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Causation vs. correlation
- In social science, we are (o�en) interested in causal e�ects, not correlations. Why?

→ Because we are scientists: “We do not have knowledge of a thing until we have grasped its
why, that is to say, its cause.” — Aristotle

→ Because it matters for normative evaluations: Is inequality due to native talent or due to its
correlates ? — e.g., Arneson (2018)

→ Because it matters for policy: Do schools address the inequity of birth? — e.g., Coleman
et al. (1966)

- For example:
- Does a higher PGIEA cause higher educational attainment?
- Do investments into schools amplify/mitigate the e�ects of PGIEA on educational

attainment?
- ...
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A framework to think about causality

- Our phenomenon of interest: Some people have higher educational attainment than
others. It is a perennial question in education economics what causes these di�erences.

- Our research question: Does a high PGIEA cause higher educational attainment?

- Our data:

- Yi indicates the education of i.

- Di =

{
1 if individual i has a high PGIEA,

0 if individual i has a low PGIEA.
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Potential outcomes
- Each individual i has two potential outcomes.

- Both potential outcomes are defined, but only one is realized:

Yi =

{
Y1i ifDi = 1

Y0i ifDi = 0

- For any i, the causal e�ect of treatmentD on outcome Y is:

τi = Y1i − Y0i

- We cannot estimate τi unless we solve the “missing data” problem:

τi = Y1i − ? ifDi = 1,

= ?− Y0i ifDi = 0

4 / 47



Potential outcomes
- Each individual i has two potential outcomes.

- Both potential outcomes are defined, but only one is realized:

Yi =

{
Y1i ifDi = 1

Y0i ifDi = 0

- For any i, the causal e�ect of treatmentD on outcome Y is:

τi = Y1i − Y0i

- We cannot estimate τi unless we solve the “missing data” problem:

τi = Y1i − ? ifDi = 1,

= ?− Y0i ifDi = 0

4 / 47



Potential outcomes
- Each individual i has two potential outcomes.

- Both potential outcomes are defined, but only one is realized:

Yi =

{
Y1i ifDi = 1

Y0i ifDi = 0

- For any i, the causal e�ect of treatmentD on outcome Y is:

τi = Y1i − Y0i

- We cannot estimate τi unless we solve the “missing data” problem:

τi = Y1i − ? ifDi = 1,

= ?− Y0i ifDi = 0

4 / 47



A naive comparison
- Let’s assume homogeneous treatment e�ects, i.e., that high PGIEA improves everyone’s

education by τi = τ :

Y1i = Y0i + τ

- We can then write our naive comparison as:

E[Y1i|Di = 1]− E[Y0i|Di = 0]

= E[Y0i + τ |Di = 1]− E[Y0i|Di = 0]

= E[τ |Di = 1] + E[Y0i|Di = 1]− E[Y0i|Di = 0]

= τ + E[Y0i|Di = 1]− E[Y0i|Di = 0]

= ATE + Selection bias

- Selection bias: Potential outcomes of treated and non-treated are o�en not identical, i.e.,
we are not comparing apples to apples.
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More formally ...

- We can identify the ATE if Strong Ignorability holds:

→ Di is strongly ignorable conditional on Xi if
1. (Yi(0), Yi(1)) ⊥⊥ Di|Xi

2. ∃ε > 0 s.t. ε < Pr(Di = 1|Xi) < 1− εi
- The first condition asserts independence of the treatment from the “potential” outcomes.
- The second condition asserts that there are both treated and untreated individuals.

- We o�en also say “Di is conditionally randomly assigned” or “Di is exogeneous”.

- We need to look for a research design such that strong ignorability is satisfied.
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Randomized control trials (RCTs)

- RCTs (usually) comply with strong ignorability without conditioning on Xi.
→ Selection bias vanishes.

- RCTs are possible in challenging settings, i.e., health insurance coverage of individuals.
→ Oregon Health Insurance Experiment.

- For the identification of genetic e�ects, it is inherently impossible to run an RCT.
→ Can we allocate alleles across individuals?

→ We have to think about research designs that allow us to mimic a random allocation of
alleles.
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Setting the stage

- Our research question: Does a high PGIEA cause higher educational attainment?

- Our data:

- Yi indicates the education of i.
- PGIEA

i ∈ N (0, 1)

- Our naive comparison:
Yi = τPGIEAi + εi

→ What can go wrong?
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Strong ignorability is violated

- We cannot identify causal e�ects if Strong Ignorability is violated.

