} I Z A

Sixth Winter School on Inequality and Collect

Demographic Change, Household Structure and Income Inequality

Andreas Peichl

Institute for the Study of Labor (IZA)

Sixth Winter School on Inequality and Collective Welfare Theory (IT6) Canazei, January 11, 2011

) I Z A

Background

- OECD (2008): "Growing unequal": increasing inequality
- Question: what are the causes?
- OECD: high correlation between changing household composition and increasing inequality in West Germany (1985-2005): 88%
- this has lead to a fierce policy debate in Germany
- however: result was a mistake! (Correct figure is 12%!)

This talk

- How can we assess the question "What drives rising inequality?"?
- Different methods:
 - Subgroup decomposition of inequality measures
 - Counterfactual reweighting techniques
 - * OECD: special case: shift-share analysis without control variables
- Examples for Germany:
 - A. Peichl, N. Pestel and H. Schneider (2010): Does Size matter?: The Impact of Changes in Household Structure on Income Distribution in Germany, CESifo Working Paper 3219
 - Biewen, M., Juhasz, A. (2010): Understanding Rising Income Inequality in Germany, IZA Discussion Paper No. 5062.

ZA

) I Z A

Outline

Why Germany?

- 2 Equivalence-weighting
- 3 Methodology
 - Subgroup Decomposition
 - Re-weighting procedure

Empirical Strategy

5 Results

6 BJ-Results

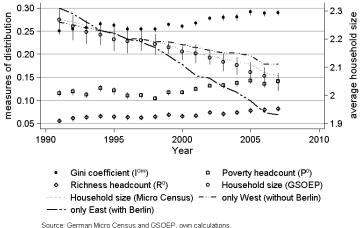
Conclusions

8 Appendix

1. Why Germany?

3

<ロ> (日) (日) (日) (日) (日)


Widening income gap, declining household size

- since reunification: inequality of disposable income distribution increased considerably (*Bach et al., 2009; Peichl et al., 2010*)
 - widening of market incomes / weakening bargaining power of unions?
 - structural change in household formation?
- observe sharp fall in average household size in Germany since early 1990s
 - second-lowest among OECD countries after Sweden
 - especially number of one- and two-person households increased
- link between trends: analysis of income distribution based on equivalent incomes
 - equivalence scales account for household structure (size and age)
 - i.e. changes in household structure *c.p.* influence income distribution

周 ト イ ヨ ト イ ヨ ト

Why Germany?

Widening income gap, declining household size II

Confidence intervals (95 per cent) based on 500 bootstrap replications.

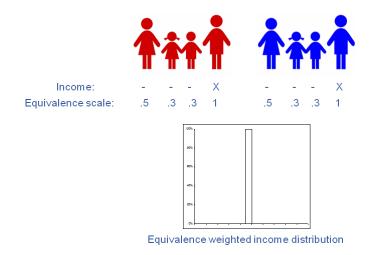
Andreas Peichl (IZA)

January 11, 2011

7 / 39

2. Equivalence-weighting

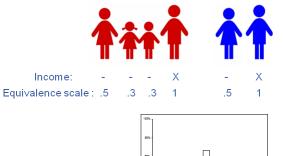
3

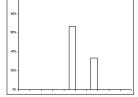

Image: A mathematical states and a mathem

Intuition

- economic well-being considered as *individual* experience
- **however:** individually received incomes *not* used for analysis of income distribution
- reasons:
 - dependent persons without resources for consumption
 - economies of scale in household consumption unconsidered
 - comparison of individuals irrespective of household size
- equivalent incomes serve as proxies for economic well-being

Household Structure and Income Inequality

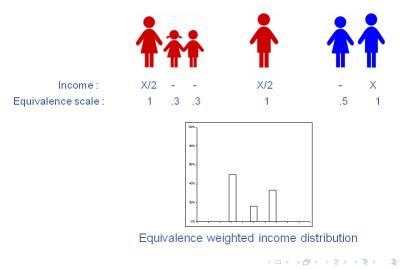

Andreas Peichl (IZA)


