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Background and motivations

• You might think that it is straightforward to assess 
whether income inequality trends over time are 
statistically significant …
 Simply derive estimates of indices and their standard errors 

for each year using standard methods and then do t-tests of 
inequality differences for pairs of years

 Just as you might do for assessing the statistical significance 
of trends in other socioeconomic indicators

• However, this strategy is flawed …
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Background and motivations

• Conventional approaches to assessing the statistical 
significance of inequality differences have long been 
criticized as having poor statistical performance even in 
large samples

• See, e.g., Cowell and Flachaire (2007, 2015), Davidson 
(2012), Davidson and Flachaire (2007), Schluter 
(2012), and Schluter and van Garderen (2009)
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Background and motivations
• Tests based on standard asymptotic 

(linearization) methods and standard 
bootstrap methods are not reliable
 ‘t-statistics’ do not tend towards N(0,1) but 

towards skewed distributions
 Examples from Schluter (2012) for 

GE(0.05), GE(1.05), GE(2) indices →
• The source of the problem is that 

income distributions are typically 
heavy-tailed
 Skewed long right-hand tail with Pareto-like 

shape at the top, and also …
 Right-hand tail in survey data is sparse and 

may contain influential outlier observations
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Proposals for better inference 
[All use simulation analysis to verify properties. More details later]

Davidson & Flachaire (J E’metrics, 2007), Cowell & Flachaire 
(J E’metrics, 2007)
• Semiparametric asymptotic (= first stage of …)
• Semiparametric percentile-t bootstrap
• M out of N (‘Moon’) bootstrap (less favoured by them)
Ibragimov et al. (2010, 2021), also evaluated and applied by 
Midões & de Crombrugghe (JEI, 2023)
• Student-t tests based on sample splitting (problematic?)
Dufour, Flachaire & Khalaf (JBES, 2019)
• Permutation tests (but don’t work with weighted data)
Schluter & van Garderen (J E’metrics, 2009)
• Normalizing transformations (only application we’ve seen)
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Our main contribution

• Comparison of the improved inferential methods in a 
real-world setting, using yearly UK household survey 
data for 1977–2018 (42 years), not SimData world
 Has inequality changed in a statistically significant sense?
 Do the methods provide similar or different conclusions?
 Recommendations about which method to use because some 

are more complex to implement than others

• Important because income inequality statistics are key 
social indicators
 Inequality levels and trends are the subject of public attention
 Relatively long time series are available, as well as the unit 

record survey data used to derive them
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UK inequality changes − are they significant?
• Unit record data from UK ONS (equivalized household income among individuals): more later
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Additional contributions
• We extend the proposed inferential methods to increase 

their useability
• Unit record data approach to estimation rather than 

employing method of moments estimators as Davidson 
and Flachaire (2007) and Cowell and Flachaire (2007), 
which means …

1. You can incorporate survey weights 
 Weights are ignored by all the improved inference papers 

even though virtually all household surveys contain weighting 
variables

 Not using the weights when deriving inequality indices (or 
other descriptive statistics) leads to biased estimates

 Could also incorporate survey clustering and stratification – 
(relevant for SEs) but information not available in our datasets
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Additional contributions
• We extend the proposed inferential methods to increase 

their useability
• Unit record data approach to estimation rather than 

employing method of moments estimators as Davidson 
and Flachaire (2007) and Cowell and Flachaire (2007), 
which means …

2. You can easily use a wide(r) range of inequality 
indices
 Almost all research proposing revised inference methods has 

focused on the Theil index or a few other Generalized 
Entropy indices

 Our approach: almost any index you like, including the Gini, 
p90/p10, top income shares (as in earlier slide)

– Useful to be able to consider the different judgements built into different indices 
(do inequality trend assessments depend on the index chosen?)
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Our paper versus others …
• Closest in spirit to Alfons, Templ, and Filzmoser (JRSSC, 2013)

 Like them: unit record data approach and incorporation of survey weights, 
plus use of robust estimators of Pareto distribution shape parameters

