Revealed preferences and intra-household allocation Sixth Winter School on Inequality and Social Welfare Theory Alba di Canazei

Frederic Vermeulen

Tilburg University

January 10-13, 2011

- The topic of this Sixth Winter School is "Inequality and the family"
- An important issue in this respect is that one usually does not observe how the household's resources are distributed among the household members
- Researchers often make use of equivalence scales to transform the household's resources to individual resources
- These equivalence scales can be rather a-theoretic (e.g. OECD scale) or embedded in a structural consumption model (e.g. Barten scale)
- Both approaches depend on assumptions about the intra-household distribution of resources and the importance of economies of scale

- Most studies tackle the issue by assuming a unitary model
 - Standard textbook model: see e.g. Samuelson's (1947) Foundations of Economic Analysis or Deaton and Muellbauer's (1980) Economics and Consumer Behavior
 - Households behave like single rational decision makers: utility function is maximized subject to a budget constraint
 - Generates the testable implications of adding-up, homogeneity, negativity and symmetry
 - A unique preference ordering obtains if the theoretical restrictions are satisfied
 - This allows to use the model to construct traditional equivalence scales

• Some theoretical and empirical issues

- The unitary model ignores the intra-household distribution of resources
- The estimation of equivalence scales is faced with a fundamental identification problem: demand data only identify the shape and the ranking of indifference curves but not the utility level attached to each of these curves; this utility level is in general needed to calculate equivalence scales
- Theoretical restrictions usually rejected when applied to multi-person households (but not when applied to singles)

- In this lecture, we propose a different approach to go from household resources to individual resources
- The approach is based on the collective model
 - Chiappori (Ecma 1988, JPE 1992); Apps and Rees (JPubE 1988)
 - Multi-person households consist of different individuals with own rational preferences
 - Intra-household allocations are assumed to be Pareto-efficient
 - Generates testable implications which fit the data better than those of the unitary model
 - Individual preferences and the sharing rule (which governs how the household's resources are distributed among the household members) can be identified under some assumptions
 - Model allows welfare analyses at the individual level (specific application: Browning, Chiappori and Lewbel's (WP 2010) indifference scales)

- The standard modelling approach (both for the unitary and the collective model) is to use a **parametric structure** for the preferences and the intra-household bargaining process
 - Fully characterized by Chiappori (Ecma 1988), Browning and Chiappori (Ecma 1998), Chiappori and Ekeland (JET 2006, Ecma 2009)
 - Differentiable approach: assumes a demand function of which the value is known (usually after estimation) for a continuous range of price total expenditure combinations
 - Results are influenced by the chosen functional specification

- Alternative modelling approach (both for the unitary and the collective model) is to opt for a **nonparametric "revealed preference" approach**
 - Samuelson (Econ 1938), Houthakker (Econ 1950), Afriat (IER 1967), Varian (Ecma 1982)
 - Revealed preference axioms (WARP, SARP, GARP)
 - This lecture is in the tradition of Afriat (IER 1967): finite set of quantity and price data observed
 - Analyzes choice behaviour without imposing any parametric structure on preferences or demand
 - Global approach rather than local differentiable approach

- Aim of this lecture
 - Introduce you to the revealed preference (RP) approach to consumption behaviour
 - Discuss testable implications of different models
 - Discuss how one can identify information about the intra-household allocation of the household's resources

- RP characterization of the unitary model
- RP characterizations of collective models
- Some empirical results
- Conclusion

• RP characterization of the unitary model

Image: Image:

æ

• We observe a finite set of price-quantity data:

$$S = \left\{ \left(\mathbf{p}_t; \mathbf{q}_t
ight); t = 1, ..., T
ight\}$$

• A unitary rationalization of the data set S implies that the household acts as a single decision maker

Definition (Unitary rationalization)

Let $S = \{(\mathbf{p}_t; \mathbf{q}_t); t = 1, ..., T\}$ be a set of observations. A utility function U provides a *unitary rationalization* of S if for each observation t we have $U(\mathbf{q}_t) \ge U(\mathbf{z})$ for all \mathbf{z} with $\mathbf{p}'_t \mathbf{z} \le \mathbf{p}'_t \mathbf{q}_t$

