Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory

Status vectors and mobility Aggregate mobility index Discussion

Statistical Inference Income mobility Rank mobility

Finite sample performance Income mobility Rank mobility

Social Values

Conclusion

Measuring and Valuing Mobility

Frank Cowell

London School of Economics

January 2011

Select bibliography

Mobility

Cowell

The Setting

- Underlying problem Measures The approach
- Theory
- Status vectors and mobility Aggregate mobility index
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Conclusion

- Cowell, F. A. and E. Flachaire, (2011) Measuring Mobility, PEP Discussion Paper 8, STICERD, LSE
 D'Agostino, M. and V. Dardanoni (2009). The measurement of rank mobility. *Journal of Economic Theory* 144, 1783-1803.
- Demuynck, T. and D. Van de gaer (2010). Rank dependent relative mobility measures. Ghent University, Working Paper, 10/628,
- Fields, G. S. (2007). Income mobility. Cornell University, I.L.R School Working Paper.
- Gottschalk, P. and E. Spolaore (2002). On the evaluation of economic mobility. *Review of Economic Studies* **69**, 191-208.
- Van Kerm, P. (2004).What lies behind income mobility? Reranking and distributional change in Belgium, Western Germany and the USA. *Economica* **71**, 223–239.

Approaches to mobility

Mobility

Cowell

- The Setting
- Underlying problem Measures
- Theory
- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility Social Values
- Conclusion

- Model of mobility often depends on application:
 - income or wealth mobility
 - wage mobility
 - educational mobility
 - mobility in terms of social status
- Measurement addressed from different standpoints
 - in relation to a specific dynamic model
 - as an abstract distributional concept
- Focus on the mobility measures in the abstract
 - covers income or wealth mobility
 - covers also "rank" mobility where the underlying data are categorical
 - separates out the fundamental components of the mobility-measurement problem

Mobility modelling

Mobility

Cowell

The Setting

Underlying problem

The approach

Theory

Status vectors and mobility Aggregate mobilit index Discussion

Statistical Inference Income mobility Rank mobility

Finite sample performance Income mobility Rank mobility

Social values

Conclusion

Basic information is the temporal pair z_i = (x_{i,t-1}, x_{i,t})
Bivariate distribution

- distribution function $F(x_{t-1}, x_t)$
- marginal distributions *F*_{t-1} and *F*_t give income distribution in each period
- Time-aggregated income
 - derived from $(x_{i,t-1}, x_{i,t})$ using weights w_{t-1}, w_t
 - $\bar{x}_i := w_{t-1}x_{i,t-1} + w_t x_{i,t}$
 - Distribution $F_{\mathbf{w}}$ derived from F

Mobility measures in practice

Mobility

Cowell

0

The Setting Underlying problem

Measures

The approach

Theory

Status vectors and mobility Aggregate mobility index Discussion

Statistical Inference Income mobility Rank mobility

Finite sample performance Income mobility Rank mobility

Conclusion

Stability indices:
$$1 - \frac{l(F_{\mathbf{w}})}{w_{t-1}I(F_{t-1}) + w_tI(F_t)}$$

Hart (1976):
$$1 - r(\log x_{t-1}, \log x_t)$$

• where *r* is the correlation coefficient
King (1983):
$$1 - \left[\frac{\int \int (x_t e^{\gamma r(F_t(x_{t-1},x_t))})^k dF(x_{t-1},x_t)}{\mu_k(F_t)}\right]^{\frac{1}{k}}$$

•
$$k \le 1, \ k \ne 0, \ \gamma \ge 0$$

• where
$$r(F; (x_{t-1}, x_t)) \text{ is a rank indicator:}$$
$$\mu_1(F_t)^{-1} |x_t - Q(F_t; F_{t-1}(x_{t-1}))|$$

•
$$Q(G;q) := \inf\{x : G(x) \ge q\}$$

• Fields-Ok (1999): $c \int \int |\log x_{t-1} - \log x_t| dF(x_{t-1}, x_t)$

Fundamentals

Mobility

Cowell

- The Setting
- Measures
- i ne approaci
- Theory
- mobility
- Aggregate mobili index
- Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Social Values
- Conclusion

• How to characterise mobility

- in terms of individual income?
- in terms of social position?
- Ingredients for a theory of mobility measurement:
 - time frame of two or more periods;
 - 2 measure of individual status within society
 - aggregation of changes in status over the time frame.

Ingredients of the problem: classes

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Theory Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility Social Values
- Conclusion

• "Income" as a generic term

- any cardinally measurable, comparable quantity
- cardinality turns out not to be crucial for our approach
- Ordered set of *K* income classes
 - class *k* is associated with income level x_k where $x_k < x_{k+1}, k = 1, 2, ..., K 1$
 - $p_k \in \mathbb{R}_+$ be the size of class k, k = 1, 2, ..., K and
 - $\sum_{k=1}^{K} p_k = n$, the size of the population
- *k*₀ (*i*) and *k*₁ (*i*): income class occupied by person *i* in periods 0 and 1 respectively
- mobility characterised by $(x_{k_0(1)}, ..., x_{k_0(n)})$ and $(x_{k_1(1)}, ..., x_{k_1(n)})$

Ingredients of the problem: valuation

Mobility

Cowell

- The Setting Underlying problem Measures
- The approach
- Theory Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility Social Values
- Conclusion