 But Alfons et al. only consider semiparametric asymptotic estimators and 
not also semiparametric percentile-t estimators, they measure inequality 
using the Gini coefficient alone, their substantive application examines only 
two countries (Belgium and Austria) for two years (2005, 2006), and they 
do not formally test for inequality differences

 We compare a larger portfolio of estimators and inequality indices and 
undertake formal tests of inequality differences on a relatively large scale 
(for 42 years of UK survey data)

• Ibragimov et al. (arXiv, 2021) and Midões and Crombrugghe 
(JEI, 2023) also use some real-world data …
 They assess inequality differences (for one year) across Russian regions, 

and between two Russian surveys, and compare findings of several 
inferential methods albeit with a Student-t focus

 But only for the Gini coefficient and Theil index respectively; and they use 
unweighted survey data

 We make more extensive comparisons, use wider range of indices, weights
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Headline findings (1)

1. All 3 of the semiparametric methods we consider 
yield similar conclusions about the statistical 
significance of inequality changes in the UK
 All 3 differ from the conventional asymptotic approach 

which provides less precise estimators
 Evidence suggests practitioners can use the 

semiparametric asymptotic approaches for inference 
rather than the more complex semiparametric bootstrap 
variants
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Headline findings (2)

2. The large inequality rise over the 1980s was 
statistically significant, as expected, but … 

3. Application of semiparametric approaches to 
inference substantially increases the number of 
statistically significant inequality differences for 
pairs of years in the 30-year period following the 
late-1980s
 Comparing pairs of Gini coefficients rounded to two 

decimal places (as in UK DWP HBAI reports) is a 
relatively conservative approach to assessing the 
statistical significance of inequality changes
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Outline

1. Five approaches to estimation and inference
2. Data
3. Results
4. Conclusions
plus
5. Additional slides
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Approaches to estimation 
and inference

1. Conventional asymptotic
2. Semiparametric asymptotic
3. Semiparametric bootstrap percentile-t: DF 
4. Semiparametric bootstrap percentile-t: CF
5. Student-t
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Conventional asymptotic method
Given unit record data from a household survey:
Estimation of inequality index (point estimate)
1. Direct calculation from unit record data (most packages), 

or
2. Method of moments for distribution F

 E.g., Theil index T(F) = (vF /µF) − log(µF),  
  where vF = EF[Ylog(Y)] and µF = EF[Y] 
 Replace moments vF , µF by their sample counterparts (from data)

Variance of estimate 
1. Via linearization/influence function method applied to unit 

record data
2. Method of moments: expression via delta method; variance 

estimate is function of covariance matrix for moments
• Both consistent, asymptotically normal, given standard 

assumptions (top-income problems aside)
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Conventional asymptotic method: testing
• To test the hypothesis of equality for pair of years A and B, 

the Studentized (t-type) test statistic W* is given by:

𝑊𝑊∗ =
̂𝐼𝐼𝐵𝐵 − ̂𝐼𝐼𝐴𝐴

̂𝑉𝑉 ̂𝐼𝐼𝐴𝐴 + ̂𝑉𝑉 ̂𝐼𝐼𝐵𝐵 0.5

where the 𝐼𝐼 and �𝑉𝑉 are the inequality index and variance 
estimates (Davidson and Flachaire, 2007, eqn. 16)

• The p-value for the null hypothesis of no difference 
in inequality according to index I is:

𝑃𝑃∗ = 2𝑁𝑁 − 𝑊𝑊∗

where N(.) is standard normal CDF
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Semiparametric asymptotic method
1. Fit Pareto distribution to the top ptail fraction of the distribution, i.e., 

fraction of obs with R = 1, where R means ‘Rich’
 Addresses heavy-tail and outlier/sparsity issues by ‘filling in’ at the top