• Varian (Ecma 1982): a locally non-satiated utility function exists that provides a unitary rationalization of S if and only if the data satisfy the Generalized Axiom of Revealed Preference (GARP)

Definition (GARP)

The set $S = \{(\mathbf{p}_t; \mathbf{q}_t); t = 1, ..., T\}$ satisfies GARP if there exist relations R_0 , R that meet: (i) if $\mathbf{p}'_s \mathbf{q}_s \ge \mathbf{p}'_s \mathbf{q}_t$ then $\mathbf{q}_s \ R_0 \ \mathbf{q}_t$; (ii) if $\mathbf{q}_s \ R_0 \ \mathbf{q}_u$, $\mathbf{q}_u \ R_0 \ \mathbf{q}_v$, ..., $\mathbf{q}_w \ R_0 \ \mathbf{q}_t$ for some (possibly empty) sequence (u, v, ..., w) then $\mathbf{q}_s \ R \ \mathbf{q}_t$; (iii) if $\mathbf{q}_s \ R \ \mathbf{q}_t$ then $\mathbf{p}'_t \mathbf{q}_t \le \mathbf{p}'_t \mathbf{q}_s$

RP characterization of the unitary model

RP characterization of the unitary model

RP characterization of the unitary model

Good 1

- RP characterization of the unitary model
- RP characterizations of collective models

э

RP characterizations of collective models

- We start with an RP characterization of collective models with private and public consumption; Cherchye, De Rock and Vermeulen (REStud 2011)
- Households consist of 2 household members (easily generalized for M members)
- Researcher knows which goods are privately consumed and which goods are publicly consumed; this is similar to Chiappori and Ekeland (Ecma 2009)
- Only aggregate quantities observed
- We observe a finite set of price-quantity data: $S = \{(\mathbf{p}_t, \mathbf{P}_t; \mathbf{q}_t, \mathbf{Q}_t); t = 1, ..., T\}$
- Household member m (m = 1, 2) has preferences represented by the utility function U^m (\mathbf{q}_t^m , \mathbf{Q}_t)

- Special cases of this model:
 - Egoistic model: $U^m (\mathbf{q}_t^m)$
 - Model with only public goods: $U^{m}\left(\mathbf{Q}_{t}\right)$
- Since the individual consumption of the private goods is not observed, we consider *feasible personalized quantities*

Definition (Feasible personalized quantities)

Let S be a set of observations. For each observation t, feasible personalized quantities $q_t^m \in \mathbb{R}^N_+$, m = 1, ..., M, satisfy $q_t^1 + q_t^2 = \mathbf{q}_t$

• A collective rationalization (CR) of the data set S requires that the observed household consumption can be represented as a Pareto efficient outcome of some bargaining process

Definition (Collective rationalization)

Let S be a set of observations. A combination of utility functions U^1 and U^2 provides a collective rationalization of S if for each observation t there exist feasible personalized quantities q_t^m and Pareto weights $\mu_t^m > 0$, m = 1, 2, such that

 $\mu_t^1 U^1\left(\mathfrak{q}_t^1, \mathbf{Q}_t\right) + \mu_t^2 U^2\left(\mathfrak{q}_t^2, \mathbf{Q}_t\right) \geq \mu_t^1 U^1\left(\mathfrak{z}^1, \mathbf{Z}\right) + \mu_t^2 U^2\left(\mathfrak{z}^2, \mathbf{Z}\right)$

for all $\mathfrak{z}^m \in \mathbb{R}^N_+$ and $\mathbf{Z} \in \mathbb{R}^K_+$ such that $\mathbf{p}'_t \left(\mathfrak{z}^1 + \mathfrak{z}^2\right) + \mathbf{P}'_t \mathbf{Z} \le \mathbf{p}'_t \mathbf{q}_t + \mathbf{P}'_t \mathbf{Q}_t$