- Don't have to use simple aggregation of the *x*^{*k*} to compute mobility index
- Could carry out a relabelling of the income classes
- For example use $n_0(x_k) := \sum_{h=1}^k p_h, \ k = 1, ..., K$
 - number of persons in, or below, each income classaccording to the distribution in period 0
- Suppose that the class sizes (*p*₁, ..., *p*_K) in period 0 change to (*q*₁, ..., *q*_K) in period 1
- Relabelling the income classes: $n_1(x_k) := \sum_{h=1}^k q_h$, k = 1, ..., K

Ingredients of the problem: status

Mobility

Cowell

- The Setting Underlying problem Measures
- The approach
- Theory Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility Social Values
- Conclusion

- *u_i*, *v_i* denote individual *i*'s status in the 0-distribution, the 1-distribution
- personal history: $z_i := (u_i, v_i)$
- Distribution-independent, static (1). $z_i = (x_{k_0(i)}, x_{k_1(i)})$
- Distribution-independent, static (2).

$$z_i = \left(arphi \left(x_{k_0(i)}
ight)$$
 , $arphi \left(x_{k_1(i)}
ight)
ight)$

- φ essentially arbitrary (utility of *x*?)
- mobility independent of φ ?
- Distribution-dependent, static.

$$z_i = \left(n_0\left(x_{k_0(i)}\right), n_0\left(x_{k_1(i)}\right)\right)$$

- cumulative numbers in class "value" the class
- Distribution-dependent, dynamic. $z_i = \left(n_0\left(x_{k_0(i)}\right), n_1\left(x_{k_1(i)}\right)\right).$

Example

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory Status vectors and mobility Aggregate mobilit index Discussion

Statistical Inference Income mobility Rank mobility

Finite sample performance Income mobility Rank mobility Social Values

Conclusion

• Consider the following example:

	period 0	period 1
x_1	А	_
<i>x</i> ₂	В	А
x_3	С	В
x_4	_	С
<i>x</i> ₅	_	_

• Different definitions of status will produce different evaluations of such a change.

Basic axioms

Mobility

Cowell

The Setting Underlying problem Measures The approach

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility Social Values
- Conclusion

- **Continuity** \succeq is continuous on Z^n
- **Monotonicity.** If $\mathbf{z}, \mathbf{z}' \in Z^n$ differ only in their *i*th component then $m(u_i, v_i) > m(u'_i, v'_i) \iff \mathbf{z} \succ \mathbf{z}'$.
- **Independence.** For $\mathbf{z}, \mathbf{z}' \in Z^n$ such that: $\mathbf{z} \sim \mathbf{z}'$ and $\overline{z_i = z'_i \text{ for some } i}$ then $\mathbf{z}(\zeta, i) \sim \mathbf{z}'(\zeta, i)$ for all $\zeta \in [z_{i-1}, z_{i+1}] \cap [z'_{i-1}, z'_{i+1}]$.
- **Local immobility.** Let $\mathbf{z}, \mathbf{z}' \in Z^n$ be such that, for some iand $j, u_i = v_i, u_j = v_j, u'_i = u_i + \delta, v'_i = v_i + \delta,$ $u'_j = u_j - \delta, v'_j = v_j - \delta$ and, for all $h \neq i, j, u'_h = u_h,$ $v'_h = v_h$. Then $\mathbf{z} \sim \mathbf{z}'$.

Representation results (1)

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Social Values
- Conclusion

• **<u>Theorem</u>**. Given basic axioms:

- \succeq is representable by the continuous function given by $\sum_{i=1}^{n} \phi_i(z_i), \forall \mathbf{z} \in \mathbb{Z}^n$
- $\phi_i : Z \to \mathbb{R}$ is a continuous function that is strictly decreasing in $|u_i v_i|$

•
$$\phi_i(u,u) = a_i + b_i u$$

• **Corollary.** \succeq is also representable by

•
$$\phi\left(\sum_{i=1}^{n}\phi_{i}\left(z_{i}\right)\right)$$

φ : ℝ → ℝ is continuous and strictly monotonic increasing.

Representation results (2)

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Social Values

Conclusion

- **Status scale irrelevance.** For any $\mathbf{z}, \mathbf{z}' \in Z^n$ such that $\mathbf{z} \sim \mathbf{z}', t\mathbf{z} \sim t\mathbf{z}'$ for all t > 0.:
- **<u>Theorem</u>**. Given Basic axioms and scale irrelevance:
 - \succeq is representable by $\phi\left(\sum_{i=1}^{n} u_i H_i\left(\frac{u_i}{v_i}\right)\right)$
 - where H_i is a real-valued function.

Representation results (3)

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory

Status vectors and mobility

Aggregate mobility index Discussion

Statistical Inference Income mobility Rank mobility

Finite sample performance Income mobility Rank mobility Social Values

Conclusion

• This suggests we can compare the (*u*, *v*) vectors in different parts of the distribution in terms of proportional differences

•
$$m(z_i) = \max\left(\frac{u_i}{v_i}, \frac{v_i}{u_i}\right)$$

- **Mobility scale irrelevance.** Suppose there are $\overline{\mathbf{z}_0, \mathbf{z}'_0 \in Z^n}$ such that $\mathbf{z}_0 \sim \mathbf{z}'_0$. Then for all t > 0 and \mathbf{z}, \mathbf{z}' such that $m(\mathbf{z}) = tm(\mathbf{z}_0)$ and $m(\mathbf{z}') = tm(\mathbf{z}'_0)$: $\mathbf{z} \sim \mathbf{z}'$.
- <u>**Theorem.</u>** Given our axioms \succeq is representable by $\Phi(\mathbf{z}) = \phi\left(\sum_{i=1}^{n} u_i^{\alpha} v_i^{1-\alpha}\right)$ </u>
 - where $\alpha \neq 1$ is a constant.

