

Welfare and poverty comparisons axiomatic 'prioritarian' procedures

Erwin Ooghe [& Kristof Bosmans & Luc Lauwers]

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

aim of this part of the lecture:

- to look at an *axiomatic* framework
- for welfare and poverty comparisons
- • in case of multiple attributes

aim of this part of the lecture:

- to look at an *axiomatic* framework
- for welfare and poverty comparisons
- in case of multiple attributes

some **problems**:

- how deal with ordinal attributes?
- (only for poverty:) how identify the poor?

KORK STRAIN A STRAIN A STRAIN

• how give priority to the worse off?

- MD poverty and welfare measurement; **typically**:
	- all attributes cardinal
	- 1 cardinal & 1 ordinal attribute (index of needs)
	- 1 cardinal & many ordinal (usually binary) attributes

K ロ X K 個 X K ミ X K ミ X ミ X Y Q Q Q

- MD poverty and welfare measurement; **typically**:
	- all attributes cardinal
	- 1 cardinal & 1 ordinal attribute (index of needs)
	- 1 cardinal & many ordinal (usually binary) attributes

KORK ERKERY ADAMS

- a **unifying** framework; notation:
	- set of attributes $I = C \cup O$

- MD poverty and welfare measurement; **typically**:
	- all attributes cardinal
	- 1 cardinal & 1 ordinal attribute (index of needs)
	- 1 cardinal & many ordinal (usually binary) attributes

KORK ERKERY ADAMS

- a **unifying** framework; notation:
	- set of attributes $I = C \cup O$
	- attribute bundles $x = (x_C, x_O) \in B$

- MD poverty and welfare measurement; **typically**:
	- all attributes cardinal
	- 1 cardinal & 1 ordinal attribute (index of needs)
	- 1 cardinal & many ordinal (usually binary) attributes

- a **unifying** framework; notation:
	- set of attributes $I = C \cup O$
	- attribute bundles $x = (x_C, x_O) \in B$
	- a distribution $X = (x^1, x^2, ...) \in D$

- MD poverty and welfare measurement; **typically**:
	- all attributes cardinal
	- 1 cardinal & 1 ordinal attribute (index of needs)
	- 1 cardinal & many ordinal (usually binary) attributes
- a **unifying** framework; notation:
	- set of attributes $I = C \cup O$
	- attribute bundles $x = (x_C, x_O) \in B$
	- a distribution $X = (x^1, x^2, ...) \in D$
	- a 'better-than' ranking \succsim on *D*: *X* \succsim *Y* & *x* \succsim *y*

- MD poverty and welfare measurement; **typically**:
	- all attributes cardinal
	- 1 cardinal & 1 ordinal attribute (index of needs)
	- 1 cardinal & many ordinal (usually binary) attributes
- a **unifying** framework; notation:
	- set of attributes $I = C \cup O$
	- attribute bundles $x = (x_C, x_O) \in B$
	- a distribution $X = (x^1, x^2, ...) \in D$
	- a 'better-than' ranking \geq on *D*: $X \geq Y \& x \geq y$
- note: some axioms will be **tailored** to attribute type

• Given a poverty bundle $z \in B$, who is poor?

イロトス 伊 トス ヨ トス ヨ トー

÷,

 299

• Given a poverty bundle $z \in B$, who is poor?

o minimalistic: $P = \{x \in B | x \prec z\}$ & $R = \{x \in B | x \succ z\}$

KORK STRAIN A STRAIN A STRAIN

• Given a poverty bundle $z \in B$, who is poor?