RP characterizations of collective models

• To come to an RP characterization, we need to define *feasible personalized prices* (Lindahl prices) for the public goods; they capture the fraction of the market price that is borne by the household members

Definition (Feasible personalized prices)

Let S be a set of observations. For each observation t, feasible personalized prices $\mathfrak{P}_t^m \in \mathbb{R}_+^K$, m = 1, 2, satisfy $\mathfrak{P}_t^1 + \mathfrak{P}_t^2 = \mathbf{P}_t$

• Cherchye, De Rock and Vermeulen (REStud 2011) show that a CR is possible if and only if there exist feasible personalized prices and quantities such that GARP holds for both household member specific sets (m = 1, 2)

$$S^m = \{(\mathbf{p}_t, \mathfrak{P}_t^m; \mathfrak{z}^m, \mathbf{Q}_t); t = 1, ..., T\}$$

RP characterizations of collective models

- Setting allows a decentralized interpretation of collective rationality (see Chiappori (Ecma 1988, JPE 1992)):
 - Sharing rule distributes aggregate group income over household members
 - Each household member maximizes her/his utility subject to the given income share while accounting for personalized prices
- We are interested in the recovery of *feasible income shares*

Definition (Feasible income shares)

Consider feasible personalized prices and quantities for a set of observations S such that each set $\{(\mathbf{p}_t, \mathfrak{P}_t^m; \mathbf{q}_t^m; \mathbf{Q}_t); t = 1, ..., T\}$, m = 1, 2 satisfies GARP. For $y_t = \mathbf{p}_t'\mathbf{q}_t + \mathbf{P}_t'\mathbf{Q}_t$ the group income at observation t, the feasible income share for each member m at prices \mathbf{p}_t and \mathbf{P}_t is $\mathfrak{y}_t^m = \mathbf{p}_t'\mathfrak{q}_t^m + \mathfrak{P}_t^m'\mathbf{Q}_t$

- The above characterization is not directly useful
- Observed prices and quantities define infinitely many specifications of feasible prices and quantities; each specification entails different revealed preference relations
- We therefore provide an equivalent *mixed integer linear programming* (MILP) characterization of collective rationality; allows using solution algorithms tailored for such problems
- The MILP formulation uses the binary variables $x_{st}^m \in \{0, 1\}$ where the variable equals 1 if household member *m* prefers the personalized quantity bundle in situation *s* to that in situation *t* for given personalized prices

Proposition

Let S be a set of observations. There exists a combination of concave and continuous utility functions U^1 and U^2 that provide a collective rationalization of S if and only if there exist $\mathfrak{P}_{+}^{m} \in \mathbb{R}_{+}^{K}$, $\mathfrak{q}_{+}^{m} \in \mathbb{R}_{+}^{N}$, \mathfrak{n}_{+}^{m} $\in \mathbb{R}_+$ and $x_{et}^m \in \{0, 1\}$, m = 1, 2, that satisfy (i) $\mathfrak{P}_t^1 + \mathfrak{P}_t^2 = \mathbf{P}_t$ (*i.e.* personalized prices); (ii) $\mathfrak{q}_t^1 + \mathfrak{q}_t^2 = \mathbf{q}_t$ (i.e. personalized quantities); (iii) $\mathfrak{n}_t^m = \mathbf{p}_t' \mathfrak{q}_t^m + \mathfrak{P}_t^{m'} \mathbf{Q}_t$ (i.e. personal share); (iv) $\mathfrak{y}_s^m - \mathbf{p}_s'\mathfrak{q}_t^m - \mathfrak{P}_s^{m'}\mathbf{Q}_t < y_s x_{st}^m$ (i.e. if $\mathbf{p}_s'\mathfrak{q}_s^m + \mathfrak{P}_s^{m'}\mathbf{Q}_s \ge \mathbf{p}_s'\mathfrak{q}_t^m + \mathfrak{P}_s^{m'}\mathbf{Q}_t$ then $x_{et}^m = 1$); (v) $x_{su}^m + x_{ut}^m \leq 1 + x_{st}^m$ (i.e. transitivity); (vi) $\mathfrak{y}_t^m - \mathbf{p}_t'\mathfrak{q}_s^m - \mathfrak{P}_t''\mathbf{Q}_s \leq y_t (1 - x_{ct}^m)$ (i.e. if $x_{ct}^m = 1$ then $\mathbf{p}_{t}^{\prime}\mathbf{q}_{t}^{m} + \mathfrak{P}_{t}^{m\prime}\mathbf{Q}_{t} < \mathbf{p}_{t}^{\prime}\mathbf{q}_{c}^{m} + \mathfrak{P}_{t}^{m\prime}\mathbf{Q}_{c}$