Household Structure and Income Inequality

★ ₹ ₹ ★ ₹ ₹ ★ ₹ January 11, 2011

10 / 39

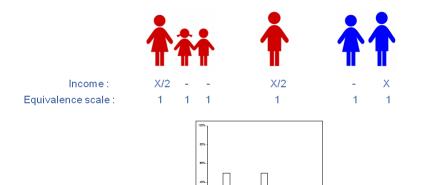
Household Structure and Income Inequality



Equivalence weighted income distribution

Andreas Peichl (IZA)

} I Z A


Household Structure and Income Inequality

Andreas Peichl (IZA)

Household Structure and Income Inequality

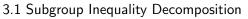
January 11, 2011 12 / 39

275

Equivalence weighted income distribution

Andreas Peichl (IZA)

Household Structure and Income Inequality


January 11, 2011 13 / 39

3. Methodology

<ロ> (日) (日) (日) (日) (日)

14 / 39

- Shorrocks (1980, 1984); Mookherjee/Shorrocks (1982)
- Jenkins (1995), Martin (2006)

Mean logarithmic deviation

- most suitable: Generalized Entropy (GE) inequality measures
- decomposable for population subgroups $k \in \{1, \dots, K\}$

$$l_{0} = \frac{1}{n} \cdot \sum_{i=1}^{n} ln\left(\frac{\bar{y}}{y_{i}}\right)$$
(1a)
$$= \sum_{k=1}^{K} v_{k} \cdot l_{0k} + \sum_{k=1}^{K} v_{k} \cdot ln\left(\frac{\bar{y}}{\bar{y}_{k}}\right)$$
(1b)

- y_i: equivalent individual income
- \bar{y} : population mean income
- v_k : proportion of population subgroup k
- I_{0k}/\bar{y}_k : inequality/mean income of subgroup k

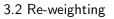
ΙΖΑ

Decomposition I

 decomposition of inequality change between periods t and t + 1 (see Mookherjee/Shorrocks, 1982)

$$\Delta I_{0} \approx \sum_{k=1}^{K} \bar{v}_{k} \cdot \Delta I_{0k} + \sum_{k=1}^{K} \bar{I}_{0k} \cdot \Delta v_{k} + \sum_{k=1}^{K} \left[\bar{\lambda}_{k} - \overline{\ln(\lambda_{k})} \right] \cdot \Delta v_{k} + \sum_{k=1}^{K} \left(\bar{\theta}_{k} - \bar{v}_{k} \right) \cdot \Delta \ln(\bar{y}_{k}) \quad (2)$$

- $\lambda_k = \bar{y}_k / \bar{y}$: ratio of subgroup k's mean income to total mean income
- $\theta_k = v_k \cdot \lambda_k$: income ratio of group k
- symbol with bar denotes average over periods t and t + 1


ΙΖΑ

Decomposition II

$$\Delta I_{0} \approx \underbrace{\sum_{k=1}^{K} \bar{v}_{k} \cdot \Delta I_{0k}}_{A} + \underbrace{\sum_{k=1}^{K} \bar{I}_{0k} \cdot \Delta v_{k}}_{B} + \underbrace{\sum_{k=1}^{K} \left[\bar{\lambda}_{k} - \overline{\ln(\lambda_{k})} \right] \cdot \Delta v_{k}}_{C} + \underbrace{\sum_{k=1}^{K} \left(\bar{\theta}_{k} - \bar{v}_{k} \right) \cdot \Delta \ln(\bar{y}_{k})}_{D} \quad (3)$$

- A: change within population subgroups
- B: change in population composition on within inequality
- C: change in population composition on between inequality
- D: changes in population subgroup mean incomes
- prior interest: relative importance of B and C compared to ΔI_0

< 17 > <

- Di Nardo/Fortin/Lemieux, 1996; Firpo/Fortin/Lemieux (2010)
- Hyslop/Maré, 2005; Biewen/Juhasz (2010)

