cross-country PALE comparisons

Figure 6: Evolution of the resolution of ambiguous inter-country comparisons, 1990-2021



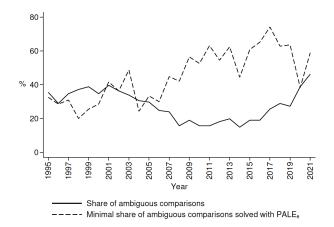
Reading: in 1990, countries had on average 23% of ambiguous comparisons, out of which at least 28% were unambiguously ranked by $PALE_{\theta}$.

Э

イロト イボト イヨト

Robust within-country PALE trends

Figure 7: Evolution of the resolution of ambiguous countries' trajectories, 1990-2021



Reading: in the 1995, 36% of countries' trajectories was ambiguous. Among these, 33% can be assessed with $PALE_{\theta}.$

Э

イロト イボト イヨト イヨト

We suggest integrating mortality into poverty measures using the PALE index

- PALE has decent theoretical foundations,
- PALE = equivalent number of years of life out of poverty.
- PALE can be computed with readily-available data.
- Even when H and LE are in conflict, PALE comparisons sometimes robust for all $\theta \in [0, 1]$,

Thank you for your attention!

Table: Comparison of stationary societies A and B.

Age in year <i>t</i>	0	1	2	3
Birth year	t	t-1	t-2	t-3
Poor dynasty A	P	D	D	D
Non-poor dynasty A	NP	NP	NP	NP
Poor dynasty B	Р	Р	Р	D
Non-poor dynasty B	NP	NP	NP	NP

Mainstream aggr. welfare indicators are not suited to inform public debate

• Composite indices

$$W_{comp} = w(1 - HC) + (1 - w)\frac{LE - LE^{min}}{LE^{max} - LE^{min}}.$$

Mainstream aggr. welfare indicators are not suited to inform public debate

• Composite indices

$$W_{comp} = w(1 - HC) + (1 - w) rac{LE - LE^{min}}{LE^{max} - LE^{min}}.$$

- $\diamond~$ lack of sound theoretical foundation,
- ◊ black box: its value cannot be interpreted,
- \diamond comparison depends on parameters values: $W_{comp}(A) > W_{comp}(B)$ if $w \rightarrow 1$, but $W_{comp}(A) < W_{comp}(B)$ if $w \rightarrow 0$.

Mainstream aggr. welfare indicators are not suited to inform public debate

• Composite indices

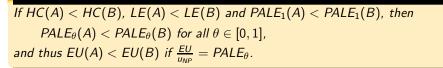
$$W_{comp} = w(1 - HC) + (1 - w) rac{LE - LE^{min}}{LE^{max} - LE^{min}}.$$

- $\diamond~$ lack of sound theoretical foundation,
- ◊ black box: its value cannot be interpreted,
- \diamond comparison depends on parameters values: $W_{comp}(A) > W_{comp}(B)$ if $w \rightarrow 1$, but $W_{comp}(A) < W_{comp}(B)$ if $w \rightarrow 0$.
- Expected lifetime utility (Harsanyi)

$$EU = \mathbb{E}\sum_{a=0}^{a^*} \beta^a u(c_a) S(a).$$

- $\diamond\,$ has sound theoretical foundation, but
- ◊ black box: its value cannot be interpreted.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



If HC(A) < HC(B), LE(A) < LE(B) and $PALE_1(A) < PALE_1(B)$, then $PALE_{\theta}(A) < PALE_{\theta}(B)$ for all $\theta \in [0, 1]$, and thus EU(A) < EU(B) if $\frac{EU}{u_{NP}} = PALE_{\theta}$.

Question: is $PALE_{\theta}$ a proper expression for EU when **Assumption** does not hold? **Answer**: yes, because $PALE_{\theta}$ is EU of newborn in stationary population.

If HC(A) < HC(B), LE(A) < LE(B) and $PALE_1(A) < PALE_1(B)$, then $PALE_{\theta}(A) < PALE_{\theta}(B)$ for all $\theta \in [0, 1]$, and thus EU(A) < EU(B) if $\frac{EU}{u_{NP}} = PALE_{\theta}$.

