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Introduction

How do we compare intersecting distribution functions?

Important issue in both policy work, descriptive analysis and causal

inference:

1 statistical o�ces and gov agencies compare distribution

functions across countries, subgroups and time

2 descriptive research compares distributions of earnings,

income, consumption and wealth to evaluate economic welfare

3 growing interest in econometrics in how to estimate the

counterfactual outcome distribution

• yet little attention has been devoted to how to compare
counterfactual and actual outcome distributions



Example

Suppose we want to rank the actual and counterfactual

distributions, F1 and F2

• Straightforward with 1st or 2nd-degree dominance

• but many empirical applications require weaker criteria

Theoretical literature: O�ers higher order dominance criteria

Empirical literature: Tends to use parametric social welfare function



Concerns

General dominance criteria: Hard to interpret and justify

• Rely on assumptions about third and higer order derivatives

(see e.g Atkinson, 2003)

Parametric social welfare functions:

• Conclusion rests on more or less arbitrary parameter choice

(and functional form)
• Ranking is non-monotonic in inequality aversion

• An example: W (F ) =
´

y1−ρ

1−ρ dF (y), ρ ∈ [0,∞)

ρ = 0: ineq. neutral, ρ = 1: log, ρ→∞: mini-max



Outline

Aim: Proposes a general framework to unambigously compare any

set of distributions functions in an economically interpretable way

1 Social welfare functions and 2nd-degree dominance

2 Social welfare functions and 3rd-degree upward and downward

dominance

3 Social welfare functions and ith-degree upward and downward

dominance

4 Parametric subfamilies

• Upward: Gini family
• Downward: Lorenz family

5 Asymptotic theory

6 Application



The general family of social welfare function

We will rely on the general family of rank-dependent measures of

social welfare introduced by Yaari (1987,1988)

WP(F ) =

ˆ
1

0

P ′(t)F−1(t)dt,

The weighting function P ′ is the derivative of a preference function

that is a member of the following the set of preference functions:

P = {P : P ′(t) > 0 and P ′′(t) < 0

for all t ∈ (0, 1), P(0) = P ′(1) = 0, P(1) = 1}

• WP preserves 1st-degree dom, since P ′(t) > 0, and

• WP preserves 2nd-degree dom (and Pigou-Dalton), since

P ′′(t) < 0

• WP ≤ µF , and WP = µF i� F is the egalitarian distribution
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The preference function: Examples

P(t) reveals the inequality aversion pro�le of the social planner



Normative justi�cation of the general family

The normative justi�cation of WP can be made in terms of a

(a) Theory for ranking distribution functions:

• With basic ordering and continuity assumptions, the dual

independence axiom characterizes WP (Yaari, 1988)

(b) Value judgement of the trade-o� between the mean and

(in)equality in the distributions (Ebert, 1987; Aaberge, 2001)

WP = µF [1− JP(F )]

where µF is the mean of F and

JP(F ) is the family of rank-dependent measures of inequality

aggregating the P ′-weighted Lorenz curve of F



The Gini subfamily

If we choose

P1k(t) = 1− (1− t)k−1, k > 2

then WP is equal to the extended Gini family of social welfare

functions (Donaldson and Weymark, 1980)

WGk
= µ [1− Gk(F )] =, k > 2

where

• Gk(F ) is the extended Gini family of inequality measures

• G3(F ) is the Gini coe�cient and WG2
= µ

• Note that {µ,WGi
(F ) : i = 3, 4, ...} uniquely determines the

distribution function F (Aaberge, 2000)



The Lorenz subfamily

If we instead choose

P2k(t) =
(k − 1) t − tk−1

k − 2
, k > 2

then WP is the Lorenz family of social welfare functions (Aaberge,

2000)

WDk
= µ [1− Dk(F )] , k > 2

where

• Dk(F ) is the Lorenz family of inequality measures

• D3(F ) is the Gini coe�cient

• Note that {µ,WDi
(F ) : i = 3, 4, ...} uniquely determines the

distribution function F (Aaberge, 2000)