- In our naive comparison, the treatment PGIEA is not assigned independently of potential
outcomes:

Yi = τPGIEAi + αpPGI
EA
p(i) + αmPGI

EA
m(i) + ξi︸ ︷︷ ︸

=εi

- Estimates are confounded by gene-environment correlations (or “selection bias” in more
general parlance) ...

... unless we choose Xi wisely,

... unless we choose our sample wisely.
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Research designs (Demange et al., 2022)
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Threads to validity of estimates

- Internal validity: Can we estimate the treatment e�ect for our particular sample (i.e., do we
address the problem of selection bias)?

- External validity: Can we extrapolate the estimated treatment e�ect to other populations
or settings?

→ How should we rate these three designs in terms of their validity?
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Research designs (Demange et al., 2022)
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Sibling design
- Sibling designs address gene-environment correlations by using within-family variation

only:

Yi1 = τPGIEAi1 + ηPGIEAi2 + αpPGI
EA
p(i) + αmPGI

EA
m(i) + ξi1

Yi2 = τPGIEAi2 + ηPGIEAi1 + αpPGI
EA
p(i) + αmPGI

EA
m(i) + ξi2

∆Yi = (τ − η)∆PGIEAi + ∆ξi

→ Provide valid estimates of τ in the absence of sibling spillovers (η = 0, see next slide for
evidence).

→ External validity limited to multi-child families.

→ Drawbacks in terms of statistical power.

→ Some limitations for gene-environment interplay analyses (need variation across siblings).
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Sibling design, cont’d (Young et al., 2022)
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Research designs (Demange et al., 2022)

15 / 47



Adoption design

- Adoption designs address gene-environment correlations by leveraging the random
allocation of adoptees to families (independent of genotypes):

Yi = τPGIEAi + εi

whereCov(PGIEAi , PGIEAp(i)) = Cov(PGIEAi , PGIEAm(i)) = 0.

→ Provide valid estimates of τ in the presence of random allocation.

→ External validity limited to adoptees.

→ Drawbacks in terms of statistical power due to small samples.
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Research designs (Demange et al., 2022)
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Genetic trios

- Genetic trios address gene-environment correlations by explicitly conditioning on parental
genotypes:

Yi = τPGIEAi + αpPGI
EA
p(i) + αmPGI

EA
m(i) + ξi

→ Provide valid estimates of τ .

→ Capture all children (incl. singleton children).

→ Very, very data demanding but can be emulated by imputation techniques (Young et al.,
2022).
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Measurement error in PGI

- Constructed PGI are noisy measures of the “true” PGI:
→ GWAS are based on finite samples.
→ GWAS may be based on di�erent populations than the estimation sample.

- PGIs are usually standardized on the estimation sample such that:

PGIEA,true
i + νi√

V ar(PGIEA,true
i + νi)

=
PGIEA,true

i + νi
σPGI+ν
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Measurement error in PGI, cont’d
- What we would like to estimate:

Yi = τ

(
PGIEA,true

i
σPGI

)
+ εi

τ =
Cov(Yi,

PGIEA,true
i

σPGI
)

V ar(
PGI

EA,true
i
σPGI

)

=
Cov(Yi,PGI

EA,true
i )

σPGI

- What we can estimate:

Yi = τ̂

(
PGIEA,true

i +νi
σPGI+ν

)
+ εi

τ̂ =
Cov(Yi,

PGI
EA,true
i

+νi
σPGI+ν

)

V ar(
PGI

EA,true
i

+νi
σPGI+ν

)

=
Cov(Yi,PGI

EA,true
i )

σPGI+ν
= τ × σPGI

σPGI+ν︸ ︷︷ ︸
=φ Attenuation factor

20 / 47



Measurement error in PGI, cont’d
- What we would like to estimate:

Yi = τ

(
PGIEA,true

i
σPGI

)
+ εi

τ =
Cov(Yi,

PGIEA,true
i

σPGI
)

V ar(
PGI

EA,true
i
σPGI

)

=
Cov(Yi,PGI

EA,true
i )

σPGI

- What we can estimate:

Yi = τ̂

(
PGIEA,true

i +νi
σPGI+ν

)
+ εi

τ̂ =
Cov(Yi,

PGI
EA,true
i

+νi
σPGI+ν

)

V ar(
PGI

EA,true
i

+νi
σPGI+ν

)

=
Cov(Yi,PGI

EA,true
i )

σPGI+ν
= τ × σPGI

σPGI+ν︸ ︷︷ ︸
=φ Attenuation factor

20 / 47



Obviously-related instrumental variables (ORIV)

- Relies on well-established method in the literature, e.g., Gillen et al. (2019).