2. Income distribution analyzed is a combination of observed incomes for 
R = 0 cases and Pareto for R = 1 cases

3. Estimation of index and its variance can be done in 2 ways:
a) Method of moments (D&F/C&F): Derive moments for full distribution by 

combining empirical moments for R = 0 cases and, for R = 1 cases, the  
moments implied by the fitted Pareto distribution

– C&F have index-specific formulae for GE family of indices but only for the case of unweighted data
– If have survey weights, formulae exist in principle but very complicated (not considered by D&F/C&F)

b) Unit record data method (what we use) Observed data for R = 0 but, for R 
= 1, take random draws from the fitted Pareto distribution, then allocate to 
the rth richest imputed value the weight of the rth richest observed value

– This is essentially the Alfons et al. (JRSSA, 2013) ‘Replacement of non-representative outliers’ method’
– But we also improve coverage of top by drawing M = 10 for each R=1 obs and modify the survey 

weights accordingly (cf. Blanchet, Flores, Morgan, JEI, 2023)
– Because we have a unit record distribution of incomes (and weights), we can apply the conventional 

asymptotic methods for unit record data (previous slide)
– Easy to calculate any index and its SE, i.e., not restricted to only e.g. GE family (D&F/C& focus) or 

Gini (Alfons et al.’s focus)
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Semiparametric asymptotic method: 
testing

• Test statistic W* and the p-value for the hypothesis 
of no inequality difference are calculated as for 
conventional asymptotic approach (above) …

• … Except that the inequality and variance estimates 
now refer to estimates derived from semiparametric 
distributions
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Semiparametric percentile-t bootstrap method:
D&F → DF (our variant)

Steps:
1. Derive an income distribution using the semiparametric asymptotic 

approach (as described earlier) and compute each index and its 
variance

2. Construct a bootstrap sample, b, and calculate bootstrap sample 
estimates:
 D&F and DF: Each bootstrap sample combines a standard 

bootstrap sample of R = 0 obs plus, for R = 1 obs, random draws 
from the Pareto distribution fitted at step #1

 Calculate indices and variance estimates from bootstrap sample b
– D&F use the method of moments
– DF: we use the unit record data (allowing for weights as above)

3. Repeat Step 2 B times and calculate bootstrap test statistics
4. Repeat Steps 1−3 for each year’s data, and 
5. Undertake tests for pairs of years (see below)
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Semiparametric percentile-t bootstrap method
C&F → CF (our variant)

• C&F/CF #1: derive semiparametric estimate and variance (as for 
D&F), including fitting of a Pareto distribution to R = 1 cases
 But the next steps (C&F and CF) also allow for the uncertainty introduced by 

having to estimate the Pareto shape parameter (unlike D&F/DF)
 Each bootstrap sample uses a different Pareto distribution to model the data for 

the R = 1 cases (rather than the same one)

• C&F #2: Take a bootstrap sample b of all cases 
 (i) Fit a Pareto distribution to the R = 1 obs in bootstrap sample b; construct a 

semiparametric income distribution combining observed sample data for R = 0 
obs and, for sample R = 1 obs, draws from Pareto distribution with shape 
parameter �𝜃𝜃𝑏𝑏; 

 (ii) calculate index and variance estimates using method of moments

• CF #2: As C&F #2, except …
 (i) �𝜃𝜃𝑏𝑏 is a random draw from the Pareto shape parameter fitted at Step #1, with 

distribution assumed ~ N( �𝜃𝜃, SE( �𝜃𝜃)) 
 (ii) calculate index and variance estimates using unit record data (as per DF)
 Substep (i) allows for uncertainty (as C&F) but is faster and more robust, we 

found, as not refitting at each replication and fewer convergence issues

• C&F/CF #3, #4, #5 : as for D&F/DF
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Semiparametric percentile-t bootstrap 
methods: testing

• The Studentized test statistic for each pair of bootstrap 
samples, b, is:

𝑊𝑊𝑏𝑏
∗ =

̂𝐼𝐼𝐵𝐵𝐵𝐵 − ̃𝐼𝐼𝐵𝐵 − ̂𝐼𝐼𝐴𝐴𝐴𝐴 − ̃𝐼𝐼𝐴𝐴
̂𝑉𝑉 ̂𝐼𝐼𝐴𝐴𝐴𝐴 +  ̂𝑉𝑉 ̂𝐼𝐼𝐵𝐵𝐵𝐵 0.5

 The “~” estimates are the ones from Step #1 
 “[T]he numerator is recentred so that the statistic tests a hypothesis that is true for the 

bootstrap samples” (Davidson & Flachaire, 2007, p. 146)

• The bootstrap p-value for the test of no difference in 
equality is the proportion of bootstrap samples for which the 
bootstrap statistic is more extreme than the one calculated 
from the original (semiparametric) data, W*:

𝑃𝑃∗ =
1

𝐵𝐵
�
𝑏𝑏=1

𝐵𝐵

𝜄𝜄 𝑊𝑊𝑏𝑏
∗ > 𝑊𝑊∗

where ι(.) is the indicator function (Cowell & Flachaire, 2007, eqn. 18)
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Researcher choices (i)
Pareto: definition of the R = 1 group to which model fitted? 
• Trading off bias and variance: literature on methods for 

choosing k richest obs for fitting (and hence lower threshold 
defining Pareto)

• Instead of choosing k for each year separately, we fix ptail 
because we have 42 years of data and survey weights 
 Consistent, economical rule for large number of comparisons
 Atkinson & Jenkins (2022), Jenkins (2017), and C&F/D&F also use 

rules of thumb, e.g. D&F: k = sqrt(N)

• We focus on case of ptail  = 5%, in which case min(k) = 239 
and max(k) = 339 households
 We also have results for ptail = 1% (k much smaller), with more 

larger swings in CIs from one year to next, and smaller p-values; 
conclusions similar anyway
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Researcher choices (ii)

Pareto: which fitting method? 
• D&F/C&F and others use the Maximum Likelihood 

(Hill) estimator
• We use a robust (Optimal B-Robust Estimator, OBRE) 

method (i.e., modified ML) though, in practice, 
estimates differ little from ML 
 Robustness refers to how influenced by ‘contamination’ (high 

leverage outliers at the top)
 Brzezinski (2016) Monte-Carlo study: OBRE performs well 

compared to 4 competitors including that used by Alfons et al. 
(2013)
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Researcher choices (iii)
Which inequality indices?
• We want a wide range to allow a range of value judgements 

as well as those in common use (e.g., Gini, p90/p10)
 D&F: focus entirely on Theil = GE(1)
 C&F: focus on GE(α) indices, bottom- to top-sensitive: 

GE(−1), GE(0), GE(0.5), GE(1), GE(2)
 Alfons et al. and Ibragimov et al.: Gini
 MdeC: Theil

• Our derivations use: Gini, GE(0) = MLD, GE(1) = Theil, 
income share of top 10%, income share of top 1%, plus 
p90/p10, GE(−1), GE(2) = half-CV2

 But not all are reported in the main text because …
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Researcher choices (iv)
Heavy-tailed distributions and their moments
• Existence of Pareto distribution moments depends on �𝜃𝜃

 The more tail heavy the distribution, the more moments that don’t exist, e.g. 
if 𝜃̂𝜃 < 2, infinite variance; if 𝜃̂𝜃 < 1, infinite mean 

 For index GE(α), require 𝜃̂𝜃 ≥ max(2, 2α) to calculate SEs via method of 
moments

 Hence top-sensitive indices like GE(2) problematic − require 𝜃̂𝜃 ≥ 4 − and 
this rarely the case

 And these top-sensitive indices very affected by high-income outliers 
anyway (C&F)

• Problems with a unit record data approach for related reasons:  
some moments based on fourth powers
 We had computational problems/non-robustness implementing the C&F 

method, motivating some of our modifications of it described earlier
 So, we do not report GE(2) estimates in the main text, nor GE(−1) estimates 