o minimalistic: $P = \{x \in B | x \prec z\}$ & $R = \{x \in B | x \succ z\}$

note: poverty frontier—as in (iii)—but defined by axioms

- Example 1; consider:
	- two individuals, 1 cardinal and 1 binary attribute

• a MD welfare index
$$
W = \sqrt{x_1^1/m(x_2^1)} + \sqrt{x_1^2/m(x_2^2)}
$$

• if
$$
m(0) = 2 > m(1) = 1
$$
, then $x^1 = (4, 0) \prec (4, 1) = x^2$

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

- Example 1; consider:
	- two individuals, 1 cardinal and 1 binary attribute

• a MD welfare index
$$
W = \sqrt{x_1^1/m(x_2^1)} + \sqrt{x_1^2/m(x_2^2)}
$$

• if
$$
m(0) = 2 > m(1) = 1
$$
, then $x^1 = (4, 0) \prec (4, 1) = x^2$

- what to do with an **extra** unit of the cardinal attribute?
	- if we give it to the worse off, then $\Delta W \cong 0.17$
	- if we give it to the better off, then $\Delta W \cong 0.24$

- Example 1; consider:
	- two individuals, 1 cardinal and 1 binary attribute

• a MD welfare index
$$
W = \sqrt{x_1^1/m(x_2^1)} + \sqrt{x_1^2/m(x_2^2)}
$$

• if
$$
m(0) = 2 > m(1) = 1
$$
, then $x^1 = (4, 0) \prec (4, 1) = x^2$

- what to do with an **extra** unit of the cardinal attribute?
	- if we give it to the worse off, then $\Delta W \cong 0.17$
	- if we give it to the better off, then $\Delta W \cong 0.24$
- note: 'old' problem = Sen's (1973) critique on utilitarianism

- Example 2; consider:
	- two individuals and two cardinal attributes

• a MD welfare index
$$
W = \sqrt{x_1^1 x_2^1} + \sqrt{x_1^2 x_2^2}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

•
$$
x^1 = (4,6) \prec (6.5,4) = x^2
$$

- Example 2; consider:
	- two individuals and two cardinal attributes
	- a MD welfare index $W = \sqrt{x_1^1x_2^1} + \sqrt{x_1^2x_2^2}$

•
$$
x^1 = (4,6) \prec (6.5,4) = x^2
$$

- what to do with an **extra** unit of dimension 2?
	- if we give it to worse off, then $\Delta W \cong 0.39$
	- if we give it to better off, then $\Delta W \cong 0.60$

K ロ X K 個 X K ミ X K ミ X ミ X Y Q Q Q

- **priority** = give priority to the worse off
	- with 'worse off' defined in a consistent way
	- i.e., according to the ranking \succeq itself

- **priority** = give priority to the worse off
	- with 'worse off' defined in a consistent way
	- i.e., according to the ranking \succeq itself
- **cardinal** version of priority: for all *X* in *D*
	- for all [poor] *i* and *j* with $x^i \succsim x^j$
	- **•** for all $\delta = (\delta_C, \delta_O)$ in *B* with $\delta_C > 0$ & $\delta_O = 0$
	- $\left(\ldots, x^{i}, \ldots, x^{j} + \delta, \ldots\right) \succsim \left(\ldots, x^{i} + \delta, \ldots, x^{j}, \ldots\right)$

- **priority** = give priority to the worse off
	- with 'worse off' defined in a consistent way
	- i.e., according to the ranking \succeq itself
- **cardinal** version of priority: for all *X* in *D*
	- for all [poor] *i* and *j* with $x^i \succsim x^j$
	- **•** for all $\delta = (\delta_C, \delta_O)$ in *B* with $\delta_C > 0$ & $\delta_O = 0$
	- $\left(\ldots, x^{i}, \ldots, x^{j} + \delta, \ldots\right) \succsim \left(\ldots, x^{i} + \delta, \ldots, x^{j}, \ldots\right)$
- **ordinal** version of priority: for all *X* in *D*
	- for all [poor] *i* and *j* with $x^i \succsim x^j$
	- for all $\delta = (\delta_C, \delta_O)$ in *B* with $\delta_C = 0$ & $\delta_O > 0$
	- with $\delta_k(x_k^i x_k^j)$ $\binom{1}{k} = 0$ for all k in J
	- $\left(\ldots, x^{i}, \ldots, x^{j} + \delta, \ldots\right) \succsim \left(\ldots, x^{i} + \delta, \ldots, x^{j}, \ldots\right)$