- Testing consistency with this model:
 - *Necessary* and *sufficient* RP test for any number of observations (also data sets with only a few observations)
 - Data can be collectively rationalized if the above MILP problem has a solution
 - First step of an empirical analysis
- Recovery and forecasting
 - Bounds on member specific consumption bundles and income shares
 - Add objective function to the MILP formulation (e.g. maximize η_t^1 or minimize η_t^1)
 - Second step of an empirical analysis: generates input for welfare analyses at the individual level

RP characterizations of collective models

- We now discuss the RP characterization of a more general collective model à la Browning and Chiappori (Ecma 1998); Cherchye, De Rock and Vermeulen (Ecma 2007, JET 2010)
- Households consist of 2 household members (easily generalized for M members)
- The model allows publicly consumed goods and externalities with respect to the privately consumed goods
- Researcher does not know what part of the consumption is privately consumed and what part of the consumption is publicly consumed, nor which consumption generates externalities
- Only aggregate quantities observed
- We observe a finite set of price-quantity data:

$$S = \{ \left(\mathbf{p}_t; \mathbf{q}_t
ight); t = 1, ..., T \}$$

• Household member m (m = 1, 2) has preferences represented by the utility function $U^m \left(\mathbf{q}_t^1, \mathbf{q}_t^2, \mathbf{q}_t^h\right)$, where $\mathbf{q}_t = \mathbf{q}_t^1 + \mathbf{q}_t^2 + \mathbf{q}_t^h$

• A collective rationalization for this general model of the data set *S* requires again that the observed household consumption can be represented as a Pareto efficient outcome of some bargaining process

Definition (Collective rationalization general model)

Let S be a set of observations. A combination of utility functions U^1 and U^2 provides a collective rationalization of S if for each observation t there exist feasible personalized quantities $\hat{q}_t = (q_t^1, q_t^2, q_t^h)$ and Pareto weights $\mu_t^m > 0, m = 1, 2$, such that

$$\mu_t^1 U^1 \left(\mathfrak{q}_t^1, \mathfrak{q}_t^2, \mathfrak{q}_t^h \right) + \mu_t^2 U^2 \left(\mathfrak{q}_t^1, \mathfrak{q}_t^2, \mathfrak{q}_t^h \right) \ge \mu_t^1 U^1 \left(\mathfrak{z}^1, \mathfrak{z}^2, \mathfrak{z}^h \right) + \mu_t^2 U^2 \left(\mathfrak{z}^1, \mathfrak{z}^2, \mathfrak{z}^h \right)$$

for all $\mathfrak{z}^1, \mathfrak{z}^2, \mathfrak{z}^h \in \mathbb{R}_+^N$ such that $\mathbf{p}_t' \left(\mathfrak{z}^1 + \mathfrak{z}^2 + \mathfrak{z}^h \right) \le \mathbf{p}_t' \mathbf{q}_t$

RP characterizations of collective models

- We again need personalized (Lindahl) prices for the consumption bundles \hat{q}_t : $\hat{\mathfrak{p}}_t^1 = (\mathfrak{p}_t^1, \mathfrak{p}_t^2, \mathfrak{p}_t^h)$ and $\hat{\mathfrak{p}}_t^2 = (\mathbf{p}_t - \mathfrak{p}_t^1, \mathbf{p}_t - \mathfrak{p}_t^2, \mathbf{p}_t - \mathfrak{p}_t^h)$
- Cherchye, De Rock and Vermeulen (Ecma 2007) show that a CR for this general model is possible if and only if there exist feasible personalized prices and quantities such that GARP holds for both member-specific sets (m = 1, 2)

$$S^m = \{(\widehat{\mathfrak{p}}^m_t; \widehat{\mathfrak{q}}_t); t = 1, ..., T\}$$