(they’re reported in the appendices at the end)
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Researcher choices (v)

Number of bootstrap repetitions, B
• D&F/C&F/MdeC: B = 199
• We use B = 999 

 Trade-off between reducing bootstrap uncertainty and 
increasing computational burden
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Student-t approach (Ibragimov et al., MdeC)
For each year’s data
1. Split sample randomly into q groups, with q ≥ 2 
2. Calculate each inequality index I separately for each group

 Can use any inequality index (but they focus on Gini, Theil)

3. Derive overall estimate of I as simple group-average of the 
𝐼𝐼, and its variance as sample variance of 𝐼𝐼

4. Use these components as inputs to usual pairwise t-tests 
• MdeC: (a) “simple, intuitive, and computationally cheap”,  

and also claim (b) has good properties (from simulation 
evidence about test size and power)

• Researcher choice of q: MdeC highlight the case of q = 8
• We’ve applied the approach but do not show full results

 We have questions about the approach’s robustness to data sort 
order, and the consistency of estimates in practice (see below)
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Data

UK, 1977−2018 (42 years)
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Data: UK, 1977−2018
• Same data as used in ONS official statistics: ‘Effects of 

taxes and benefits on household income’ (ETB) statistics 
and report (annual)
 Our dataset is the version ONS used prior to introduction of top-

income adjustments; long consistent series up to onset of Covid-19

• Data from annual Living Costs and Food Survey (LCFS) 
and its predecessors
 Nationally representative survey of UK private household 

population; independent samples per year
 Survey weights adjust for household size, and non-response and are 

calibrated to population totals
– Non-response/grossing-up aspect of weights introduced in 1996 

dataset
 No PSU or strata information available in the public-use file 
 N ≈ 6,500 households per year on average; N ranges from c. 4,900 to 

7,500 (more on numbers in appendix table at end)
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Data: definitions, selections
• Income: disposable/net income = gross income (from 

market, transfers) − direct taxes (income taxes, employee 
National Insurance Contributions, local taxes), equivalised 
using modified-OECD scale
 Standard ‘Canberra Group’ definition, also used by Eurostat/SILC

• Unit of analysis = individual (each person attributed with 
equivalised income of his/her household)
 Survey weights include household size

• Trimmed distributions − we drop a small number of 
incomes: (a) zero, negative, positive but less than one, and 
(b) highest income(s) if more than twice as large as the next 
highest income (only 9 households over 42 years)
 Fraction of households dropped averages 0.23% yearly (never more than 

0.48%): for more details, see appendix table at end
 Analysis repeated using untrimmed data show effects of trimming most 

noticeable for GE(−1) and GE(2), as expected

30



Empirical results
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Empirical results: running order
1. How (point) estimates differ by method
2. How precision of estimates differs by method

 With some evidence to show why we don’t proceed further with the 
Student-t approach

3. Tests of inequality differences between year-pairs (A, B)
 Focus on test results for Gini and Theil for brevity 

– Results for other indices available in the additional slides at end

 42 years ⇒ 861 possible pairwise tests per index! So, we show:
a) Count of number of years with p-value < 5% for test of no 

inequality difference between year A and every other year (B), by 
method and index (maximum count = 41)

b)  p-values for tests of no inequality difference between year A and 
every other year (B), for each A ∈ {1977, 1990, 2006, 2018}, by 
method and index

• NB in what follows, ‘DF’, ‘CF’ refer to our variants of D&F’s and 
C&F’s approaches
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Inequality estimates, by index
• Semiparametric asymptotic series very similar to the conventional asymptotic 

estimates (red versus blue)
• Student-t series out of line with the asymptotic ones  (green versus blue/red)
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Indicative precision: 95% CI ‘spans’ 
(CI as % estimate), 42-year average

• Larger values mean less precise
• Greater precision from semiparametric approaches relative to asymptotic
• Much lower precision for Student-t approach
• Much lower precision for GE(-1), GE(2) regardless of approach
• p90/p10: precision ~ same for all (except Student-t approach)
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Index Asymptotic Semiparametric 
asymptotic