Third degree upward dominance

Note that second degree inverse stochastic dominance is de�ned by

Λ2

F (u) ≡
ˆ u

0

F−1(t)dt, u ∈ [0, 1]

To de�ne third degree upward inverse stochastic dominance, we use

the notation

Λ3

F (u) ≡
ˆ u

0

Λ2

F (t)dt =

ˆ u

0

(u − t)F−1(t)dt, u ∈ [0, 1]

De�nition
A distribution F1 is said to third degree upward inverse stochastic

dominate a distribution F0 if and only if

Λ3

F1
(u) ≥ Λ3

F0
(u) for all u ∈ [0, 1]

and the inequality holds strictly for some u ∈ (0, 1).



Interpretation

Proposition

Let F1 and F0 be members of F . Then the following statements are

equivalent:

(i) F1 third degree upward inverse stochastic dominates F0

(ii) µF1(u) (1− G3(u; F1)) ≥ µF0(u) (1− G3(u; F0))

for all u ∈ [0, 1] and the inequality holds strictly for some u ∈ (0, 1).

where:

• µF (u) is the quantile-speci�c lower tail mean

• G3(u; F ) is the quantile-speci�c lower tail Gini coe�cient

• µF (u) (1− G3(u; F )) is the quantile-speci�c lower tail Gini

social welfare function



Transfer principle

∆sWP(δ, h): change in WP of a �xed progressive transfer δ from an

individual with rank s + h to an individual with rank s.

∆1

stWP(δ, h) ≡ ∆sWP(δ, h)−∆tWP(δ, h).

De�nition
(Zoli, 1999; Aaberge, 2000, 2009) WP satis�es the principle of �rst

degree downside positional transfer sensitivity (DPTS) if and only if

∆1

stWP(δ, h) > 0, when s < t.



Equivalence result

Let P3 be the family of preference functions de�ned by

P3 =
{
P ∈ P : P

′′′
(t) > 0,

}
Theorem
Let F1 and F0 be members of F . Then the following statements are

equivalent.

(i) F1 third-degree upward inverse stochastic dominates F0
(ii) WP(F1) >WP(F0) for all P ∈ P3
(iii) WP(F1) >WP(F0) for all P ∈ P where WP satis�es

�rst-degree DPTS

⇒ (i) and (ii): least-restrictive set of social welfare functions that

unambiguously rank in accordance with 3-UID

⇒ (i) and (iii): normative justi�cation for 3-UID



Upward vs. downward dominance

Upward dominance criteria justi�ed through DPTS

• More sensitive to changes in the lower part of the distribution

Issues with upward dominance criteria:

• Prone to measurement error in the lower tail

• Changes in the upper part may be viewed as more important

• Long vs. short transfers
• Upper part is the focus: Test scores, top income, etc.

We propose a complementary sequence of dominance criteria:

⇒ Downward inverse stochastic dominance

• More sensitive to changes in the upper part of the distribituion

Sequences coincide at 2nd-degree dom.⇒ both obey Pigou-Dalton
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Third-degree downward dominance

The criteria of 3rd-order downward inverse dominance aggregates

Λ2

F (u) from above (rather than from below). Let

Λ̃3

F (u) ≡
ˆ

1

u

Λ2

F (t)dt = (1− u)µF −
ˆ

1

u

(t − u)F−1(t)dt, u ∈ [0, 1]

De�nition
A distribution F1 is said to third degree downward inverse

stochastic dominate a distribution F0 if and only if

Λ̃3

F1
(u) ≥ Λ̃3

F0
(u) for all u ∈ [0, 1]

and the inequality holds strictly for some u ∈ (0, 1).



Interpretation

Proposition

Let F1 and F2 be members of F . Then the following statements are

equivalent:

(i) F1 third degree downward inverse stochastic dominates F2

(ii) µ̃F1(u) (1− D3(u; F1)) ≥ µ̃F2(u) (1− D3(u; F2))

for all u ∈ [0, 1] and the inequality holds strictly for some u ∈ (0, 1)

where:

• µ̃F (u) is the quantile-speci�c upper tail mean

• D3(u; F ) is the quantile-speci�c upper tail Gini coe�cient

• µ̃F (u) (1− D3(u; F )) is the quantile-speci�c upper tail Gini

social welfare function



Transfer principle

∆sWP(δ, h): change in WP of a �xed progressive transfer δ from an

individual with rank s + h to an individual with rank s.