- Use alternative (mismeasured) PGIEA,IVi to re-scale attenuated estimates via IV:

PGIEA,IVi =
PGIEA,true

i +ν IV
i

σPGI+ν

- This can be done by re-estimating the PGI weights in a di�erent discovery sample, e.g., by
splitting the original GWAS sample.
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Obviously-related instrumental variables (ORIV), cont’d
- First stage:

θ =
Cov(

PGI
EA,true
i

+νIV
i

σPGI+ν
×X,

PGI
EA,true
i

+νIV
i

σPGI+ν
×X)

V ar(
PGI

EA,true
i

+νIV
i

σPGI+ν
×X)

=
σ2
PGI

σ2
PGI+ν︸ ︷︷ ︸
=φ2

- Reduced form:

κ =
Cov(Yi,

PGI
EA,true
i

+νIV
i

σPGI+ν
×X)

V ar(
PGI

EA,true
i

+νIV
i

σPGI+ν
×X)

=
Cov(Yi,PGI

EA,true
i )

σPGI+ν
× 1

X = τ × σPGI
σPGI+ν

× 1
X

- Wald estimate:
τ IV = κ

θ = τ × σPGI+ν
σPGI

× 1
X

= τ if X =
σPGI+ν
σPGI

= 1√
Corr(PGIEA,true

i +νi,PGI
EA,true
i +ν IV

i )
.
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Analytical correction

- First proposed by Becker et al. (2021), and recently extended by Sanz-de-Galdeano and
Terskaya (forthcoming).

- Scales the estimated e�ects ex-post by the attenuation factor φ.

- The attenuation factor can be calculated from the estimation sample or by invoking prior
knowledge from the literature.
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Analytical correction, cont’d
- We know that the attenuation factor can be expressed as follows:

φ = σPGI
σPGI+ν

- Expanding and re-arranging, we get:

φ2 =
σ2
PGI

σ2
PGI+ν

=
σ2
PGI×V ar(Yi)×Cov(Yi,PGI

EA,true
i )2

σ2
PGI+ν×V ar(Yi)×Cov(Yi,PGI

EA,true
i )2

=
Cov(Yi,PGI

EA,true
i )2/[σ2

PGI+ν×V ar(Yi)]
Cov(Yi,PGI

EA,true
i )2/[σ2

PGI×V ar(Yi)]

=
Cov(Yi,PGI

EA,true
i +ν)2/[σ2

PGI+ν×V ar(Yi)]
Cov(Yi,PGI

EA,true
i )2/[σ2

PGI×V ar(Yi)]

= R2

ĥ2
, where ĥ2 is an estimate of SNP heritability.
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ORIV vs. analytical correction

- (Dis)advantages of ORIV:
+ Straightforward extension to within-family designs.
+ Econometric properties, incl. standard errors well-understood.
- Requires access to molecular data.
- Loss of power in GWAS sample due to splitting.

- (Dis)dvantages of analytical correction:
+ Straightforward and easy implmentation without access to molecular data.
- Standard errors likely (upward) biased.
- Harder to implement in within-family designs due to absence of estimates of SNP heritability

in within-family GWAS.

→ See Kippersluis et al. (2023) for a methodological comparison.

25 / 47



ORIV vs. analytical correction

- (Dis)advantages of ORIV:
+ Straightforward extension to within-family designs.
+ Econometric properties, incl. standard errors well-understood.
- Requires access to molecular data.
- Loss of power in GWAS sample due to splitting.

- (Dis)dvantages of analytical correction:
+ Straightforward and easy implmentation without access to molecular data.
- Standard errors likely (upward) biased.
- Harder to implement in within-family designs due to absence of estimates of SNP heritability

in within-family GWAS.

→ See Kippersluis et al. (2023) for a methodological comparison.

25 / 47



ORIV vs. analytical correction

- (Dis)advantages of ORIV:
+ Straightforward extension to within-family designs.
+ Econometric properties, incl. standard errors well-understood.
- Requires access to molecular data.
- Loss of power in GWAS sample due to splitting.

- (Dis)dvantages of analytical correction:
+ Straightforward and easy implmentation without access to molecular data.
- Standard errors likely (upward) biased.
- Harder to implement in within-family designs due to absence of estimates of SNP heritability

in within-family GWAS.