Semiparametric 
bootstrap (DF)

Semiparametric 
bootstrap (CF)

Student-t (8 
groups)

(1) (2) (3) (4) (5)
Gini 6.07 3.18 2.86 4.12 10.11
MLD = GE(0) 13.14 7.34 6.94 9.53 21.70

Theil = GE(1) 20.39 7.99 7.22 13.55 33.35
Top 10% share 7.58 3.10 2.60 4.98 12.50
Top 1% share 29.97 8.93 8.11 19.60 48.18
GE(−1) 28.88 27.31 49.68 49.21 50.98
GE(2) 46.63 19.49 27.03 44.15 80.56
p90/p10 6.88 6.18 6.16 6.23 10.72



Indicative precision: 95% CI ‘spans’:
year by year

• Ordering is consistently as per Table
 except for Theil index in 2010

• Semiparametric asymptotic and DF are the most 
precise
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Count of p-values < 5% for test of no inequality difference 
between year A and every other year (B), by method: Gini

• DF/CF labels refer to our modifications to D&F/C&F
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Count of p-values < 5% for test of no inequality difference 
between year A and every other year (B), by method: Theil

• DF/CF labels refer to our modifications to D&F/C&F
• Go to counts for GE(0), top 10% share, top 1% share, p90/p10, GE(−1), GE(2)
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p-values for test of inequality difference between year A ∈ 
{1977, 1990, 2006, 2018} and every other year (B), by method: 

Gini

• s
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• DF/CF labels refer to our modifications to D&F/C&F
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p-values for test of inequality difference between year A ∈ 
{1977, 1990, 2006, 2018} and every other year (B), by method: 

Theil

• s
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• DF/CF labels refer to our modifications to D&F/C&F
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Lessons for statistical agencies and 
practitioners? (1)

1. Statistical agencies and other researchers typically use 
the conventional asymptotic approach to calculate SEs 
… but none account for heavy tail issues

• Our analysis shows that semiparametric asymptotic 
could be used: performs well and easy to implement
 And can be easily extended to account for clustering and 

stratification
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Lessons for statistical agencies and 
practitioners? (2)

2. UK DWP’s HBAI reports only publish Gini estimates 
rounded to 2 d.p. − does this provide a cheap and 
transparent way to guard against unwarranted claims of 
statistically significant inequality differences?

• In the UK context, changes in the Gini (and Theil) index 
rounded to the nearest percent may not be statistically 
significant, but there are multiple instances where they are
 E.g., consider differences in Gini relative to the 1990 value (0.3396, 

which rounds to 34%): there are statistically significant differences 
between the 1990 Gini and the Ginis for 1996, 1997, 2008 and 2009 
(rounded Gini = 33%) according to the semiparametric approaches 

 Similarly, for the Theil index (not reported by the ONS ETB report)

• So, from a sampling variability perspective, the 
presentational choice in the DWP’s HBAI reports is 
conservative 
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Conclusions
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Conclusions (1)
• All 3 semiparametric methods provide similar results, and results that 

differ from the conventional asymptotic method (which yields larger 
SEs; fewer significant differences)
 Improvements relative to conventional asymptotic method 

particularly marked from late 1980s onwards
– E.g., using semiparametric methods, for each year from 1987, around 30 of 41 

pairwise comparisons with each other year is statistically significant for Gini 
and Theil (cf. ~ 15–20 for conventional asymptotic)

 Similarity between semiparametric asymptotic and semiparametric 
percentile-t results − noted by Cowell & Flachaire (2007) from 
simulation analysis, but we’ve shown similarity occurs in the real 
world too! Similarly, …