Generating an aggregate mobility index

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory

Status vectors an mobility

Aggregate mobility index

Discussion

Statistical Inference Income mobility Rank mobility

Finite sample performance Income mobility Rank mobility

Conclusion

Consider a subset of Z :
 Z (ū, v̄) := {z ∈Z | ∑_{i=1}ⁿ z_i = (ū, v̄)}.

• From theorem 3, that the mobility index must take the form:

•
$$\Phi(\mathbf{z}) = \bar{\phi}\left(\sum_{i=1}^{n} u_i^{\alpha} v_i^{1-\alpha}; \bar{u}, \bar{v}\right).$$

• $\Phi(\mathbf{z})$ should be zero when there is no mobility

using the standard interpretation of mobility
φ̄ (Σⁿ_{i=1} u_i; ū, ū) = 0,
i.e. φ̄ (ū; ū, ū) = 0.

Using a broader interpretation of zero mobility

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory

Status vectors an mobility

Aggregate mobility index

Discussion

Statistical Inference Income mobilit Rank mobility

Finite sample performance Income mobility Rank mobility Social Values

Conclusion

Scaling up everyone's income should not matter

•
$$v_i = \lambda u_i, i = 1, ..., n$$
 (where $\lambda = \bar{v}/\bar{u}$)
• $\bar{\phi} \left(\lambda^{1-\alpha} \sum_{i=1}^n u_i; \bar{u}, \bar{v} \right) = 0$
• $\bar{\phi} \left(\bar{u}^{\alpha} \bar{v}^{1-\alpha}; \bar{u}, \bar{v} \right) = 0.$

• This requires ϕ and $\overline{\phi}$ are equivalent to:

•
$$\psi\left(\sum_{i=1}^{n} \left[\frac{u_i}{\mu_u}\right]^{\alpha} \left[\frac{v_i}{\mu_v}\right]^{1-\alpha}\right)$$

• A suitable cardinalisation of $\psi(.)$ gives *M*.

•
$$M_{\alpha} := \frac{1}{\alpha[\alpha-1]n} \sum_{i=1}^{n} \left[\left[\frac{u_i}{\mu_u} \right]^{\alpha} \left[\frac{v_i}{\mu_v} \right]^{1-\alpha} - 1 \right].$$

Limiting cases

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory Status vectors a

Aggregate mobility index

Discussion

Statistical Inference Income mobility Rank mobility

Finite sample performance Income mobility Rank mobility Social Values

Conclusion

Two limiting cases

• $\alpha = 0$:

•
$$M_0 = -rac{1}{n}\sum_{i=1}^n rac{v_i}{\mu_v}\log\left(\left.rac{u_i}{\mu_u}\right/rac{v_i}{\mu_v}
ight)$$
 ,

• $\alpha = 1$

•
$$M_1 = \frac{1}{n} \sum_{i=1}^n \frac{u_i}{\mu_u} \log\left(\frac{u_i}{\mu_u} / \frac{v_i}{\mu_v}\right)$$
.

• We have a *class* of aggregate mobility measures

high α > 0: *M* sensitive to downward movements
α < 0: *M* sensitive to upward movements

Discussion 1

Mobility

Cowell

The Setting Underlying problem Measures The approach

I heory Status vectors and mobility Aggregate mobility index

Discussion

- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility Social Values

Conclusion

- Concerned with *ranks* not *income levels*? Then make status an ordinal concept (Chakravarty 1984)
- Variety of ways to define status ordinally: mobility tables or transition matrices.
- However, these approaches are sensitive to the adjustment of class boundaries:
 - Consider the case where in the original set of classes $p_k = 0$ and $p_{k+1} > 0$;
 - if the mobility index is sensitive to small values of *p* and the income boundary between classes *k* and *k* + 1 is adjusted there could be a big jump in the mobility index.
 - This will not happen if the index is defined in terms of u_i and v_i

Discussion 2

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Theory Status vectors and mobility Aggregate mobilit index
- Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Social Values
- Conclusion

- The derivation is value free. Can we introduce a social valuation of mobility?
- Could construct an explicit welfare approach
 - something analagous to Atkinson inequality? (Gottschalk-Spolaore 2002)
 - but you must go beyond simplistic welfare models (Markandya 1982, 1983)
- Can also introduce normative elements in the above framework
 - definition of status
 - value range of α

Income mobility

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Theory Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility

Rank mobility

- Finite sample performance Income mobility Rank mobility Social Values
- Conclusion

• Simplest case: status before and after

- i.e. distribution-independent, static
- Movements of incomes: $u_i = x_{0i}$ and $v_i = x_{1i}$.
- Define moment $\mu_{g(u,v)} = n^{-1} \sum_{i=1}^{n} g(u_i, v_i)$
 - g(.) is a specific function
 consider three cases: M_α, M₀ and M₁

General case

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Theory Status vectors and mobility Aggregate mobility index Discussion

