Motivation	Some problems	Welfare	Poverty	References

Welfare and poverty comparisons axiomatic 'prioritarian' procedures

Erwin Ooghe [& Kristof Bosmans & Luc Lauwers]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation	Some problems 00000	Welfare 0000	Poverty 000	References
Motivation				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• aim of this part of the lecture:

- to look at an *axiomatic* framework
- for welfare and poverty comparisons
- in case of multiple attributes

Motivation	Some problems 00000	Welfare 0000	Poverty 000	References
Motivation				

• aim of this part of the lecture:

- to look at an *axiomatic* framework
- for welfare and poverty comparisons
- in case of multiple attributes

• some **problems**:

- how deal with ordinal attributes?
- (only for poverty:) how identify the poor?

▲□▶▲□▶▲□▶▲□▶ □ のQで

• how give priority to the worse off?

- MD poverty and welfare measurement; typically:
 - all attributes cardinal
 - 1 cardinal & 1 ordinal attribute (index of needs)
 - 1 cardinal & many ordinal (usually binary) attributes

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- MD poverty and welfare measurement; typically:
 - all attributes cardinal
 - 1 cardinal & 1 ordinal attribute (index of needs)
 - 1 cardinal & many ordinal (usually binary) attributes

- a **unifying** framework; notation:
 - set of attributes $J = C \cup O$

- MD poverty and welfare measurement; typically:
 - all attributes cardinal
 - 1 cardinal & 1 ordinal attribute (index of needs)
 - 1 cardinal & many ordinal (usually binary) attributes

ション 人口 マイビン イビン トロン

- a **unifying** framework; notation:
 - set of attributes $J = C \cup O$
 - attribute bundles $x = (x_C, x_O) \in B$

- MD poverty and welfare measurement; typically:
 - all attributes cardinal
 - 1 cardinal & 1 ordinal attribute (index of needs)
 - 1 cardinal & many ordinal (usually binary) attributes

- a **unifying** framework; notation:
 - set of attributes $J = C \cup O$
 - attribute bundles $x = (x_C, x_O) \in B$
 - a distribution $X = (x^1, x^2, \ldots) \in D$

- MD poverty and welfare measurement; typically:
 - all attributes cardinal
 - 1 cardinal & 1 ordinal attribute (index of needs)
 - 1 cardinal & many ordinal (usually binary) attributes
- a **unifying** framework; notation:
 - set of attributes $J = C \cup O$
 - attribute bundles $x = (x_C, x_O) \in B$
 - a distribution $X = (x^1, x^2, \ldots) \in D$
 - a 'better-than' ranking \succeq on $D: X \succeq Y & x \succeq y$

- MD poverty and welfare measurement; typically:
 - all attributes cardinal
 - 1 cardinal & 1 ordinal attribute (index of needs)
 - 1 cardinal & many ordinal (usually binary) attributes
- a **unifying** framework; notation:
 - set of attributes $J = C \cup O$
 - attribute bundles $x = (x_C, x_O) \in B$
 - a distribution $X = (x^1, x^2, \ldots) \in D$
 - a 'better-than' ranking \succeq on $D: X \succeq Y & x \succeq y$
- note: some axioms will be tailored to attribute type

• Given a poverty bundle $z \in B$, who is poor?

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

3

• Given a poverty bundle $z \in B$, who is poor?

• minimalistic: $P = \{x \in B | x \prec z\} \& R = \{x \in B | x \succeq z\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

• Given a poverty bundle $z \in B$, who is poor?

• minimalistic: $P = \{x \in B | x \prec z\} \& R = \{x \in B | x \succeq z\}$

• note: poverty frontier—as in (iii)—but defined by axioms

How give priority to the worse off?