→ See Kippersluis et al. (2023) for a methodological comparison.

25 / 47



Research designs (Kippersluis et al., 2023)
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Why should we care about G× E?

1. Test seminal theories on parental investments and skill formation.
→ Becker and Tomes (1979) and Cunha et al. (2010), and many others ...

2. Assess inequality-reducing/increasing e�ects of policy reforms.
→ Chetty et al. (2014), Clark and Royer (2013), and Jackson et al. (2024), and many others ...
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What do we need?

- Estimation:

Yi = αPGIEAi + βEi + κ(PGIEAi × Ei) + Xiγ + εi

- Identification:

Requirement Potential bias A�ected parameters Solutions

ExogenousPGIEA Gene-environment correlation α, κ Sibling design
Adoption design
Genetic trios

X

ExogenousE “Selection bias” β, κ Application-
specific

X

ExogenousPGIEA × E Spurious interaction terms κ Full interaction ?
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Adoption design
Genetic trios

X

ExogenousE “Selection bias” β, κ Application-
specific

X

ExogenousPGIEA × E Spurious interaction terms κ Full interaction ?
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The econometric argument
- The “naive approach”:

Yi = αPGIEAi + βEi + κ(PGIEAi × Ei) + Xiγ + εi

- The fully interacted model:

Yi = αPGIEAi + βEi + κ̂(PGIEAi × Ei) + Xiγ

+ (Xi × PGIEAi )γPGIEA + (Xi × Ei)γE + ε̂i

- Under which conditions κ = κ̂?
- Cov(PGIEA

i × Ei,Xi × PGIEA
i ) = Cov(PGIEA

i × Ei,Xi × Ei) = 0
→ Very unlikely sinceCov(PGIEA

i ,Xi) 6= 0 orCov(Ei,Xi) 6= 0.

- Cov(Yi,Xi × PGIEA
i ) = Cov(Yi,Xi × Ei) = 0

→ Needs to be tested empirically.
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The pros and cons of full interaction

- Fully interacted models may be necessary to estimate heterogeneous treatment e�ects
(Feigenberg et al., forthcoming; Keller, 2014).

- However, researcher face a variance-bias trade-o�. Standard errors of κmay increase
substantially if

1. The loss in degrees of freedom is large,
2. The increase inR2 is small,
3. The collinearity of PGIEA

i × Ei and the additional interaction terms is large.

- The strength of the variance-bias trade-o� depends on the specific application.
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Additional considerations for gene-environment studies

- G× E studies need to be powered adequately.
→G× E are usually 2-3 times smaller than main e�ects.

- G× E studies need to defend functional form assumptions.
→ Ex ante it is unlclear thatG× E should only operate via linear interaction e�ects.

→ See Biroli et al. (2022) for an excellent review of the current state of theG× E literature.
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Outline

Causality, potential outcomes ... a quick recap

Identifying genetic e�ects

Identifying gene-environment interactions

An example: Genes and Schools



Motivation

The genetic lottery goes to school: evidence from Norway

Nicolai Borgen, Rosa Cheesman, Paul Hufe & Astrid Sandsor
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- Education is a core determinant of life outcomes (Acemoglu and Autor, 2011; Hanushek
and Woessmann, 2008; Krueger and Lindahl, 2001).

- Equity of education systems as a central policy goal:

Most fundamental, of course, is the question of how well schools reduce the inequity of birth
by providing children an equitable foundation of mental skills and knowledge [...].
Coleman Report, p.36

- E�ective education policies require understanding of the production function:

Y = f( G︸︷︷︸
Nature

, IF , IS︸ ︷︷ ︸
Nurture

).
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This paper in a nutshell
Research question
Do better schools increase or decrease the e�ect of genes on educational attainment?

- Empirical approach
- We use the universe of Norwegian students in grades 8-9 to measure school value added

(N ≈ 1, 300 schools).
- We link the VA measures to a sample of genotyped trios (children, mothers, fathers)

(N ≈ 32, 000 families).
- We use exogenous variation in PGIEA and school VA to causally estimateG×E for reading and

numeracy test scores in grade 9.

- Findings
- We find causal evidence for substitutability of PGIEA and school quality in reading (but not

numeracy):
→ 1 SD increase of school quality decreases the impact of PGIEA on reading test scores by 4%.

- Substitutability arises through gains of students with lower PGIEA.
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Data sources

- MoBa:
- Initial information for a sample of mothers (N > 114, 000) from 1999-2008.
- 44,017 genotyped father-mother-child trios.
- Linked to Norwegian register data.
- We restrict the sample to birth cohorts 2002-2008 and students of European descent.
- E�ective sample sizeN ≈ 32, 000.