• AR: Additive representation, i.e.,
$$
W = \frac{1}{n_X} \sum_{i=1}^{n_X} U(x^i)
$$

メロトメタトメミトメミト (ミ) の女々

AR: Additive representation, i.e., $W = \frac{1}{n_X} \sum_{i=1}^{n_X} U(x^i)$ • M: Monotonicity $(\Rightarrow U$ strictly increasing)

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

AR: Additive representation, i.e., $W = \frac{1}{n_X} \sum_{i=1}^{n_X} U(x^i)$

- M: Monotonicity (\Rightarrow *U* strictly increasing)
- CP: cardinal priority & OP: ordinal priority

 \succeq on *D* satisfies AR, M and CP iff there exist

- \bullet $w_j > 0$, for each *j* in *C* & s.i. $g : \mathbb{N}^{|O|} \to \mathbb{R}$
- ² s.i. and concave *f*

such that for all *X*, *Y* in *D*, we have *X* \geq *Y* iff

 $\frac{1}{n_X} \sum_{i=1}^{n_X}$ $\sum_{i=1}^{n_X} f(\sum_{j \in C} w_j x_j^i + g(x_O^i)) \ge \frac{1}{n_Y} \sum_{i=1}^{n_Y}$ $\sum_{i=1}^{n_Y} f(\sum_{j\in C} w_j y_j^i + g(y_O^i))$ $(*)$

 \succeq on *D* satisfies AR, M and CP iff there exist

•
$$
w_j > 0
$$
, for each j in C & s.i. $g : \mathbb{N}^{|O|} \to \mathbb{R}$

² s.i. and concave *f*

such that for all *X*, *Y* in *D*, we have *X* \succeq *Y* iff

$$
\frac{1}{n_X} \sum_{i=1}^{n_X} f(\sum_{j \in C} w_j x_j^i + g(x_O^i)) \ge \frac{1}{n_Y} \sum_{i=1}^{n_Y} f(\sum_{j \in C} w_j y_j^i + g(y_O^i)) \quad (*)
$$

 \succeq on *D* satisfies AR, M and CP + OP iff there exist

- **1** same as before, except
- **2** s.i. $g_j : \mathbb{N} \to \mathbb{R}$ for each *j* in *O* (rather than *g*)

such that for all *X*, *Y* in *D*, we have *X* \succeq *Y* iff

(*) holds, with $g(x^i_O) = \sum_{j \in O} g_j(x^i_j)$ & $g(y^i_O) = \sum_{j \in O} g_j(y^i_j)$

A O A A A A A A A A A A A A A A A A A

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

- if $|J| = |C|$, then *W* reduces to $\frac{1}{n_X} \sum_{i=1}^{n_X}$ $\sum_{i=1}^{n_X} f(\sum_{j\in J} w_j x_j^i)$
	- problematic for index?
	- less so for dominance ...

- if $|J| = |C|$, then *W* reduces to $\frac{1}{n_X} \sum_{i=1}^{n_X}$ $\sum_{i=1}^{n_X} f(\sum_{j\in J} w_j x_j^i)$
	- problematic for index?
	- less so for dominance ...
- if $|J| = |C|$, there is an equivalence between
	- Kolm's (1977) budget dominance criterion,
	- Koshevoy and Mosler's (1999) inverse GL-curve, and

 \bullet unanimity among rankings satisfying AR, M, & CP

- if $|C| = 1 = |O|$, then *W* reduces to $\frac{1}{n_X} \sum_{i=1}^{n_X}$ $\int_{i=1}^{n_X} f(x_1^i + g(x_2^i))$
	- we knew that absolute scales can solve Sen's conflict

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

our result tells us that it is the only way to solve it

- if $|C| = 1 = |O|$, then *W* reduces to $\frac{1}{n_X} \sum_{i=1}^{n_X}$ $\int_{i=1}^{n_X} f(x_1^i + g(x_2^i))$
	- we knew that absolute scales can solve Sen's conflict
	- our result tells us that it is the only way to solve it
- if $|C| = 1 = |O|$, there is an equivalence between
	- Bourguignon's (1989) dominance criterion, and
	- \bullet unanimity among rankings satisfying AR, M, & CP