- Example 1; consider:
 - two individuals, 1 cardinal and 1 binary attribute
 - a MD welfare index $W = \sqrt{x_1^1 / m(x_2^1)} + \sqrt{x_1^2 / m(x_2^2)}$

• if
$$m(0) = 2 > m(1) = 1$$
, then $x^1 = (4, 0) \prec (4, 1) = x^2$

- Example 1; consider:
 - two individuals, 1 cardinal and 1 binary attribute

• a MD welfare index
$$W = \sqrt{x_1^1/m(x_2^1)} + \sqrt{x_1^2/m(x_2^2)}$$

• if
$$m(0) = 2 > m(1) = 1$$
, then $x^1 = (4, 0) \prec (4, 1) = x^2$

- what to do with an extra unit of the cardinal attribute?
 - if we give it to the worse off, then $\Delta W \cong 0.17$
 - if we give it to the better off, then $\Delta W \cong 0.24$

How give priority to the worse off?

- Example 1; consider:
 - two individuals, 1 cardinal and 1 binary attribute

• a MD welfare index
$$W = \sqrt{x_1^1 / m(x_2^1)} + \sqrt{x_1^2 / m(x_2^2)}$$

• if
$$m(0) = 2 > m(1) = 1$$
, then $x^1 = (4, 0) \prec (4, 1) = x^2$

- what to do with an extra unit of the cardinal attribute?
 - if we give it to the worse off, then $\Delta W \cong 0.17$
 - if we give it to the better off, then $\Delta W \cong 0.24$
- note: 'old' problem = Sen's (1973) critique on utilitarianism

ション 人口 マイビン イビン トロン

How give priority to the worse off?

- Example 2; consider:
 - two individuals and two cardinal attributes

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

• a MD welfare index
$$W = \sqrt{x_1^1 x_2^1 + \sqrt{x_1^2 x_2^2}}$$

•
$$x^1 = (4, 6) \prec (6.5, 4) = x^2$$

- Example 2; consider:
 - two individuals and two cardinal attributes
 - a MD welfare index $W = \sqrt{x_1^1 x_2^1 + \sqrt{x_1^2 x_2^2}}$

•
$$x^1 = (4, 6) \prec (6.5, 4) = x^2$$

- what to do with an **extra** unit of dimension 2?
 - if we give it to worse off, then $\Delta W \cong 0.39$
 - if we give it to better off, then $\Delta W \cong 0.60$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- **priority** = give priority to the worse off
 - with 'worse off' defined in a consistent way
 - i.e., according to the ranking \succeq itself

- **priority** = give priority to the worse off
 - with 'worse off' defined in a consistent way
 - i.e., according to the ranking \succeq itself
- cardinal version of priority: for all X in D
 - for all [poor] *i* and *j* with $x^i \succeq x^j$
 - for all $\delta = (\delta_C, \delta_O)$ in *B* with $\delta_C > 0$ & $\delta_O = 0$
 - $(\ldots, x^i, \ldots, x^j + \delta, \ldots) \succeq (\ldots, x^i + \delta, \ldots, x^j, \ldots)$

- **priority** = give priority to the worse off
 - with 'worse off' defined in a consistent way
 - i.e., according to the ranking \succeq itself
- cardinal version of priority: for all *X* in *D*
 - for all [poor] *i* and *j* with $x^i \succeq x^j$
 - for all $\delta = (\delta_C, \delta_O)$ in *B* with $\delta_C > 0 \& \delta_O = 0$
 - $(\ldots, x^i, \ldots, x^j + \delta, \ldots) \succeq (\ldots, x^i + \delta, \ldots, x^j, \ldots)$
- ordinal version of priority: for all X in D
 - for all [poor] *i* and *j* with $x^i \succeq x^j$
 - for all $\delta = (\delta_C, \delta_O)$ in *B* with $\delta_C = 0 \& \delta_O > 0$
 - with $\delta_k(x_k^i x_k^j) = 0$ for all k in J
 - $(\ldots, x^i, \ldots, x^j + \delta, \ldots) \succeq (\ldots, x^i + \delta, \ldots, x^j, \ldots)$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation	Some problems 00000	Welfare ●○○○	Poverty 000	References
Axioms				