∆1

stWP(δ, h) ≡ ∆sWP(δ, h)−∆tWP(δ, h).

De�nition
(Aaberge, 2009) WP satis�es the principle of �rst degree upside

positional transfer sensitivity (UPTS) if and only if

∆1

stWP(δ, h) < 0, when s < t.



Equivalence result

Let P̃3 be the family of preference functions de�ned by

~P3 =
{
P ∈ P : P

′′′
(t) < 0

}
.

Theorem
Let F1 and F0 be members of F . Then the following statements are

equivalent.

(i) F1 third-degree downward inverse stochastic dominates F0
(ii) WP(F1) >WP(F0) for all P ∈ ~P3
(iii) WP(F1) >WP(F0) for all P ∈ P where WP satis�es

�rst-degree UPTS

⇒ (i) and (ii): least-restrictive set of social welfare functions that

unambiguously rank in accordance with 3-DID

⇒ (i) and (iii): normative justi�cation for 3-DID



Upward dominance of ithdegree

To de�ne upward inverse stochastic dominance of degree i , we use

the notation

Λi
F (u) =

ˆ u

0

Λi−1
F (t)dt =

1

(i − 3)!

ˆ u

0

(u − t)i−3Λ2

F (t)dt

=
1

(i − 2)!

ˆ u

0

(u − t)i−2F−1(t)dt, i > 2

De�nition
A distribution F1 is said to ith degree upward inverse stochastic

dominate F0 for i > 2 if and only if

Λi
F1

(u) ≥ Λi
F0

(u) for all u ∈ [0, 1]

and the inequality holds strictly for some u ∈ (0, 1).



Interpretation

Proposition

Let F0 and F1 be members of F . Then for i = 3,4, ... the following

statements are equivalent:

(i) F1 i th degree upward inverse stochastic dominates F0
(ii) µF1(u) (1− Gi (u; F1)) ≥ µF0(u) (1− Gi (u; F0)).

for all u ∈ [0, 1] and the inequality holds strictly for some u ∈ (0, 1).

where:

• Gi (u; F ) is the quantile-speci�c lower tail i th member of the

Gini family of inequality measures

• µF (u) (1− Gi (u; F )) is the quantile-speci�c lower tail i th

member of the Gini family of social welfare functions



Equivalence result

The family of preference functions Pi is de�ned by

Pi =
{
P ∈ P : (−1)i−1P(i)(t) > 0 with P(j) continuous on (0, 1)

and (−1)i−1P(j)(1) ≥ 0 for all j = 3, 4, . . . , i − 1
}

where P(i) denote the ith degree derivative of P .

Theorem
Let F1 and F0 be members of F . Then for i = 3,4, ... the following

statements are equivalent,

(i) F1 i th degree upward inverse stochastic dominates F0
(ii) WP(F1) >WP(F0) for all P ∈ Pi
(iii) WP(F1) >WP(F0) for all P ∈ P where WP satis�es DPTS of

degree i − 2

⇒ (i) and (ii): least-restrictive set of social welfare functions that

unambiguously rank in accordance with ith-degree UID

⇒ (i) and (iii): normative justi�cation for ith-degree UID



Upward dominance: The weighting function



Downward dominance of ithdegree

To de�ne downward inverse stochastic dominance of degree i , we

use the notation

Λ̃i
F (u) =

ˆ
1

u

Λ̃i−1
F (u) =

1

(i − 3)!

ˆ
1

u

(t − u)i−3Λ2

F (t)dt =

1

(i − 2)!

[
(1− u)i−2µF −

ˆ
1

u

(t − u)i−2F−1(t)dt

]
i = 3, 4, . . .