- Norwegian registers:
- Population of students in Norway (N ≈ 60, 000 per cohort).
- Information on standardized tests in reading and numeracy in grades 5, 8, and 9.
- We restrict the sample to birth cohorts 1997-2007.
- E�ective sample sizeN ≈ 670, 000.
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Data inputs

- Recall our estimation model:

Yi = αPGIEAi + βQSi + κ(PGIEAi ×QSi ) + Xiγ + εi

Educational outcomesYi Genetic endowments PGIEA School quality QS Controls Xi(a)
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Summary statistics
Mean SD Min Max

a) Child characteristics

Sex 0.50 0.50 0.00 1.00

Parity 1.70 0.80 1.00 13.00

Migration status 0.10 0.30 0.00 1.00

Birth year 2004.90 1.60 2002.00 2008.00

b) Parental characteristics

PGI (Mother) 0.00 1.00 -4.30 4.10

Education in years (Mother) 15.10 2.30 9.00 21.00

PGI (Father) 0.00 1.00 -4.30 3.90

Education in years (Father) 14.60 2.60 7.00 21.00

c) Treatment variables

PGI 0.00 1.00 -3.80 3.70

School VA 0.00 1.00 -4.10 4.50
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Recap on identifying assumptions

X No gene-environment correlations (α, κ).

X No selection into schools (β, κ).

X No spurious interaction e�ects (κ).
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Identification of genetic e�ects
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Identification of school e�ects (Reading)
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Identification of school e�ects (Numeracy)

Coef. = 0.984
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Gene-environment interaction (Reading)
Outcome:
Reading (Grade 9) (1)

(2) (3) (4)

PGIEA 0.302***
(0.006)

0.227***
(0.008)

0.231***
(0.005)

0.230***
(0.005)

QS (Reading) 0.064***
(0.009)

0.063***
(0.009)

0.036***
(0.005)

0.034***
(0.005)

PGIEA × QS (Reading) -0.014**
(0.005)

-0.014**
(0.005)

-0.009**
(0.003)

-0.008
(0.005)

Parental PGI ×

X X X

Genotyping controls ×

X X X

Child controls ×

× X X

School controls ×

× X X

Saturation controls ×

× × X

N 32, 262

32, 262 32, 262 32, 262

Note: Own calculations. Standard errors (in parentheses) are clustered at the family level. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.

42 / 47



Gene-environment interaction (Reading)
Outcome:
Reading (Grade 9) (1) (2)

(3) (4)

PGIEA 0.302***
(0.006)

0.227***
(0.008)

0.231***
(0.005)

0.230***
(0.005)

QS (Reading) 0.064***
(0.009)

0.063***
(0.009)

0.036***
(0.005)

0.034***
(0.005)

PGIEA × QS (Reading) -0.014**
(0.005)

-0.014**
(0.005)

-0.009**
(0.003)

-0.008
(0.005)

Parental PGI × X

X X

Genotyping controls × X

X X

Child controls × ×

X X

School controls × ×

X X

Saturation controls × ×

× X

N 32, 262 32, 262

32, 262 32, 262

Note: Own calculations. Standard errors (in parentheses) are clustered at the family level. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.

42 / 47



Gene-environment interaction (Reading)
Outcome:
Reading (Grade 9) (1) (2) (3)

(4)

PGIEA 0.302***
(0.006)

0.227***
(0.008)

0.231***
(0.005)

0.230***
(0.005)

QS (Reading) 0.064***
(0.009)

0.063***
(0.009)

0.036***
(0.005)

0.034***
(0.005)

PGIEA × QS (Reading) -0.014**
(0.005)

-0.014**
(0.005)

-0.009**
(0.003)

-0.008
(0.005)

Parental PGI × X X

X

Genotyping controls × X X

X

Child controls × × X

X

School controls × × X

X

Saturation controls × × ×

X

N 32, 262 32, 262 32, 262

32, 262

Note: Own calculations. Standard errors (in parentheses) are clustered at the family level. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.