• AR: Additive representation, i.e.,
$$W = \frac{1}{n_X} \sum_{i=1}^{n_X} U(x^i)$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ 少々⊙

Motivation	Some problems 00000	Welfare ●○○○	Poverty 000	References
Axioms				

• AR: Additive representation, i.e., $W = \frac{1}{n_X} \sum_{i=1}^{n_X} U(x^i)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• M: Monotonicity (\Rightarrow *U* strictly increasing)

Motivation	Some problems 00000	Welfare ••••	Poverty 000	References
Axioms				

• AR: Additive representation, i.e., $W = \frac{1}{n_x} \sum_{i=1}^{n_x} U(x^i)$

- M: Monotonicity (\Rightarrow *U* strictly increasing)
- CP: cardinal priority & OP: ordinal priority

Motivation	Some problems 00000	Welfare ○●○○	Poverty 000	References
Results				

 \succeq on *D* satisfies AR, M and CP iff there exist

•
$$w_j > 0$$
, for each *j* in *C* & s.i. $g : \mathbb{N}^{|O|} \to \mathbb{R}$

2 s.i. and concave *f*

such that for all *X*, *Y* in *D*, we have $X \succeq Y$ iff

$$\frac{1}{n_X} \sum_{i=1}^{n_X} f(\sum_{j \in C} w_j x_j^i + g(x_O^i)) \ge \frac{1}{n_Y} \sum_{i=1}^{n_Y} f(\sum_{j \in C} w_j y_j^i + g(y_O^i)) \quad (*)$$

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

Motivation	Some problems 00000	Welfare ○●○○	Poverty 000	References
Results				

 \succeq on *D* satisfies AR, M and CP iff there exist

0
$$w_j > 0$$
, for each *j* in *C* & s.i. $g : \mathbb{N}^{|O|} \to \mathbb{R}$

s.i. and concave f

such that for all *X*, *Y* in *D*, we have $X \succeq Y$ iff

$$\frac{1}{n_X} \sum_{i=1}^{n_X} f(\sum_{j \in C} w_j x_j^i + g(x_O^i)) \ge \frac{1}{n_Y} \sum_{i=1}^{n_Y} f(\sum_{j \in C} w_j y_j^i + g(y_O^i)) \quad (*)$$

 \succeq on *D* satisfies AR, M and CP + OP iff there exist

- same as before, except
- ② s.i. g_j : \mathbb{N} → \mathbb{R} for each *j* in *O* (rather than *g*)

such that for all *X*, *Y* in *D*, we have $X \succeq Y$ iff

(*) holds, with $g(x_O^i) = \sum_{j \in O} g_j(x_j^i) \& g(y_O^i) = \sum_{j \in O} g_j(y_j^i)$

Motivation	Some problems 00000	Welfare ○○●○	Poverty 000	References
Cardinal	attributes only	7		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- if |J| = |C|, then W reduces to $\frac{1}{n_X} \sum_{i=1}^{n_X} f(\sum_{j \in J} w_j x_j^i)$
 - problematic for index?
 - less so for dominance ...

- if |J| = |C|, then W reduces to $\frac{1}{n_X} \sum_{i=1}^{n_X} f(\sum_{j \in J} w_j x_j^i)$
 - problematic for index?
 - less so for dominance ...
- if |J| = |C|, there is an equivalence between
 - Kolm's (1977) budget dominance criterion,
 - Koshevoy and Mosler's (1999) inverse GL-curve, and

• unanimity among rankings satisfying AR, M, & CP

- if |C| = 1 = |O|, then W reduces to $\frac{1}{n_X} \sum_{i=1}^{n_X} f(x_1^i + g(x_2^i))$
 - we knew that absolute scales can solve Sen's conflict

• our result tells us that it is the only way to solve it

- if |C| = 1 = |O|, then W reduces to $\frac{1}{n_X} \sum_{i=1}^{n_X} f(x_1^i + g(x_2^i))$
 - we knew that absolute scales can solve Sen's conflictour result tells us that it is the only way to solve it
- if |C| = 1 = |O|, there is an equivalence between
 - Bourguignon's (1989) dominance criterion, and
 - unanimity among rankings satisfying AR, M, & CP