Re-weighting procedure

- each individual described by vector (y, x, t)
 - income y, household characteristics x, and time t vector
 - ▶ joint distribution F(y, x, t)
- joint distribution of income and characteristics: F(y, x|t)
- density of income at certain point in time:

$$f_t(y) = \int dF(y, x | t_{y,x} = t) = \int f(y | x, t_y = t) dF(x | t_x = t)$$
(4a)
$$\equiv f(y, t_y = t, t_x = t)$$
(4b)

• see Di Nardo/Fortin/Lemieux, 1996; Hyslop/Maré, 2005

Re-weighting procedure II

• hypothetical counterfactual distribution:

$$f(y, t_y = 2007, t_x = 1991) = \int f(y|x, t_y = 2007) dF(x|t_x = 1991)$$
(5a)

$$= \int f(y|x, t_y = 2007) \psi_x(x) dF(x|t_x = 2007)$$
 (5b)

• re-weighting function:

$$\psi_x(x) \equiv \frac{dF(x|t_x = 1991)}{dF(x|t_x = 2007)}$$
(6)

• counterfactual density can be estimated by weighted kernel methods

4. Empirical Strategy

3

22 / 39

イロト イポト イヨト イヨト

ΖA

Data and income concept

• German Socio-Economic Panel Study (GSOEP)

- panel survey of households and individuals in Germany conducted annually since 1984
- weights allow representativeness for German population
- income concept:
 - pre and post fisc incomes
 - modified OECD equivalence scale
- 16 population groups:

(No. of adults) X (No. of children) X (No. of earners)