Question: is $PALE_{\theta}$ a proper expression for EU when **Assumption** does not hold? **Answer**: yes, because $PALE_{\theta}$ is EU of newborn in stationary population.

Notation

- life $I = (I_0, I_1, ..., I_d) \in L$, e.g. I = (NP, NP, P, ..., P),
- *n_t* individuals born in year *t*,
- distribution of lives in year t is $\Gamma_t : L \to [0, 1]$.

If HC(A) < HC(B), LE(A) < LE(B) and $PALE_1(A) < PALE_1(B)$, then $PALE_{\theta}(A) < PALE_{\theta}(B)$ for all $\theta \in [0, 1]$, and thus EU(A) < EU(B) if $\frac{EU}{u_{NP}} = PALE_{\theta}$.

Question: is $PALE_{\theta}$ a proper expression for *EU* when **Assumption** does not hold? **Answer**: yes, because $PALE_{\theta}$ is *EU* of newborn in stationary population.

Notation

- life $I = (I_0, I_1, ..., I_d) \in L$, e.g. I = (NP, NP, P, ..., P),
- *n_t* individuals born in year *t*,
- distribution of lives in year t is $\Gamma_t : L \to [0, 1]$.

Stationary population in t: for all $t' \in \{t - a^*, \dots, t\}$

- constant distribution $\Gamma_{t'} = \Gamma_t$,
- constant size $n_{t'} = n_t$,

 $\Rightarrow \frac{EU}{u_{NP}} = PALE_{\theta}$ in stationary population, even without Assumption.

- Populations are typically not stationary
 - ◊ PALE is not welfare expectation of newborn,

- Populations are typically not stationary
 - ◊ PALE is not welfare expectation of newborn,
 - \diamond Is *PALE* is valid expression for welfare costs in *t*?

- Populations are typically not stationary
 - ◊ PALE is not welfare expectation of newborn,
 - \diamond Is *PALE* is valid expression for welfare costs in *t*?

Consider the same question for *LE*:

- If population is not stationary, then
 - ◊ LE is not lifespan expectation of newborn,

- Populations are typically not stationary
 - ◊ PALE is not welfare expectation of newborn,
 - \diamond Is *PALE* is valid expression for welfare costs in *t*?

Consider the same question for *LE*:

- If population is not stationary, then
 - ◊ LE is not lifespan expectation of newborn,
 - $\diamond~LE$ is lifespan expectation of newborn who assumes that society is stationary (in t)

- Populations are typically not stationary
 - ◊ PALE is not welfare expectation of newborn,
 - \diamond Is *PALE* is valid expression for welfare costs in *t*?

Consider the same question for *LE*:

- If population is not stationary, then
 - $\diamond~LE$ is not lifespan expectation of newborn,
 - \diamond *LE* is lifespan expectation of newborn who assumes that society is stationary (in *t*)
 - \diamond *LE* is valid aggregation of mortality in *t*

- Populations are typically not stationary
 - ◊ PALE is not welfare expectation of newborn,
 - \diamond Is *PALE* is valid expression for welfare costs in *t*?

Consider the same question for *LE*:

- If population is not stationary, then
 - $\diamond~LE$ is not lifespan expectation of newborn,
 - \diamond *LE* is lifespan expectation of newborn who assumes that society is stationary (in *t*)
 - \diamond *LE* is valid aggregation of mortality in *t*

By analogy:

- Even if population is not stationary, then
 - ◊ PALE is welfare expectation of a newborn in t who assumes that society is stationary in t.
 - \diamond *PALE* is valid aggregation of welfare costs in *t*.

Deprivation in quality and quantity of life

- quality: poverty
- quantity: lifespan deprivation, i.e. dying before turning \hat{a} years

Deprivation in quality and quantity of life

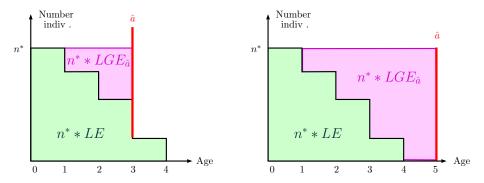
- quality: poverty
- quantity: lifespan deprivation, i.e. dying before turning \hat{a} years

Mainstream multidimensional poverty indices suffer from same limitations

- lack of sound theoretical foundation,
- black box: its value cannot be interpreted,
- comparison depends on parameters values.