Statistical Inference Income mobility

Finite sample performance Income mobility Rank mobility Social Values

Conclusion

- Rewrite the index as $M_{\alpha} = \frac{1}{\alpha(1-\alpha)} \left[\frac{n^{-1} \sum u_i^{\alpha} v_i^{1-\alpha}}{\mu_u^{\alpha} \mu_v^{1-\alpha}} 1 \right].$
- In terms of moments: $M_{\alpha} = \frac{1}{\alpha(\alpha-1)} \left[\frac{\mu_{u^{\alpha}v^{1-\alpha}}}{\mu_{u}^{\alpha}\mu_{v}^{1-\alpha}} 1 \right].$
- Central Limit Theorem implies asymptotic normality under standard regularity conditions.
- $\widehat{\operatorname{Var}}(M_{\alpha}) = D\widehat{\Sigma}D^{\top}$ with $D = \begin{bmatrix} \frac{\partial M_{\alpha}}{\partial \mu_{u}} ; & \frac{\partial M_{\alpha}}{\partial \mu_{v}} ; & \frac{\partial M_{\alpha}}{\partial \mu_{u}^{\alpha_{v}1-\alpha}} \end{bmatrix}$
- *D* in terms of sample moments: $D = \left[\frac{-\mu_u \alpha_v 1 - \alpha \mu_u^{-\alpha - 1} \mu_v^{\alpha - 1}}{(\alpha - 1)}; \frac{\mu_u \alpha_v 1 - \alpha \mu_u^{-\alpha} \mu_v^{\alpha - 2}}{\alpha}; \frac{\mu_u^{-\alpha} \mu_v^{\alpha - 1}}{\alpha(\alpha - 1)} \right].$

Covariance matrix

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Theory Status vectors and mobility Aggregate mobility index Discussion

Statistical Inference Income mobility

Rank mobility

Finite sample performance Income mobility Rank mobility

Social Values

Conclusion

Σ̂ is the estimator of the covariance matrix of μ_u, μ_v and μ_{u^kv^{1-κ}}
 We have:

$$\hat{\Sigma} = \frac{1}{n} \begin{bmatrix} \mu_{u^2} - (\mu_u)^2 & \mu_{uv} - \mu_u \mu_v & \mu_{u^{1+\alpha_v^{1-\alpha}}} - \mu_u \mu_{u^{\alpha_v^{1-\alpha}}} \\ \mu_{uv} - \mu_u \mu_v & \mu_{v^2} - (\mu_v)^2 & \mu_{u^{\alpha_v^{2-\alpha}}} - \mu_v \mu_{u^{\alpha_v^{1-\alpha}}} \\ \mu_{u^{1+\alpha_v^{1-\alpha}}} - \mu_u \mu_{u^{\alpha_v^{1-\alpha}}} & \mu_{u^{\alpha_v^{2-\alpha}}} - \mu_v \mu_{u^{\alpha_v^{1-\alpha}}} & \mu_{u^{2\alpha_v^{2-\alpha}}} - (\mu_{u^{\alpha_v^{1-\alpha}}})^2 \end{bmatrix}$$

Limiting case (1)

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility

Finite sampl performance

Rank mobility

Social Values

Conclusion

• M_0 as a function of four moments:							
$M_0 = rac{\mu_{v\log v}-\mu_{v\log u}}{\mu_v} + \log\left(rac{\mu_u}{\mu_v} ight).$							
• $\widehat{\operatorname{Var}}(M_0) = D_0 \hat{\Sigma}_0 D_0^{ op}$							
• $D_0 = \begin{bmatrix} \frac{\partial M_0}{\partial \mu_u} ; & \frac{\partial M_0}{\partial \mu_v} ; & \frac{\partial M_0}{\partial \mu_{v \log v}} ; & \frac{\partial M_0}{\partial \mu_{v \log u}} \end{bmatrix}$							
 Σ̂₀: 							

$$\frac{1}{n} \begin{bmatrix} \mu_{u^2} - (\mu_u)^2 & \mu_{uv} - \mu_u \mu_v & \mu_{uv \log v} - \mu_u \mu_v \log u & \mu_{uv \log v} \\ \mu_{uv} - \mu_u \mu_v & \mu_{v^2} - (\mu_v)^2 & \mu_{v^2 \log v} - \mu_v \mu_{v \log v} & \mu_{v^2 \log u} - \mu_v \mu_{v \log u} \\ \mu_{uv \log v} - \mu_u \mu_{v \log v} & \mu_{v^2 \log v} - \mu_v \mu_{v \log v} & \mu_{(v \log v)^2} - (\mu_{v \log v})^2 & \mu_{v^2 \log u \log v} - \mu_{v \log u} \mu_{v \log v} \\ \mu_{uv \log u} - \mu_u \mu_{v \log u} & \mu_{v^2 \log u} - \mu_v \mu_{v \log u} & \mu_{v^2 \log u \log v} - \mu_v \log u \mu_v \log v & \mu_{(v \log u)^2} - (\mu_{v \log v})^2 \end{bmatrix}^2$$

Limiting case (2)

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Theory Status vectors and mobility Aggregate mobility index Discussion