- if |C| = 1 = |O|, then W reduces to $\frac{1}{n_X} \sum_{i=1}^{n_X} f(x_1^i + g(x_2^i))$
 - we knew that absolute scales can solve Sen's conflictour result tells us that it is the only way to solve it
- if |C| = 1 = |O|, there is an equivalence between
 - Bourguignon's (1989) dominance criterion, and
 - unanimity among rankings satisfying AR, M, & CP

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

note: similar to FHT

Motivation	Some problems 00000	Welfare 0000	Poverty ●○○	References
Axioms				

• AR: Additive representation, i.e.,
$$\Pi = \frac{1}{n_X} \sum_{i=1}^{n_X} \pi_z (x^i)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

Motivation	Some problems 00000	Welfare 0000	Poverty ●○○	References
Axioms				

AR: Additive representation, i.e., Π = ¹/_{n_x} Σ^{n_x}/_{i=1} π_z (xⁱ)
F: focus, i.e., only the poor—{i|xⁱ in P}—matter

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Motivation	Some problems 00000	Welfare 0000	Poverty ●○○	References
Axioms				

• AR: Additive representation, i.e., $\Pi = \frac{1}{n_X} \sum_{i=1}^{n_X} \pi_z (x^i)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- F: focus, i.e., only the poor— $\{i|x^i \text{ in } P\}$ —matter
- M: Monotonicity for the poor

Motivation	Some problems 00000	Welfare 0000	Poverty ●○○	References
Axioms				

- AR: Additive representation, i.e., $\Pi = \frac{1}{n_X} \sum_{i=1}^{n_X} \pi_z (x^i)$
- F: focus, i.e., only the poor— $\{i|x^i \text{ in } P\}$ —matter
- M: Monotonicity for the poor
- CP: cardinal priority & OP: ordinal priority for the poor

Motivation	Some problems 00000	Welfare 0000	Poverty ○●○	References
Results				

 \succeq on *D* satisfies AR, F, M and CP iff there exist

- $w_j > 0$, for each *j* in *C* & s.i. $g : \mathbb{N}^{|O|} \to \mathbb{R}$ with g(0) = 0
- continuous f with
 - *f*(*a*) = *f*(ω) whenever *a* ≥ ω := Σ_{j∈C} w_jz_j + g(z_O)
 f strictly decreasing and convex on [0, ω)

such that for all *X*, *Y* in *D*, we have $X \succeq Y$ iff

 $\frac{1}{n_X} \sum_{i=1}^{n_X} f(\sum_{j \in C} w_j x_j^i + g(x_O^i)) \le \frac{1}{n_Y} \sum_{i=1}^{n_Y} f(\sum_{j \in C} w_j y_j^i + g(y_O^i)) \quad (*)$

Motivation	Some problems 00000	Welfare 0000	Poverty ○●○	References
Results				

 \succeq on *D* satisfies AR, F, M and CP iff there exist

- $w_j > 0$, for each *j* in *C* & s.i. $g : \mathbb{N}^{|O|} \to \mathbb{R}$ with g(0) = 0
- continuous f with
 - f(a) = f (ω) whenever a ≥ ω := Σ_{j∈C} w_jz_j + g(z_O)
 f strictly decreasing and convex on [0, ω)

such that for all *X*, *Y* in *D*, we have $X \succeq Y$ iff

 $\frac{1}{n_X} \sum_{i=1}^{n_X} f(\sum_{j \in C} w_j x_j^i + g(x_O^i)) \le \frac{1}{n_Y} \sum_{i=1}^{n_Y} f(\sum_{j \in C} w_j y_j^i + g(y_O^i)) \quad (*)$

 \succeq on *D* satisfies AR, F, M and CP + OP similar ...