} I Z A

Empirical Strategy

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	k	adults	children	employed	$v_{k,1991}$	Δv_k	$\bar{y}_{k,1991}^{0,post}$	$\Delta \bar{y}_{k}^{0,post}$	I _{0,post} ^{k,1991}	$\Delta I_{0,post}^k$	I _{0,pre} ^{k,1991}	$\Delta I_{0,pre}^k$	P _{0,post} ^{k,1991}	$\Delta P_{0,post}^k$	$R_{0,post}^{k,1991}$	$\Delta R_{0,post}^k$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	no	0	0.090	0.011	14,102.35	1,718.73	0.125	0.029	1.216	-0.096	0.356	-0.032	0.019	0.018
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					(0.003)	(0.005)	(391.15)	(471.03)	(0.012)	(0.014)	(0.074)	(0.086)	(0.020)	(0.024)	(0.005)	(0.008)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	1	no	1	0.067	0.031	21,660.89	48.648	0.135	0.031	0.212	0.142	0.084	0.047	0.095	-0.012
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					(0.003)	(0.004)	(679.42)	(1.008).64	(0.019)	(0.030)	(0.026)	(0.037)	(0.011)	(0.015)	(0.015)	(0.016)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	1	yes	0	0.007	0.006	8,218.39	834.19	0.132	-0.077	0.437	0.635	0.732	-0.014	0.000	0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					(0.001)	(0.002)	(566.93)	(635.94)	(0.025)	(0.028)	(0.052)	(0.145)	(0.052)	(0.062)	(0.000)	(0.000)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	yes	1	0.021	0.004	13,726.20	-1,003.54	0.112	-0.032	0.218	0.191	0.323	0.046	0.035	-0.030
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					(0.001)	(0.002)	(517.46)	(543.96)	(0.011)	(0.014)	(0.020)	(0.046)	(0.030)	(0.037)	(0.013)	(0.013)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2	no	0	0.093	0.040	16,110.03	3,103.29	0.102	0.034	0.912	0.133	0.174	-0.030	0.034	0.030
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					(0.003)	(0.005)	(370.28)	(509.75)	(0.011)	(0.014)	(0.047)	(0.062)	(0.012)	(0.017)	(0.007)	(0.008)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2	no	1	0.072	0.014	20,820.02	3,177.36	0.104	0.072	0.228	0.191	0.069	0.011	0.079	0.042
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					(0.003)	(0.003)	(418.13)	(1.006).93	(0.008)	(0.025)	(0.020)	(0.037)	(0.008)	(0.014)	(0.012)	(0.016)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	2	no	2	0.094	0.000	25,701.18	3,201.73	0.087	0.029	0.128	0.056	0.021	-0.001	0.157	0.065
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					(0.003)	(0.004)	(418.21)	(527.45)	(0.007)	(0.009)	(0.009)	(0.014)	(0.004)	(0.007)	(0.011)	(0.017)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	2	yes	0	0.005	0.012	12,826.74	187.29	0.063	0.065	0.813	0.119	0.372	0.137	0.000	0.021
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					(0.001)	(0.001)	(601.46)	(857.11)	(0.013)	(0.020)	(0.189)	(0.215)	(0.056)	(0.066)	(0.000)	(0.008)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9	2	yes	1	0.137	-0.041	15,573.69	2,257.36	0.070	0.023	0.157	0.096	0.139	0.004	0.012	0.032
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					(0.003)	(0.004)	(146.15)	(245.92)	(0.003)	(0.006)	(0.009)	(0.017)	(0.009)	(0.014)	(0.003)	(0.007)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	2	yes	>2	0.185	-0.039	18,723.81	3,474.51	0.070	0.034	0.111	0.068	0.046	-0.001	0.045	0.045
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					(0.003)	(0.005)	(157.71)	(346.61)	(0.003)	(0.006)	(0.005)	(0.010)	(0.003)	(0.006)	(0.005)	(0.008)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	≥3	no	0	0.006	0.002	18,819.59	-3,352.69	0.125	0.007	1.159	-0.403	0.279	0.064	0.103	-0.072
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					(0.001)	(0.001)	(1506.98)	(1718.37)	(0.015)	(0.023)	(0.148)	(0.159)	(0.066)	(0.079)	(0.052)	(0.053)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12	≥ 3	no	1	0.031	-0.003	19,508.20	359.316	0.079	0.055	0.264	0.088	0.090	0.044	0.031	0.019
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					(0.002)	(0.003)	(507.53)	(908.68)	(0.009)	(0.023)	(0.026)	(0.045)	(0.016)	(0.023)	(0.010)	(0.015)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	≥3	no	≥ 2	0.113	-0.031	22,502.53	1,171.95	0.054	0.033	0.091	0.051	0.015	0.011	0.069	0.035
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					(0.003)	(0.004)	(217.405)	(388.02)	(0.002)	(0.005)	(0.003)	(0.009)	(0.002)	(0.005)	(0.006)	(0.011)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	≥ 3	yes	0	0.000	0.003	11,030.41	157.85	0.020	0.018	0.839	-0.407	0.549	0.096	0.000	0.000
					(0.000)	(0.000)	(1.165).37	(1.386).60	(0.007)	(0.017)	(0.323)	(0.322)	(0.262)	(0.275)	(0.000)	(0.000)
$16 \hspace{0.5cm} \geq \hspace{-0.5cm} 3 \hspace{0.5cm} yes \hspace{0.5cm} \geq \hspace{-0.5cm} 2 \hspace{0.5cm} 0.065 \hspace{0.5cm} -0.012 \hspace{0.5cm} 18,302.44 \hspace{0.5cm} 811.29 \hspace{0.5cm} 0.066 \hspace{0.5cm} 0.003 \hspace{0.5cm} 0.012 \hspace{0.5cm} 0.031 \hspace{0.5cm} 0.063 \hspace{0.5cm} -0.006 \hspace{0.5cm} 0.044 \hspace{0.5cm} -1.006 \hspace{0.5cm} 0.044 \hspace{0.5cm} -1.006 \hspace{0.5cm} 0.044 \hspace{0.5cm} -1.006 \hspace{0.5cm} 0.004 \hspace{0.5cm} -1.006 \hspace{0.5cm} 0.006 \hspace{0.5cm} 0.004 \hspace{0.5cm} -1.006 \hspace{0.5cm} 0.006 \hspace{0.5cm} 0.004 \hspace{0.5cm} -1.006 \hspace{0.5cm} 0.006 \hspace{0.5cm} 0.006 \hspace{0.5cm} 0.006 \hspace{0.5cm} 0.006 \hspace{0.5cm} 0.003 \hspace{0.5cm} 0.006 \hspace{0.5cm} 0.006 \hspace{0.5cm} 0.006 \hspace{0.5cm} 0.006 \hspace{0.5cm} 0.004 \hspace{0.5cm} -1.006 \hspace{0.5cm} 0.006 0$	15	≥ 3	yes	1	0.015	0.004	16,383.19	-544.04	0.110	0.007	0.271	0.072	0.184	0.173	0.067	-0.052
					(0.001)	(0.002)	(596.22)	(758.52)	(0.012)	(0.013)	(0.028)	(0.039)	(0.027)	(0.046)	(0.016)	(0.016)
(0.002) (0.003) (216.89) (358.60) (0.003) (0.005) (0.004) (0.009) (0.007) (0.014) (0.007) (0.014)	16	>3	yes	>2	0.065	-0.012	18,302.44	811.29	0.066	0.003	0.102	0.031	0.063	-0.006	0.044	-0.011
				-	(0.002)	(0.003)	(216.89)	(358.60)	(0.003)	(0.005)	(0.004)	(0.009)	(0.007)	(0.014)	(0.007)	(0.009)
	Total	-	-	-	1.000	0.000	18,816.32		0.105	0.040	0.500	0.125	0.115	0.026	0.056	0.026
(0.000) (0.000) (106.66) (162.88) (0.002) (0.004) (0.010) (0.016) (0.003) (0.005) (0.002) (0.00					(0.000)	(0.000)	(106.66)	(162.88)	(0.002)	(0.004)	(0.010)	(0.016)	(0.003)	(0.005)	(0.002)	(0.003)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Results