42 / 47



Gene-environment interaction (Reading)
Outcome:
Reading (Grade 9) (1) (2) (3) (4)

PGIEA 0.302***
(0.006)

0.227***
(0.008)

0.231***
(0.005)

0.230***
(0.005)

QS (Reading) 0.064***
(0.009)

0.063***
(0.009)

0.036***
(0.005)

0.034***
(0.005)

PGIEA × QS (Reading) -0.014**
(0.005)

-0.014**
(0.005)

-0.009**
(0.003)

-0.008
(0.005)

Parental PGI × X X X

Genotyping controls × X X X

Child controls × × X X

School controls × × X X

Saturation controls × × × X

N 32, 262 32, 262 32, 262 32, 262

Note: Own calculations. Standard errors (in parentheses) are clustered at the family level. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.

42 / 47



Gene-environment interaction (Reading)
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Gene-environment interaction (Numeracy)
Outcome:
Reading (Grade 9) (1) (2) (3) (4)

PGIEA 0.315***
(0.005)

0.237***
(0.008)

0.241***
(0.004)

0.241***
(0.004)

QS (Numeracy) 0.056***
(0.010)

0.055***
(0.010)

0.027***
(0.003)

0.028***
(0.003)

PGIEA × QS (Numeracy) -0.005
(0.005)

-0.005
(0.005)

-0.001
(0.003)

-0.001
(0.004)

Parental PGI × X X X

Genotyping controls × X X X

Child controls × × X X

School controls × × X X

Saturation controls × × × X

N 32, 262 32, 262 32, 262 32, 262

Note: Own calculations. Standard errors (in parentheses) are clustered at the family level. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.
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Gene-environment interaction (Numeracy)
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Contextualizing e�ect sizes

- Estimates pertain to a low inequality country. Inequality in VA

- Assuming cross-country portability of e�ects, substitutability would be 10% for grade 9 in
Chicago high schools.

- Estimates pertain to one year of schooling.
- Assuming linear additive e�ects, substitutability increases to 12% over the course of lower

secondary school (grades 8-10) in Norway.

- Estimates can be compared to substituability in other dimensions of advantage:
- Latent family SES (∆1SD): 2.87% (Jackson et al., 2024).
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Take-aways

- Genetic e�ects and gene-environment interactions relate to fundamental questions in
research on socioeconomic inequality.

- Causal studies require careful identification strategies (and excellent data) to avoid bias.

- To date, causal studies are constrained by data availability.

- Proliferation of new genetic data will li� current constraints and open new avenues for
research on socioeconomic inequality.
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Thank you for your attention! Questions?

B paul.hufe@bristol.ac.uk

� www.paulhufe.net
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Back Educational outcomes Yi
Standardized national tests in reading and numeracy (grade 9)

- Low stakes
→ Communicated to parents and teachers but mostly used to track student development.

- Computer corrected
→ Not a�ected by teacher biases.

- Taken at beginning of the school year
→ Measure skills accumulated until grade 9.

- Same test as in grade 8
→ Allow mapping for VA calculation.

- Highly predictive of later life-outcomes
→ 1 SD ↑ in numeracy, increases high school graduation at age 21 by 9.5 p.p.
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Back Genetic endowments PGIEA

- We use the polygenic index (PGI) for
educational attainment from Okbay et al.
(2022):

- Discovery sample of 3 mn people of
European descent.

- Explains 16% of variation in years of
education.

- ≈ 56% of explanatory power due to direct
genetic e�ects.
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Back School quality QS

1. We construct school VA for reading and numeracy in grade 8 (Angrist et al., 2023).

2. We model educational outcomes Y of student i attending school j in cohort c for subject d:

Y d
ijc = βdZijc +Qdjc + εdijc︸ ︷︷ ︸

=edijc

3. We estimate school e�ects in subject d by averaging over residuals in school-cohort cells:

Qdjc =
∑

edijc/Njc

4. We apply the Bayesian Shrinkage estimator à la Chetty et al. (2014).

5. Highly predictive of later life-outcomes
→ 1 SD ↑ in VA, increases years of schooling by 0.5-0.8 years (Kirkebøen, 2022).

6 / 8



Back Controls Xi(a)

Child controls
- Lagged test scores in

numeracy, reading,
English

- Parental years of
education

- Migration status
- Age of arrival in Norway
- # of siblings
- Gender
- Year of birth
- Birth order

School controls
- School-cohort averages of

all child background
variables

Parental PGI
- PGIEA mother
- PGIEA father

Genotyping controls
- Genotyping center
- Genotyping batch
- Genotyping plate
- Imputation batch

Saturation controls
- Interaction of child

background controls,
school controls, and
parental PGIs with
PGIEA and QS
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Back Inequality in VA

Estimates from public schools
in other industrialized countries
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