 Inference about GE(2) differences not improved using the 
semiparametric methods – problematic for all methods – and, to a 
lesser extent GE(−1): influential outliers at top (and bottom) … even 
after light trimming of data

 p90/p10 inference/test outcomes similar for all methods including 
conventional asymptotic – unsurprising given nature of index?
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Conclusions (2)
• Switching from methods of moments approaches to unit record data 

approaches has benefits
 Can consider almost any inequality index you like
 Can incorporate sample design features: weighting (also clustering, stratification)

• Need more simulation evidence about the performance of the different 
methods for two-sample tests
 Davidson and Flachaire (2007) and Cowell and Flachaire (2007), and other 

researchers proposing improved inference, focus on one-sample tests when 
assessing performance of methods, and yet two-sample tests the most 
relevant for applied researchers

• Ongoing issues relating to whether/how income data should be pre-
screened to remove egregious outliers
 Are outliers random ‘dirt’ or genuine (cf. Cowell/Flachaire) − influential in either 

case
 We’ve used a conservative trimming approach (more conservative than many)
 NB using data in which we do not trim outliers (according to our rule) doesn’t 

change results much − except for very top- or bottom sensitive inequality indices

• And … finally … 
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Conclusions (3)
• New inference methods are also required to address new developments
• The income inequality data published by the UK ONS now include a 

top-income adjustment (backdated to 2001), and the Department for 
Work and Pensions (Family Resources Survey), has included a top-
income (‘SPI’) adjustment since 1992

• These top-income adjustments use external information about top-
incomes taken from income tax administrative data 
 Our current paper and the ‘improved inference’ literature uses no external 

information (Pareto distributions for top incomes estimated from the survey 
data to hand)

• How to assess statistical significance of differences in inequality 
calculated from survey data that have been top-income adjusted using 
external data is an open issue: we’re beginning to work on this using the 
revised ONS data series

• But NB suitable administrative record data on incomes not available for 
most countries in the world; they must continue to rely on the household 
survey data that are available, and the findings of this paper remain 
relevant for this common situation
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Additional slides

1. Sample sizes (and numbers trimmed)
2. Test p-values (1977, 1990, 2006, 2018 versus 

every other year) for additional indices: 
MLD, top 10% share, top 1% share, GE(−1), 
GE(2)

3. Test p-values (Gini, Theil) for ptail = 1%
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Sample sizes 
and numbers of 
trimmed observations:

Number of outliers at 
bottom (income < 1) 
and 
Number of outliers at 
top (top income > 2× 
next highest income)

Return to Data section

47

Year 
Number of 

households in 
LCFS 

Negative 
or zero 
income 

Income 
between 0 

and 1 

Top-
income 
outlier 

(2) + 
(3) + 

(4) as 
% of 

(1) 