5. Results

Andreas Peichl (IZA)

Household Structure and Income Inequality

January 11, 2011

・ロト ・聞ト ・ヨト ・ヨト

25 / 39

Inequality decomposition 1991–2007

income	region	I ₀ ¹⁹⁹¹	I ₀ ²⁰⁰⁷	ΔI_0	А	В	С	D	$\frac{B+C}{\Delta I_0}$				
	household structure and employment status												
pre fisc	Germany	0.500	0.625	25.027	15.973	11.800	7.596	-10.148	77.500				
		(0.010)	(0.011)	(3.542)	(2.274)	(1.211)	(0.973)	(1.716)	(8.150)				
	West	0.480	0.558	16.284	15.892	7.982	5.542	-12.870	83.052				
		(0.012)	(0.012)	(4.042)	(2.658)	(1.210)	(1.048)	(1.836)	(16.407)				
	East	0.514	0.872	69.567	15.711	28.931	23.860	-0.584	75.885				
		(0.022)	(0.024)	(8.524)	(3.743)	(3.154)	(3.097)	(3.691)	(5.311)				
post fisc	Germany	0.105	0.144	37.755	28.917	5.354	3.024	0.560	22.189				
		(0.002)	(0.004)	(4.463)	(3.991)	(0.682)	(0.586)	(1.415)	(2.851)				
	West	0.104	0.149	42.990	35.679	4.689	2.145	0.564	15.896				
		(0.003)	(0.004)	(5.268)	(4.635)	(0.694)	(0.656)	(1.508)	(2.248)				
	East	0.070	0.097	38.801	44.055	-0.731	7.239	-16.178	16.773				
		(0.002)	(0.003)	(6.022)	(4.886)	(1.639)	(1.938)	(2.479)	(8.656)				

< 4 → <

26 / 39

Inequality decomposition 1991-2007

$\frac{B+C}{\Delta l_0}$ for different equivalence scales $ES = (\theta_1 + \theta_2 \cdot N_A + \theta_3 \cdot N_C)^{\gamma}$:

			$\theta_1 = \theta_2$	₂ = 0.5		$\theta_1 = 0; \ \theta_2 = 1$							
	$\theta_3 = 0.3$		$\theta_{3} = 0.5$		$\theta_3 = 1$		$\theta_3 = 0.3$		$\theta_{3} = 0.5$		θ_3	= 1	
income	$\gamma = 0.5$	$\gamma = 1$	$\gamma = 0.5$	$\gamma = 1$	$\gamma = 0.5$	$\gamma = 1$	$\gamma = 0.5$	$\gamma = 1$	$\gamma = 0.5$	$\gamma = 1$	$\gamma = 0.5$	$\gamma = 1$	
	household structure and employment status												
pre fisc	79.143	77.500	79.319	78.139	78.931	76.762	78.497	77.941	78.698	78.591	78.307	77.322	
	(6.336)	(5.798)	(6.391)	(5.972)	(6.315)	(5.740)	(6.064)	(5.618)	(6.084)	(5.747)	(6.080)	(5.594)	
post fisc	23.259	22.189	23.353	22.853	22.797	20.054	21.658	24.296	22.264	26.476	20.751	21.075	
	(2.285)	(2.482)	(2.570)	(3.212)	(2.027)	(1.925)	(2.145)	(2.888)	(2.373)	(3.498)	(1.958)	(2.471)	

・ 同 ト ・ 三 ト ・ 三 ト

27 / 39

Re-weighting results 1991-2007

		pre fisc			post fis				
measure	Δ^{act}	Δ^{rew}	$\frac{\Delta^{act} - \Delta^{rew}}{\Delta^{act}}$	Δ^{act}	Δ^{rew}	$\frac{\Delta^{act} - \Delta^{rew}}{\Delta^{act}}$			
I _{Gini}	18.39	9.16	50.21	16.14	12.45	22.85			
	(1.44)	(1.26)	(3.21)	(1.65)	(1.53)	(2.54)			
<i>I</i> 0	25.03	4.97	80.14	37.76	28.82	23.67			
	(3.59)	(2.92)	(9.42)	(4.46)	(3.91)	(2.54)			
<i>I</i> ₁	39.97	20.69	48.24	54.24	43.11	20.51			
	(5.45)	(4.24)	(3.90)	(10.34)	(8.47)	(2.75)			
<i>I</i> ₂	107.12	66.74	37.70	187.16	148.65	20.58			
	(37.28)	(26.45)	(4.11)	(81.27)	(65.29)	(3.14)			
			post fisc	incomes					
		poverty	,	richness					
P_0/R_0	22.60	10.65	52.87	46.62	40.26	13.64			
	(5.11)	(4.52)	(13.06)	(7.20)	(7.24)	(4.58)			
P_{1}/R_{3}	3 36.36 21.08 42.0		42.03	65.75	65.75 56.79				
	(7.74)	(6.95)	(9.28)	(9.69)	(9.54)	(2.93)			
P_2/R_1	47.24	29.44	37.68	76.06	65.90	13.36			
	(11.48)	(10.22)	(10.65)	(11.54)	(11.36)	(2.85)			

ZA

Summary and discussion

- proportion of "demographic effect" much larger for pre fisc incomes
- tax-benefit system seems to compensate for changing household structure at bottom of distribution
- however, no causal relationship: tax-benefit system itself might have enforced demographic trends
- results of subgroup decomposition in line with those of a counterfactual re-weighting analysis (without further controls!)

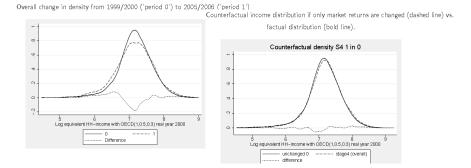
29 / 39

6. Biewen / Juhasz

3

<ロ> (日) (日) (日) (日) (日)

Approach


- Re-weighting à la Hyslop/Maré controlling for various characteristics
 - advantage: several distributional statistics can be computed
 - advantage: can control for other characteristics
 - disadvantage: path-dependence
- GSOEP 1999+2000 vs. 2005+2006 (pooled data!)
- only look at post fisc (disposable) income

31 / 39

Results

- increase in inequality can be explained by
 - changes in employment outcomes and market returns
 - and changes in the tax system.
- Changes in household structures and other household characteristics seem to have played a much smaller role.
- However: several issues with the analysis! (data, method, weights, policy modelling ...)