Statistical Inference Income mobility

Finite sample performance Income mobility Rank mobility Social Values

Conclusion

• M_1 as a function of four moments:	
$M_1 = rac{\mu_{u\log u} - \mu_{u\log v}}{\mu_u} + \log\left(rac{\mu_v}{\mu_u} ight)$	
• $\widehat{\operatorname{Var}}(M_1) = D_1 \hat{\Sigma}_1 D_1^\top$ with	
$D_1 = \begin{bmatrix} rac{\partial M_1}{\partial \mu_u} ; & rac{\partial M_1}{\partial \mu_v} ; & rac{\partial M_1}{\partial \mu_{u\log u}} ; & rac{\partial M_1}{\partial \mu_{u\log v}} \end{bmatrix}$	
• $D_1 = \left[\frac{-\mu_{u\log u} + \mu_{u\log v} - \mu_u}{\mu_u^2}; \frac{1}{\mu_v}; \frac{1}{\mu_u}; -\frac{1}{\mu_u} \right]$	
• $\hat{\Sigma}_1$:	
$\frac{1}{n} \begin{bmatrix} \mu_{u^2} - (\mu_u)^2 & \mu_{uv} - \mu_u \mu_v & \mu_{u^2 \log u} - \mu_u \mu_{u \log u} \\ \mu_{uv} - \mu_u \mu_v & \mu_{v^2} - (\mu_v)^2 & \mu_{uv \log u} - \mu_v \mu_{u \log u} \\ \mu_{u^2 \log u} - \mu_u \mu_{u \log u} & \mu_{uv \log u} - \mu_v \mu_{u \log u} & \mu_{(u \log u)^2} - (\mu_{u \log u})^2 \\ \mu_{u^2 \log v} - \mu_u \mu_u \log_v & \mu_{uv \log v} - \mu_v \mu_u \log_v & \mu_u^2 \log u \log_v - \mu_u \log u \mu_u \log_v \end{bmatrix}$	$\begin{array}{l} \mu_{u^2 \log v} - \mu_u \mu_{u \log v} \\ \mu_{uv \log v} - \mu_v \mu_{u \log v} \end{array}$
$\frac{1}{n} \begin{bmatrix} \mu_{u^2 \log u} - \mu_u \mu_u \log u & \mu_{uv} \log u - \mu_v \mu_u \log u & \mu_{(u \log v)^2} - (\mu_u \log u)^2 \\ \mu_{u^2 \log v} - \mu_u \mu_u \log v & \mu_{uv} \log v - \mu_v \mu_u \log v & \mu_{u^2 \log u \log v} - \mu_u \log u \mu_u \log v \end{bmatrix}$	$ \begin{array}{c} \mu_{u^2 \log u \log v} - \mu_{u \log u} \mu_{u \log v} \\ \mu_{(u \log v)^2} - (\mu_{u \log v})^2 \end{array} $

Rank mobility

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Theory Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility Social Values

- we now consider the *distribution-dependent*, *dynamic* status.
- Scale independence means we can define status using proportions

•
$$u_i = \hat{F}_0(x_{0i})$$
 and $v_i = \hat{F}_1(x_{1i})$

- *F̂*₀(.) and *F̂*₁(.) are the empirical distribution functions
 *F̂*_k(x) = ¹/_n ∑ⁿ_{j=1} I(x_{kj} ≤ x)
- Method of moments does not apply as the values in *u* and *v* are non i.i.d.

Establishing the asymptotic distribution

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobili

Rank mobility

Finite sample performance Income mobility Rank mobility Social Values

Conclusion

- Ruymgaart and van Zuijlen (1978): asymptotic normality for the multivariate rank statistic
 T_n = ¹/_n Σⁿ_{i=1} c_{in}φ₁(u_i)φ₂(v_i).
 - c_{in} are given real constants, ϕ_1 and ϕ_2 are (scores) functions defined on (0,1),
 - these are allowed to tend to infinity near 0 and 1 but not too quickly.
 - need to assume the existence of K_1 , a_1 and a_2 , s.t. $\phi_1(t) \leq \frac{K_1}{[t(1-t)]^{a_1}}$ and $\phi_2(t) \leq \frac{K_1}{[t(1-t)]^{a_2}}$ with $a_1 + a_2 < \frac{1}{2}$ for $t \in (0, 1)$.
 - Then, $\phi_1(t)$ and $\phi_2(t)$ tend to infinity near 0 at a rate slower than the functions t^{-a_1} and t^{-a_2} .
 - Variance of T_n is finite, even if not analytically tractable.

Applying the results - general case

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory Status vectors and mobility Aggregate mobilit index Discussion

Statistical Inference Income mobilit Rank mobility

Finite sample performance Income mobility Rank mobility Social Values

Conclusion

*M*_α can be written as a function of *T_n* Note that μ_u = μ_v = ¹/_n Σⁿ_{i=1} ⁱ/_n = ⁿ⁺¹/_{2n}.

•
$$M_{\alpha}$$
 as a function of one moment:
 $M_{\alpha} = \frac{1}{\alpha(\alpha-1)} \left[\frac{2n}{n+1} \mu_{\mu^{\alpha} v^{1-\alpha}} - 1 \right].$

• Hence,
$$M_{\alpha} = \frac{1}{\alpha(\alpha-1)} [T_n - 1]$$
.