Number of 
households in 

analysis 
sample 

Weighted 
number of 

individuals 

 (1) (2) (3) (4) (5) (6) (7) 
1977 7,193 11 3 0 0.19 7,179 19,797 
1978 6,996 7 2 0 0.13 6,987 18,939 
1979 6,768 8 0 0 0.12 6,760 18,202 
1980 6,942 9 3 0 0.17 6,930 18,799 
1981 7,520 8 1 0 0.12 7,511 20,462 
1982 7,420 7 2 1 0.13 7,410 19,900 
1983 6,964 9 0 0 0.13 6,955 18,412 
1984 7,077 9 0 0 0.13 7,068 18,498 
1985 7,007 6 0 0 0.09 7,001 18,140 
1986 7,175 7 0 1 0.11 7,167 18,285 
1987 7,395 1 0 0 0.01 7,394 18,723 
1988 7,264 7 1 1 0.12 7,255 18,244 
1989 7,406 6 1 0 0.09 7,399 18,526 
1990 7,038 12 0 0 0.17 7,026 17,333 
1991 7,054 6 0 0 0.09 7,048 17,063 
1992 7,417 10 2 0 0.16 7,405 18,144 
1993 6,975 7 2 0 0.13 6,966 17,236 
1994 6,849 16 0 0 0.23 6,833 16,550 
1995 6,794 11 0 0 0.16 6,783 16,532 
1996 6,413 9 0 0 0.14 6,404 57,712 
1997 6,409 6 0 0 0.09 6,403 58,089 
1998 6,629 14 1 0 0.23 6,614 58,215 
1999 7,096 26 2 0 0.39 7,068 58,449 
2000 6,634 20 0 0 0.30 6,614 58,691 
2001 7,466 31 1 0 0.43 7,434 58,790 
2002 6,926 31 1 1 0.48 6,893 57,700 
2003 7,047 22 2 1 0.35 7,022 57,945 
2004 6,794 15 1 0 0.24 6,778 58,059 
2005 6,778 11 1 0 0.18 6,766 58,014 
2006 6,387 18 2 1 0.33 6,366 58,457 
2007 6,108 15 3 1 0.31 6,089 59,300 
2008 5,764 14 5 1 0.35 5,744 60,307 
2009 5,575 18 0 0 0.32 5,557 60,550 
2010 5,253 10 1 0 0.21 5,242 61,408 
2011 5,672 13 0 0 0.23 5,659 61,335 
2012 5,456 12 1 1 0.26 5,442 62,805 
2013 5,089 22 0 0 0.43 5,067 63,155 
2014 5,095 19 0 0 0.37 5,076 63,514 
2015 4,912 20 0 0 0.41 4,892 63,704 
2016 5,041 21 0 0 0.42 5,020 64,243 
2017 5,407 23 0 0 0.43 5,384 64,350 
2018 5,473 24 2 0 0.48 5,447 64,801 

Average 6,540 13.60 0.95 0.21 0.23 6,525 41,366 
 



Results for additional indices

MLD
Share of top 10%, share of top 1%

p90/p10
GE(−1), GE(2) 

Return to main
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Count of p-values < 5% for test of no inequality difference 
between year A and every other year (B), by method: MLD
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Back to main indices
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p-values for test of inequality difference between year A ∈ 
{1977, 1990, 2006, 2018} and every other year (B), by method: 

MLD
Back to main indices
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Count of p-values < 5% for test of no inequality difference 
between year A and every other year (B), by method: Share 

top 10%
Back to main indices
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p-values for test of inequality difference between year A ∈ 
{1977, 1990, 2006, 2018} and every other year (B), by method: 

share of top 10%
Back to main indices
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Count of p-values < 5% for test of no inequality difference 
between year A and every other year (B), by method: Share 

top 1%
Back to main indices
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p-values for test of inequality difference between year A ∈ 
{1977, 1990, 2006, 2018} and every other year (B), by method: 

share of top 1%
Back to main indices
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Count of p-values < 5% for test of no inequality difference 
between year A and every other year (B), by method: p90/p10

Back to main indices
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p-values for test of inequality difference between year A ∈ 
{1977, 1990, 2006, 2018} and every other year (B), by method: 

p90/p10
Back to main indices
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GE(−1), by year and method
Back to estimates #1, #2
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Count of p-values < 5% for test of no inequality difference 
between year A and every other year (B), by method: GE(−1)

Back to main indices
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p-values for test of inequality difference between year A ∈ 
{1977, 1990, 2006, 2018} and every other year (B), by method: 

GE(−1)
Back to main indices
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GE(2), by year and method
Back to estimates #1, #2
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Count of p-values < 5% for test of no inequality difference 
between year A and every other year (B), by method: GE(2)

Back to main indices
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p-values for test of inequality difference between year A ∈ 
{1977, 1990, 2006, 2018} and every other year (B), by method: 

GE(2)
Back to main indices
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Selected results based on fitting 
Pareto distributions with ptail = 1%

[Cf. main text: ptail = 5%]
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p-values for test of inequality difference between year A (1977, 
1990, 2006, 2018) and every other year (B), by method: Gini

ptail = 1%

•  
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p-values for test of inequality difference between year A (1977, 
1990, 2006, 2018) and every other year (B), by method: Theil

ptail = 1%

•  
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