- Compare this with the GARP condition we had before: the condition for the general model turns out to be nonlinear in feasible prices and quantities, which makes it difficult to test the condition in practice
- Still, a necessity test can be derived that is formulated in terms of observable information

- The idea is to make use of hypothetical member-specific preference relations (denoted by H_0^m and H^m)
- These hypothetical relations represent feasible specifications of the true individual preference relations in terms of observed prices and quantities
- A necessary RP condition then requires that there must exist at least one specification of the hypothetical member-specific preference relations that simultaneously meet a set of CR conditions

Proposition

Suppose that there exists a pair of utility functions U^1 and U^2 that provide a collective rationalization of the set of observations $S = \{(\mathbf{p}_t; \mathbf{q}_t); t = 1, ..., T\}$. Then there exist hypothetical relations H_0^m , H^m for each member $m \in \{1, 2\}$ such that: (i) if $\mathbf{p}_{s}'\mathbf{q}_{s} \geq \mathbf{p}_{s}'\mathbf{q}_{t}$, then $\mathbf{q}_{s}H_{0}^{1}\mathbf{q}_{t}$ or $\mathbf{q}_{s}H_{0}^{2}\mathbf{q}_{t}$; (ii) if $\mathbf{q}_s H_0^m \mathbf{q}_k, \mathbf{q}_k H_0^m \mathbf{q}_l, ..., \mathbf{q}_z H_0^m \mathbf{q}_t$ for some (possibly empty) sequence (k, l, ..., z), then $\mathbf{q}_s H^m \mathbf{q}_t$; (iii) if $\mathbf{p}_{s}'\mathbf{q}_{s} \geq \mathbf{p}_{s}'\mathbf{q}_{t}$ and $\mathbf{q}_{t}H^{m}\mathbf{q}_{s}$, then $\mathbf{q}_{s}H_{0}^{l}\mathbf{q}_{t}$ (with $l \neq m$); (iv) if $\mathbf{p}'_{s}\mathbf{q}_{s} \geq \mathbf{p}'_{s}(\mathbf{q}_{t_{1}} + \mathbf{q}_{t_{2}})$ and $\mathbf{q}_{t_{1}}H^{m}\mathbf{q}_{s}$, then $\mathbf{q}_{s}H'_{0}\mathbf{q}_{t_{2}}$ (with $l \neq m$); $(v) \begin{cases} a) \text{ if } \mathbf{q}_s H^1 \mathbf{q}_t \text{ and } \mathbf{q}_s H^2 \mathbf{q}_t, \text{ then } \mathbf{p}'_t \mathbf{q}_t \leq \mathbf{p}'_t \mathbf{q}_s \\ b) \text{ if } \mathbf{q}_{s_1} H^1 \mathbf{q}_t \text{ and } \mathbf{q}_{s_2} H^2 \mathbf{q}_t, \text{ then } \mathbf{p}'_t \mathbf{q}_t \leq \mathbf{p}'_t (\mathbf{q}_{s_1} + \mathbf{q}_{s_2}) \end{cases}$

イロト イポト イヨト イヨト 二日

- In Cherchye, De Rock and Vermeulen (Ecma 2007, JPE 2009), some *sufficient* RP conditions for a CR are proposed (which differ from those where the nature of the goods is known a priori)
- One example is a situation-dependent dictatorship
 - There exists a partitioning of the observed set S into subsets $S^1\subseteq S$ and $S^2=S\backslash S^1$
 - Both subsets satisfy GARP
 - In S^1 (S^2), individual 1 (2) is the situation-dependent dictator