Motivation	Some problems 00000	Welfare 0000	Poverty ○○●	References
1 cardinal &	several binary	v attributes		

• if |J| = |C| or if |C| = 1 = |O|, similar remarks as before

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• if |J| = |C| or if |C| = 1 = |O|, similar remarks as before

- 1 cardinal & several binary, and choose $z = (z_0, 0)$
 - Π becomes $\frac{1}{n_X} \sum_{i=1}^{n_X} f(x_1^i + \alpha \cdot x_O^i)$
 - (generalized) counting approach

- if |J| = |C| or if |C| = 1 = |O|, similar remarks as before
- 1 cardinal & several binary, and choose $z = (z_0, 0)$
 - Π becomes $\frac{1}{n_X} \sum_{i=1}^{n_X} f(x_1^i + \alpha \cdot x_O^i)$
 - (generalized) counting approach
- there is an equivalence between
 - \cap rankings satisfying AR, M, & CP+OP & $z_0 \leq \bar{z}_0$
 - $\sum_{t \in B_O} \int_0^{z_t} \{ p_t F_t(y) q_t G_t(y) \} dy \le 0$ for z_t such that

- $0 \le z_0 \le \overline{z}_0$
- for all $t \in B_O : z_t \ge z_{t'}$ if $t \le t'$

- if |J| = |C| or if |C| = 1 = |O|, similar remarks as before
- 1 cardinal & several binary, and choose $z = (z_0, 0)$
 - Π becomes $\frac{1}{n_X} \sum_{i=1}^{n_X} f(x_1^i + \alpha \cdot x_O^i)$
 - (generalized) counting approach
- there is an equivalence between
 - \cap rankings satisfying AR, M, & CP+OP & $z_0 \leq \bar{z}_0$
 - $\sum_{t \in B_O} \int_0^{z_t} \{ p_t F_t(y) q_t G_t(y) \} dy \le 0$ for z_t such that

- $0 \le z_0 \le \overline{z}_0$
- for all $t \in B_O : z_t \ge z_{t'}$ if $t \le t'$
- application ...

Atkinson, 2003, Multidimensional deprivation: contrasting social welfare and counting approaches, *Journal of Economic Inequality* 1, 51-65.

References

- Atkinson & Bourguignon, 1982, the comparison of multi-dimensioned distributions of economic status, *Review of Economic Studies* XLIX, 183-201.
- Bosmans, Lauwers & Ooghe, 2009, A consistent multidimensional Pigou-Dalton transfer principle, *Journal* of Economic Theory 144, 1358-1371.
- Bourguignon, 1989, Family size and social utility: income distribution dominance criteria, *Journal of Econometrics* 42, 67-80.
- Duclos, Sahn & Younger, Robust multidimensional poverty comparisons, *The Economic Journal* 116, 943-968.
- Ebert, 1997, Social welfare when needs differ: an axiomatic approach, *Economica* 64, 233-244.

- Fleurbaey, Hagneré & Trannoy, 2003, Welfare comparisons with bounded equivalence scales, *Journal of Economic Theory* 110, 309-336.
- Hammond, 1979, Dual interpersonal comparisons of utility and the welfare economics of income distribution, *Journal of Public Economics* 7, 51-71.
- Kolm, 1977, Multidimensional egalitarianisms, *Quarterly Journal of Economics* 91, 1-13.
- Koshevoy & Mosler, 1999, Price majorization and the inverse Lorenz function, DP 3/99, University of Cologne.
- Sen, 1973, On Economic Inequality, Oxford University Press.
- Shorrocks, 1995, Inequality and welfare evaluation of heterogeneous income distributions, DP 447, University of Essex, also published in *Journal of Economic Inequality* 2 (2004), 193-218.

Trannoy, 2006, Multidimensional egalitarianism and the dominance approach: a lost paradise? in Farina & Savaglio, eds., *Inequality and Economic Integration*, Routledge.

Weymark, 2006, The normative approach to the measurement of multidimensional inequality, in Farina & Savaglio, eds., *Inequality and Economic Integration*, Routledge.