Results II

January 11, 2011

3

33 / 39

イロト イヨト イヨト イヨト

Results III

	Results of sequential decomposition attributable to											
	Household Structure (1)		Structure attributes		Employment outcomes (3)		Return on attributes (4)		Tax system (5)		Residual	
p5010	7.39	(2.82)	5.96	(3.26)	30.48	(8.76)	23.62	(16.49)	24.30	(5.64)	8.25	
p7525	6.80	(2.29)	3.42	(2.79)	22.54	(5.33)	14.15	(10.66)	19.08	(3.22)	33.30	
p9010	8.93	(2.45)	6.04	(2.96)	30.16	(7.11)	29.61	(13.03)	20.59	(3.77)	4.67	
p9050	13.47	(4.92)	6.77	(7.24)	30.80	(12.70)	41.89	(24.98)	10.62	(8.59)	-3.55	
Cv	8.20	(2.21)	4.66	(3.04)	16.96	(4.19)	22.76	(7.80)	20.92	(5.24)	26.50	
Theil	8.33	(2.24)	5.07	(2.70)	19.92	(4.54)	31.41	(9.80)	19.88	(4.66)	15.36	
MId	3.90	(2.23)	5.81	(2.70)	23.30	(5.43)	28.85	(12.1)	19.64	(4.65)	18.47	
Gini	5.31	(2.44)	5.54	(2.79)	23.17	(4.99)	17.71	(10.91)	17.77	(4.71)	30.48	
Fgt0	7.72	(2.58)	5.34	(2.73)	26.67	(6.64)	20.23	(12.34)	19.81	(3.97)	20.24	
Fgt1	4.03	(2.54)	8.21	(3.79)	30.40	(9.07)	39.38	(17.19)	23.09	(5.01)	-5.11	

Table 4 - Exact decomposition of inequality increase

Source: GSOEP, own calculations. The numbers in parentheses are bootstrap standard errors which correctly take into account the longitudinal sample design and the clustering of individuals in households.

Andreas Peichl (IZA)

7. Conclusion

Andreas Peichl (IZA)

Household Structure and Income Inequality

January 11, 2011

<ロ> (日) (日) (日) (日) (日)

35 / 39

ZA

Conclusions

- changing household composition associated with widening income gap
- but: share of 15% for post fisc incomes only (for inequality)
 - much lower than reported by OECD
 - other more important driving forces
 - \blacktriangleright human capital? bargaining power of unions? \rightarrow future research
- statements on income distribution must be differentiated
 - important to analyze different reasons for a growing income gap
 - complex interactions between income distribution, demographic trends (household formation), and tax-benefit system
- Detailed policy decomposition: see Bargain et al. (2011)

Thank you for your attention! peichl@iza.org

Andreas Peichl (IZA)

Household Structure and Income Inequality

January 11, 2011

A (1) > A (2) > A

37 / 39

FGT measures

- well-known poverty measure P_{α} (Foster et al., 1984)
- richness measure R_{β} (Peichl et al., 2008)
- decomposable for population subgroups

$$P_{\alpha}(y;z) = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\frac{z - y_i}{z}\right)^{\alpha} \cdot \mathbf{1}_{y_i < z}$$
(7)
$$R_{\beta}(y;\rho) = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[1 - \left(\frac{\rho}{y_i}\right)^{\beta}\right] \cdot \mathbf{1}_{y_i > \rho}$$
(8)

- z: poverty line, ρ: richness line
- α: parameter for poverty aversion, β: parameter for sensitiveness to (intense) richness

ΙΖΑ

Decomposition

$$\Delta P_{\alpha} = \underbrace{\sum_{k=1}^{K} \bar{v}_{k} \cdot \Delta P_{\alpha,k}}_{A} + \underbrace{\sum_{k=1}^{K} \bar{P}_{\alpha,k} \cdot \Delta v_{k}}_{B}$$
(9)
$$\Delta R_{\beta} = \underbrace{\sum_{k=1}^{K} \bar{v}_{k} \cdot \Delta R_{\beta,k}}_{A} + \underbrace{\sum_{k=1}^{K} \bar{R}_{\beta,k} \cdot \Delta v_{k}}_{B}$$
(10)

- A: change in level of group poverty/richness
- B: changes in composition of population
- prior interest: relative importance of B relative to ΔP_{α} and ΔR_{β}