- RP characterization of the unitary model
- RP characterizations of collective models
- Some empirical results

э

- Data from the Russia Longitudinal Monitoring Survey covering the period from 1994 to 2003
- 148 pure couples with both spouses employed which are 8 times observed
- 108 pure singles who are employed and who are 8 times observed
- Each household separately analyzed (no homogeneity across households assumed)

• Test results from Cherchye, De Rock and Vermeulen (JPE 2009)

	Frequency	Percentage
Singles:		
GARP rejected	0	.00
GARP not rejected	108	100.00
Couples:		
GARP rejected	31	20.95
GARP not rejected	117	79.05

TABLE 1 UNITARY TEST RESULTS

Image: Image:

Some empirical results

	Frequency	Percentage		
	A. Nece	A. Necessity Test		
Collective rationality rejected	0	.00		
Collective rationality not				
rejected	148	100.00		
	B. Filtering Procedure			
Number of uninformative ob-	-			
servations:				
0	0	.00		
1	0	.00		
2	0	.00		
3	1	.68		
4	1	.68		
5	8	5.41		
6	21	14.19		
7	0	.00		
8	117	79.05		
	C. Subset Tests			
Number of subsets (of infor- mative observations):				
0	117	79.05		
1	30	20.27		
2	1	.68		

TABLE 2 NECESSITY TEST RESULTS

∃ → (∃ → January 10-13, 2011 34 / 39

Image: A matrix

æ

SUFFICIENCE TEST RESULTS						
Model	Number of Rejections	Power 1	Power 2			
$\alpha = .5$	31	100.0	12.63			
$\alpha = .495$	19	100.0	11.74			
$\alpha = .49$	16	100.0	10.17			
$\alpha = .47$	5	100.0	5.89			
$\alpha = .45$	1	99.9	4.05			
$\alpha = .4$	0	96.3	2.15			
$\alpha = .3$	0	68.8	.77			
$\alpha = .2$	0	38.3	.32			
$\alpha = .01$	0	7.8	.06			
$\alpha = 0^*$	0	7.5	.05			

TABLE 3 SUFFICIENCY TEST RESULTS

* Situation-dependent dictatorship.

3

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Some test and recovery results from Cherchye, De Rock and Vermeulen (REStud 2011)
- Same 148 RLMS-couples as before
- All consumption assumed to be public: pass rate = 100%
- All consumption assumed to be private: pass rate = 100%
- Intermediate case: 3 public goods and 18 private goods with varying (assumed) assignability
 - 100% assignability: pass rate = 92.6%
 - 60% assignability: pass rate = 100%

	heta=1.00 (137 households)			heta=0.90 (6 households)				
Observation	Lowe	er bound	Upper bound		Lower bound		Upper bound	
	Mean	Std. dev.	Mean	Std. dev.	Mean	Std. dev.	Mean	Std. dev.
1	0.445	0.127	0.593	0.109	0.379	0.108	0.581	0.097
2	0.407	0.130	0.597	0.123	0.378	0.081	0.671	0.048
3	0.396	0.147	0.609	0.153	0.382	0.170	0.715	0.120
4	0.396	0.117	0.601	0.133	0.406	0.109	0.647	0.034
5	0.410	0.116	0.597	0.103	0.400	0.033	0.648	0.072
6	0.395	0.127	0.601	0.123	0.313	0.071	0.661	0.090
7	0.395	0.123	0.613	0.119	0.406	0.098	0.635	0.054
8	0.385	0.116	0.618	0.117	0.360	0.084	0.682	0.079

イロト イポト イヨト イヨト

3

- RP characterization of the unitary model
- RP characterizations of collective models
- Some empirical results
- Conclusion

э

Testing

- We presented a series of RP tests for a variety of collective models that do not depend on any functional specification for demand, preferences or the intra-household bargaining process
- Tests work for any number of observations (including small data sets, though the larger the data sets the more powerful the results)

Recovery

- Member-specific consumption bundles, personalized prices and income shares
- The larger the data set and the information available, the sharper the lower and upper bounds on the unobservables