Applying the results - limiting cases

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility

Finite sample performance Income mobility Rank mobility Social Values

Conclusion

• M_0 as a function of T_n

•
$$M_0 = \frac{2n}{n+1}(k - \mu_{v\log u}) = l - T_n.$$

• M_1 as a function of T_n

•
$$M_1 = \frac{2n}{n+1}(k - \mu_{u\log v}) = l - T_n$$

- It can be shown that the relevant conditions are met for -0.5 < α < 1.5.
 - M_{α} is asymptotically normal
 - asymptotic justification for the bootstrap

Income mobility

Mobility

Cowell

The Setting Underlying problem Measures The approach

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Social Values
- Conclusion

- coverage error rate of a confidence interval
 - probability that CI does not include the true value of a parameter
 - should be close to the nominal rate
 - e.g. 5% for a 95% CI
- use Monte-Carlo simulations to approximate coverage error rates for different methods:
 - asymptotic
 - percentile bootstrap
 - and studentized bootstrap

Asymptotic confidence intervals

Mobility

Cowell

The Setting Underlying problem Measures The approach

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Social Values
- Conclusion

- $IC_{asym} = [M_{\alpha} c_{0.975}\widehat{\operatorname{Var}}(M_{\alpha})^{1/2}; M_{\alpha} + c_{0.975}\widehat{\operatorname{Var}}(M_{\alpha})^{1/2}]$
- $c_{0.975}$ is a critical value from the Student distribution T(n-1).
- finite sample performance often poor
- bootstrap confidence intervals can be expected to perform better

Percentile bootstrap method

Mobility

Cowell

The Setting Underlying problem Measures The approach

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Social Values
- Conclusion

- does not require the (asymptotic) standard errorMethod:
 - generate *B* bootstrap samples by resampling in the original data
 - for each resample, we compute the mobility index.
 - obtain *B* bootstrap statistics, M^b_{α} , b = 1, ..., B.
- The percentile bootstrap confidence interval is equal to $IC_{perc} = [c_{0.025}^b; c_{0.975}^b]$
 - $c_{0.025}^b$ and $c_{0.975}^b$ are the 2.5 and 97.5 percentiles of the EDF of the bootstrap statistics.

Studentized bootstrap method

Mobility

Cowell

The Setting Underlying problem Measures The approach

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Social Values
- Conclusion

- uses the asymptotic standard error
- Method:
 - generate *B* bootstrap samples by resampling in the original data
 - for each resample, compute a *t*-statistic.
 - obtain *B* bootstrap *t*-statistics $t^{b}_{\alpha} = (M^{b}_{\alpha} - M_{\alpha}) / \widehat{\operatorname{Var}}(M^{b}_{\alpha})^{1/2}, b = 1, \dots, B,$
 - where M_{α} is the original mobility index
- $IC_{stud} = [M_{\alpha} c^*_{0.975}\widehat{\operatorname{Var}}(M_{\alpha})^{1/2}; M_{\alpha} c^*_{0.025}\widehat{\operatorname{Var}}(M_{\alpha})^{1/2}]$
 - $c_{0.025}^*$ and $c_{0.975}^*$ are percentiles of the EDF of the bootstrap *t*-statistics.

Comparison

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Theory Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Conclusion

- studentized bootstrap based on asymptotically pivotal statistic
- t-statistics follow (asymptotically) a known distribution
 - superior performance of the bootstrap over asymptotic confidence intervals
- both bootstrap intervals asymmetric, asymptotic confidence interval is symmetric
 - bootstrap CIs more accurate if the underlying distribution is asymmetric.

Experiments

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Theory Status vectors and mobility Aggregate mobilit index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Social Values
- Conclusion

- Bivariate Lognormal distribution: $(x_0, x_1) \sim LN(\mu, \Sigma)$ with $\mu = (0, 0)$ and $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$
- mobility increases as ρ decreases
- we try different mobility indices, different sample sizes and different mobility levels
- for each combination:
 - draw 10,000 samples (from the bivariate lognormal distribution)
 - compute M_{α}
 - compute confidence interval at 95%
 - How often does the interval does not include the true parameter?

Asymptotic confidence intervals

Mobility

Cowell

The Setting Underlying problem Measures The approach Theory Status vectors and

mobility Aggregate mobili index

Discussion

Statistical Inference Income mobility

Finite sample performance Income mobility

Social Values

Conclusion

α	-1	0	0.5	1	2
$n = 100, \rho = 0$	0.3686	0.1329	0.1092	0.1357	0.3730
$n = 100, \rho = 0.2$	0.3160	0.1334	0.1136	0.1325	0.3194
$n = 100, \rho = 0.4$	0.2664	0.1353	0.1221	0.1351	0.2889
$n = 100, \rho = 0.6$	0.2175	0.1346	0.1275	0.1361	0.2263
$n = 100, \rho = 0.8$	0.1718	0.1349	0.1304	0.1345	0.1753
$n = 100, \rho = 0.9$	0.1528	0.1321	0.1308	0.1329	0.1531
$n = 100, \rho = 0.99$	0.1355	0.1340	0.1331	0.1324	0.1333
$n = 200, \rho = 0$	0.3351	0.1077	0.0923	0.1107	0.3153
$n = 500, \rho = 0$	0.2594	0.0830	0.0696	0.0818	0.2631
$n = 1000, \ \rho = 0$	0.2164	0.0703	0.0609	0.0726	0.2181
$n = 5000, \ \rho = 0$	0.1713	0.0554	0.0469	0.0522	0.2066
$n = 10000, \rho = 0$	0.1115	0.0532	0.0527	0.0534	0.1151

Table: Coverage error rate of asymptotic confidence intervals at 95% of income mobility measures. The nominal error rate is 0.05, 10.000 replications