In deprivation setting, $PALE_{\theta}$ defines ED_{θ} , a new index based on the lifespan gap expectancy $(LGE_{\hat{a}})$

In deprivation setting, $PALE_{\theta}$ defines ED_{θ} , a new index based on the lifespan gap expectancy $(LGE_{\hat{a}})$



 $LGE_{\hat{a}}$ measures the number of years that a newborn expects to lose prematurely (based on mortality rates observed in *t*)

$$ED_{\theta} = \underbrace{\frac{LE * HC}{LE + LGE_{\hat{a}}}}_{quality \ deprivation} + \frac{1}{\theta} \underbrace{\frac{LGE_{\hat{a}}}{LE + LGE_{\hat{a}}}}_{quantity \ deprivation}, \quad (1$$

where $\theta \in [0, 1]$ and

- $LE + LGE_{\hat{a}}$ is normative lifespan,
- LE * HC is number of years that a newborn expects to spend in poverty.

$$ED_{\theta} = \underbrace{\frac{LE * HC}{LE + LGE_{\hat{a}}}}_{quality \ deprivation} + \frac{1}{\theta} \underbrace{\frac{LGE_{\hat{a}}}{LE + LGE_{\hat{a}}}}_{quantity \ deprivation} , \qquad (1$$

where $\theta \in [0, 1]$ and

- $LE + LGE_{\hat{a}}$ is normative lifespan,
- LE * HC is number of years that a newborn expects to spend in poverty.

If
$$\hat{a} \ge a^*$$
, then
 $PALE_{\theta}(A) \ge PALE_{\theta}(B) \Leftrightarrow ED_{\theta}(A) \le ED_{\theta}(B).$

Current results:

• Welfare evolution in Botswana:

$$Aightarrow HC(2000) = 30\% < 34\% = HC(1990)$$

♦ LE(2000) = 46y < 64y = LE(1990).

Current results:

- Welfare evolution in Botswana:
 - ↔ *HC*(2000) = 30% < 34% = *HC*(1990)
 - ♦ LE(2000) = 46y < 64y = LE(1990).
 - ♦ *PALE*₁(2000) = $32y < 42y = PALE_1(1990)$.
 - \Rightarrow Welfare in Botswana has been unambiguously reduced.

Current results:

- Welfare evolution in Botswana:
 - ♦ *HC*(2000) = 30% < 34% = *HC*(1990)
 - ◊ LE(2000) = 46y < 64y = LE(1990).
 - ♦ *PALE*₁(2000) = $32y < 42y = PALE_1(1990)$.
 - \Rightarrow Welfare in Botswana has been unambiguously reduced.

Some ideas for empirics:

• Fraction of pairs A - B without dominance for which unambiguous welfare comparisons.

Current results:

- Welfare evolution in Botswana:
 - ♦ *HC*(2000) = 30% < 34% = *HC*(1990)
 - ◊ LE(2000) = 46y < 64y = LE(1990).
 - ♦ *PALE*₁(2000) = $32y < 42y = PALE_1(1990)$.
 - \Rightarrow Welfare in Botswana has been unambiguously reduced.

Some ideas for empirics:

- Fraction of pairs A B without dominance for which unambiguous welfare comparisons.
- Fraction of pairs for which PALE and ED agree, as a function of \hat{a} .

Current results:

- Welfare evolution in Botswana:
 - ♦ *HC*(2000) = 30% < 34% = *HC*(1990)
 - ◊ LE(2000) = 46y < 64y = LE(1990).
 - ♦ *PALE*₁(2000) = $32y < 42y = PALE_1(1990)$.
 - \Rightarrow Welfare in Botswana has been unambiguously reduced.

Some ideas for empirics:

- Fraction of pairs A B without dominance for which unambiguous welfare comparisons.
- Fraction of pairs for which PALE and ED agree, as a function of \hat{a} .
- Fraction of pairs for which ED and closest alternative index (GD) agree, as a function of \hat{a} .