- if $|C| = 1 = |O|$, then *W* reduces to $\frac{1}{n_X} \sum_{i=1}^{n_X}$ $\int_{i=1}^{n_X} f(x_1^i + g(x_2^i))$
	- we knew that absolute scales can solve Sen's conflict
	- our result tells us that it is the only way to solve it
- if $|C| = 1 = |O|$, there is an equivalence between
	- Bourguignon's (1989) dominance criterion, and
	- \bullet unanimity among rankings satisfying AR, M, & CP

note: similar to FHT

AR: Additive representation, i.e., $\Pi = \frac{1}{n_X} \sum_{i=1}^{n_X}$ $\prod_{i=1}^{n_X} \pi_z(x^i)$

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

AR: Additive representation, i.e., $\Pi = \frac{1}{n_X} \sum_{i=1}^{n_X}$ $\prod_{i=1}^{n_X} \pi_z(x^i)$ F: focus, i.e., only the poor— $\{i|x^i\text{ in }P\}$ —matter

K ロ K K (日 K K B K X B K X B K K K K G K C K

AR: Additive representation, i.e., $\Pi = \frac{1}{n_X} \sum_{i=1}^{n_X}$ $\prod_{i=1}^{n_X} \pi_z(x^i)$

- F: focus, i.e., only the poor— $\{i|x^i\text{ in }P\}$ —matter
- M: Monotonicity for the poor

- AR: Additive representation, i.e., $\Pi = \frac{1}{n_X} \sum_{i=1}^{n_X}$ $\prod_{i=1}^{n_X} \pi_z(x^i)$
- F: focus, i.e., only the poor— $\{i|x^i\text{ in }P\}$ —matter
- M: Monotonicity for the poor
- CP: cardinal priority & OP: ordinal priority for the poor

% on *D* satisfies AR, F, M and CP iff there exist

- \bullet $w_i > 0$, for each *j* in *C* & s.i. $g : \mathbb{N}^{|O|} \to \mathbb{R}$ with $g(0) = 0$
- ² continuous *f* with
	- \bullet $f(a) = f(\omega)$ whenever $a \geq \omega := \sum_{i \in C} w_i z_i + g(z_0)$ 2 *f* strictly decreasing and convex on $[0, \omega)$

such that for all *X*, *Y* in *D*, we have *X* \geq *Y* iff

 $\frac{1}{n_X} \sum_{i=1}^{n_X}$ $\sum_{i=1}^{n_X} f(\sum_{j \in C} w_j x_j^i + g(x_O^i)) \leq \frac{1}{n_Y} \sum_{i=1}^{n_Y}$ $\sum_{i=1}^{n_Y} f(\sum_{j\in C} w_j y_j^i + g(y_O^i))$ $(*)$

 \succeq on *D* satisfies AR, F, M and CP iff there exist

- \bullet $w_i > 0$, for each *j* in *C* & s.i. $g : \mathbb{N}^{|O|} \to \mathbb{R}$ with $g(0) = 0$
- ² continuous *f* with
	- \bullet $f(a) = f(\omega)$ whenever $a \geq \omega := \sum_{i \in C} w_i z_i + g(z_0)$ 2 *f* strictly decreasing and convex on $[0, \omega)$

such that for all *X*, *Y* in *D*, we have *X* \geq *Y* iff

 $\frac{1}{n_X} \sum_{i=1}^{n_X}$ $\sum_{i=1}^{n_X} f(\sum_{j \in C} w_j x_j^i + g(x_O^i)) \leq \frac{1}{n_Y} \sum_{i=1}^{n_Y}$ $\sum_{i=1}^{n_Y} f(\sum_{j\in C} w_j y_j^i + g(y_O^i))$ $(*)$ ————————————————————————————

 \succeq on *D* satisfies AR, F, M and CP + OP similar ...