Results

Mobility

Cowell

The Setting Underlying problem Measures The approach

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Social Values
- Conclusion

- Distribution-independent, static.
- Recall: coverage error rate should be close to 5%
 - asymptotic intervals perform poorly for $\alpha = -1, 2$
 - coverage error rate is stable as *ρ* varies (for *α* = 0, 0.5, 1 and *n* = 100)
 - coverage error rate decreases as *n* increases
 - coverage error rate close to 0.05 for $n \ge 5.000$ and $\alpha = 0$, 0.5, 1.
- asymptotic confidence intervals perform well in very large sample, with *α* ∈ [0, 1].
- dismal performance of asymptotic confidence intervals for small and moderate samples
 - poorest results for $\rho = 0.8$
 - try other two methods for this value of ρ

Other methods

Mobility

Cowell

	α	-1	0	0.5	1	2
Setting	$n = 100, \rho = 0.8$					
lying problem	Asymptotic	0.1718	0.1349	0.1304	0.1345	0.1753
ires	Boot-perc	0.1591	0.1294	0.1215	0.1266	0.1552
pproach	Boot-stud	0.0931	0.0751	0.0732	0.076	0.0952
	$n = 200, \rho = 0.8$					
ry	Asymptotic	0.1315	0.0973	0.0927	0.0973	0.1276
vectors and tv	Boot-perc	0.1222	0.0943	0.0900	0.0950	0.1176
gate mobility	Boot-stud	0.0794	0.0666	0.0660	0.0688	0.0791
gate mobility	$n = 500, \rho = 0.8$					
sion	Asymptotic	0.1127	0.0847	0.0828	0.0857	0.1124
	Boot-perc	0.1054	0.0814	0.0813	0.0843	0.1036
stical	Boot-stud	0.0765	0.0641	0.0629	0.0630	0.0779
ence	$n = 1.000, \rho = 0.8$					
e mobility	Asymptotic	0.0880	0.0678	0.0659	0.0672	0.0864
nobility	Boot-perc	0.0862	0.0672	0.0661	0.0689	0.0851
sample	Boot-stud	0.0680	0.0585	0.0589	0.0596	0.0693

performance Income mobility Rank mobility

Social Values

Conclusion

Table: Coverage error rate of asymptotic and bootstrap confidence intervals at 95% of income mobility measures. 10 000 replications, 199 bootstraps

Results

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Theory Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Social Values
- Conclusion

- percentile bootstrap and asymptotic confidence intervals perform similarly
- studentized bootstrap confidence intervals outperform other methods
 - siginificant improvement over asymptotic confidence intervals

Rank mobility

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility

Rank mobility

- Social Values
- Conclusion

• *distribution-dependent, dynamic* status

- variance of M_{α} is not analytically tractable
 - cannot use asymptotic and studentized bootstrap confidence intervals
 - use the percentile bootstrap method

Percentile bootstrap method (n=100)

Mobility

Cowell

The Setting

Underlying problem Measures The approach

Theory

Status vectors and mobility Aggregate mobili index

Statistical Inference

Rank mobility

Finite sample performance Income mobility Rank mobility

Conin I Value

Conclusion

α	-0.5	0	0.5	1	1.5
$\rho = 0$	0.5592	0.1575	0.1088	0.1583	0.5282
$\rho = 0.2$	0.3176	0.1122	0.0884	0.1135	0.3231
$\rho = 0.4$	0.1883	0.0931	0.0755	0.0913	0.1876
$\rho = 0.6$	0.1122	0.0767	0.0651	0.0741	0.1118
$\rho = 0.8$	0.0671	0.0593	0.0555	0.0590	0.0652
$\rho = 0.9$	0.0432	0.0430	0.0431	0.0441	0.0446
$\rho = 0.99$	0.0983	0.0985	0.0981	0.0984	0.0992

Table: Coverage error rate of percentile bootstrap confidence intervals at 95% of rank-mobility measures. 10 000 replications, 199 bootstraps and 100 observations.

Results

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Theory
- Status vectors and mobility Aggregate mobility index
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility
- Social Values
- Conclusion

- the coverage error rate can be very different for different values of *ρ* and *α*,
- it decreases as *ρ* increases, except for the case of "nearly" zero mobility (*ρ* = 0.99).
- the coverage error rate is close to 0.05 for $\rho = 0.8, 0.9$ and $\alpha = 0, 0.5, 1$.
- What happens as the sample size increases?

Percentile bootstrap method (variable n)

Mobility

Cowell

The Setting
Underlying problem
Measures
The approach
Theory
Status vectors and

- mobility Aggregate mobil index
- Discussion
- Statistical Inference Income mobility

Finite sample performance Income mobility Rank mobility

Social Values

Conclusion

α	-0.5	0	0.5	1	1.5
$n = 100, \ \rho = 0$	0.5592	0.1575	0.1088	0.1583	0.5282
n = 200	0.4613	0.1143	0.0833	0.1180	0.4723
n = 500	0.3548	0.0868	0.0645	0.0814	0.3644
n = 1000	0.3135	0.0672	0.0556	0.0735	0.3170
$n = 100, \rho = 0.9$	0.0432	0.0430	0.0431	0.0441	0.0446
n = 200	0.0454	0.0441	0.0456	0.0454	0.0459
n = 500	0.0500	0.0499	0.0485	0.0480	0.0483
n = 1000	0.0511	0.0509	0.0539	0.0538	0.0538
$n = 100, \rho = 0.99$	0.0983	0.0985	0.0981	0.0984	0.0992
n = 200	0.0981	0.0971	0.0970	0.0974	0.0977
n = 500	0.0855	0.0838	0.0833	0.0822	0.083
n = 1000	0.0788	0.0777	0.0762	0.0767	0.0771

Table: Coverage error rate of percentile bootstrap confidence intervals at 95% of rank-mobility measures. 10 000 replications, 199 bootstraps.

Results

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Theory Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility
- Rank mobility
- Social Values
- Conclusion

- the coverage error rate gets closer to 0.05 as the sample size increases,
- the coverage error rate is smaller when $\alpha = 0, 0.5, 1$.
- better statistical properties as the sample size increases

Asking about mobility

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory Status wort

- mobility Aggregate mobility index
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility

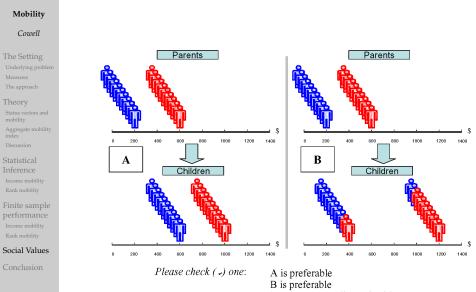
Social Values

Conclusion

• A questionnaire study

- use same type of methods as for inequality?
- focus on whether people value mobility
- contrast with preferences for equality?
- Study using 356 students from three countries:
 - Italy (120)
 - UK (89)
 - Israel (147)
- Mobility problem obviously more complex
 - mobility is a "from-to" concept
 - not a snapshot
 - graphics representation is tricky
- Method:
 - "bus queue" pictures
 - combine equality and intergenerational mobility
 - get personal characteristics

Q6 Rigidity v Partial Mixing+Widening



A and B are equally preferable

Asking about mobility

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility

Finite sample performance Income mobility Rank mobility

Social Values

Conclusion

• Yes if A chosen more often than B in

- Q1 (Full mixing v rigidity)
- Q4 (Partial mixing v rigidity)
- Q7 (Full v partial mixing)

	A responses			B responses			
	Q1 Q4		Q7	Q1	Q4	Q7	
Italy	60.8	56.7	68.3	22.5	31.7	22.5	
UK	77.5	84.3	68.5	7.9	7.9	16.9	
Israel	70.1	66.7	70.1	19.7	20.4	15.0	
All	68.8	67.7	69.1	17.7	21.1	18.0	

Asking about equality

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility

Finite sample performance Income mobility Rank mobility

Social Values

Conclusion

• Yes if A chosen more often than B in

- Q2 (Full mixing and widening)
- Q5 (Partial mixing and widening)
- Q8 (Rigidity v Simple widening)

	A responses			B responses			
	Q2 Q5		Q8	Q2	Q5	Q8	
Italy	67.5	68.3	70.8	16.7	15.8	13.3	
UK	76.4	77.5	80.9	14.6	13.5	10.1	
Israel	71.4	72.8	78.9	16.3	14.3	10.2	
All	71.4	72.5	76.7	16.0	14.6	11.2	

Categorical variables

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory Status vectors and mobility Aggregate mobility index Discussion

Statistical Inference Income mobility Rank mobility

Finite sample performance Income mobility Rank mobility 0

Social Values

Conclusion

• Check for each person the answers to

- Q1,Q4,Q7 (mobility)
- Q2,Q5,Q8 (equality)

• Percentages in each category

	0	0,				
		0A	1A	2A	3A	
			Mob	oility		
	Italy	10.8	24.2	33.3	31.7	
	UK	9.0	11.2	20.2	59.6	
	Israel	10.9	16.3	27.9	44.9	
•	TOTAL	10.4	17.7	27.8	44.1	
			Equ	ality		
	Italy	16.7	10.0	23.3	50.0	
	UK	13.5	6.7	11.2	68.5	
	Israel	9.5	14.3	19.7	56.5	
	TOTAL	12.9	11.0	18.8	57.3	

Regression model

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Theory Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility

Social Values

Conclusion

- Seek to explain
 - attitudes to mobility
 - attitudes to equality
- Use categorical variables
 - mobility preferences 0A, 1A, 2A, 3A
 equality preferences 0A, 1A, 2A, 3A
- Variety of personal characteristics
- Standard ordered probit

Conclusion: Measurement

Mobility

Cowell

- The Setting Underlying problem Measures The approach
- Status vector
- Aggregate mobilit index
- Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility

Social Values

Conclusion

- Key step involves a logical separation of fundamental concepts
 - measure of individual status
 - aggregation of changes in status
- Status concept derived directly from the information in the marginals
- Apply standard principles to movements in status
 - get a superclass of mobility measures
 - generally applicable to wide variety of status concepts
 - parameter *α* that determines type of mobility measure
- Principal status types yield statistically tractable mobility indices

Conclusion: Values

Mobility

Cowell

The Setting Underlying problem Measures The approach

Theory

- Status vectors and mobility Aggregate mobility index Discussion
- Statistical Inference Income mobility Rank mobility
- Finite sample performance Income mobility Rank mobility

Social Values

Conclusion

• Mobility key factors:

- "The more independent are children's and parents' economic positions in a society..."
- "I am from around here"
- Italy country dummy (Italians don't value mobility....!)

• Equality key factors:

- family income
- role of government
- prospective social position