• if $|J| = |C|$ or if $|C| = 1 = |O|$, similar remarks as before

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

• if $|J| = |C|$ or if $|C| = 1 = |O|$, similar remarks as before

- 1 cardinal & several binary, and choose $z = (z_0, 0)$
	- Π becomes $\frac{1}{n_X} \sum_{i=1}^{n_X} f(x_1^i + \alpha \cdot x_0^i)$
	- (generalized) counting approach

- if $|J| = |C|$ or if $|C| = 1 = |O|$, similar remarks as before
- 1 cardinal & several binary, and choose $z = (z_0, 0)$
	- Π becomes $\frac{1}{n_X} \sum_{i=1}^{n_X} f(x_1^i + \alpha \cdot x_0^i)$
	- (generalized) counting approach
- there is an equivalence between
	- \bullet \cap rankings satisfying AR, M, & CP+OP & $z_0 < \overline{z}_0$
	- $\sum_{t \in B_O} \int_0^{z_t} \{p_t F_t(y) q_t G_t(y)\} dy \le 0$ for z_t such that

- \bullet 0 $\leq z_0 \leq \bar{z}_0$
- for all $t \in B_O : z_t \geq z_{t'}$ if $t \leq t'$

- if $|J| = |C|$ or if $|C| = 1 = |O|$, similar remarks as before
- 1 cardinal & several binary, and choose $z = (z_0, 0)$
	- Π becomes $\frac{1}{n_X} \sum_{i=1}^{n_X} f(x_1^i + \alpha \cdot x_0^i)$
	- (generalized) counting approach
- there is an equivalence between
	- \bullet \cap rankings satisfying AR, M, & CP+OP & $z_0 < \overline{z}_0$
	- $\sum_{t \in B_O} \int_0^{z_t} \{p_t F_t(y) q_t G_t(y)\} dy \le 0$ for z_t such that

- \bullet 0 $\leq z_0 \leq \bar{z}_0$
- for all $t \in B_O : z_t \geq z_{t'}$ if $t \leq t'$
- application ...
- Atkinson, 2003, Multidimensional deprivation: contrasting F. social welfare and counting approaches, *Journal of Economic Inequality* 1, 51-65.
- 量 Atkinson & Bourguignon, 1982, the comparison of multi-dimensioned distributions of economic status, *Review of Economic Studies* XLIX, 183-201.
- Bosmans, Lauwers & Ooghe, 2009, A consistent 量 multidimensional Pigou-Dalton transfer principle, *Journal of Economic Theory* 144, 1358-1371.
- Bourguignon, 1989, Family size and social utility: income 晶 distribution dominance criteria, *Journal of Econometrics* 42, 67-80.
- 螶 Duclos, Sahn & Younger, Robust multidimensional poverty comparisons, *The Economic Journal* 116, 943-968.
- Ebert, 1997, Social welfare when needs differ: an axiomatic approach, *Economica* 64, 233-244.K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q
- Fleurbaey, Hagneré & Trannoy, 2003, Welfare comparisons 手 with bounded equivalence scales, *Journal of Economic Theory* 110, 309-336.
- 量 Hammond, 1979, Dual interpersonal comparisons of utility and the welfare economics of income distribution, *Journal of Public Economics* 7, 51-71.
- Kolm, 1977, Multidimensional egalitarianisms, *Quarterly* ē. *Journal of Economics* 91, 1-13.
- 晶 Koshevoy & Mosler, 1999, Price majorization and the inverse Lorenz function, DP 3/99, University of Cologne.
- Sen, 1973, *On Economic Inequality*, Oxford University Press.
- Shorrocks, 1995, Inequality and welfare evaluation of heterogeneous income distributions, DP 447, University of Essex, also published in *Journal of Economic Inequality* 2 (2004), 193-218.

Trannoy, 2006, Multidimensional egalitarianism and the 暈 dominance approach: a lost paradise? in Farina & Savaglio, eds., *Inequality and Economic Integration*, Routledge.

量 Weymark, 2006, The normative approach to the measurement of multidimensional inequality, in Farina & Savaglio, eds., *Inequality and Economic Integration*, Routledge.