De�nition
A distribution F1 is said to ith degree downward inverse stochastic

dominate F0 for i > 2 if and only if

Λ̃i
F1

(u) ≥ Λ̃i
F0

(u) for all u ∈ [0, 1]

and the inequality holds strictly for some u ∈ (0, 1).



Interpretation

Proposition

Let F0 and F1 be members of F . Then for i = 3,4, ... the following

statements are equivalent:

(i) F1 i th degree downward inverse stochastic dominates F0
(ii) µ̃F1(u) (1− Di (u; F1)) ≥ µ̃F0(u) (1− Di (u; F0)).

for all u ∈ [0, 1] and the inequality holds strictly for some u ∈ (0, 1).

where:

• Di (u; F ) is the quantile-speci�c upper tail i th member of the

Lorenz family of inequality measures

• µ̃F (u) (1− Di (u; F )) is the quantile-speci�c upper tail i th

member of the Lorenz family of social welfare functions



Equivalence result

The family of preference functions ~Pi is de�ned by

~Pi =
{
P ∈ P : P(i)(t) < 0 with P(j) continuous on (0, 1) (1)

and P(j)(0) ≤ 0 for all j = 3, 4, . . . , i − 1
}

where P(i) denote the ith degree derivative of P .

Theorem
Let F1 and F0 be members of F . Then for i = 3, 4 . . . the following
statements are equivalent

(i) F1 i th degree downward inverse stochastic dominates F0
(ii) WP(F1) >WP(F0) for all P ∈ ~Pi
(iii) WP(F1) >WP(F0) for all P ∈ P where WP satis�es UPTS of

degree i − 2

⇒ (i) and (ii): least-restrictive set of social welfare functions that

unambiguously rank in accordance with ith-degree DID

⇒ (i) and (iii): normative justi�cation for ith-degree DID



Downward dominance: The weighting function



Limit of the sequences of dominance

As i goes to in�nity, we get from the de�nitions of upward and

downward dominance:

(i − 1)!Λi (u) →

{
0, 0 ≤ u < 1

F−1(0+), u = 1

(i − 2)!Λ̃(u) →

{
µ− F−1(1−)dt, u = 0

0, 0 < u ≤ 1

where F−1(0+) and F−1(1−) denote the lowest and highest

income in F

• Limit upward dominance: Social welfare function

corresponding to the (Rawlsian) maximin criterion

• Limit downward dominance: Social welfare function

approaches the utilitarian criterion



Parametric subfamily: Upward dominance

Proposition

Let F1 and F0 be members of F . Then for i = 3, 4..

(i) F1 i th degree upward inverse stochastic dominates F0
implies

(ii) WGk
(F1) >WGk

(F0) for k > i

Remark. The extended Gini family of social welfare functions has

the following properties.

(i) WGi
preserves upward inverse stochastic dominance of degree< i

(ii) WGi
obeys the Pigou-Dalton principle of transfers

(iii) WGi
obeys the principles of DPTS up to and including

(i − 2)th-degree for i = 3, 4, . . ..
(iv) The sequence {WGi

}approaches µF as i → 2

(v) The sequence {WGi
} approaches the Rawlsian maximin

criterion as i →∞.



Parametric sub-family: Downward dominance

Proposition

Let F1 and F0 be members of F . Then i = 3, 4..

(i) F1 i th degree downward inverse stochastic dominates F0
implies

(ii) WDk
(F1) >WDk

(F0) for k > i

Remark. The extended Lorenz family of social welfare functions has

the following properties,

(i) WDi
preserves downward inverse stochastic dominance of

degree< i

(ii) WDi
obeys the Pigou-Dalton principle of transfers.

(iii) WDi
obeys the principles of UPTS up to and including

(i − 2)th-degree.
(iv) The sequence {WDi

} approaches µF as i →∞
(v) The sequence {i(WDi

− µF} approaches µF − F−1(1)dt as
i →∞



Weights at quantiles relative to median

Quantile: 0+ .05 .30 .70 .95 1�

Panel (a): Gini social welfare function (upward)

i → 2 1.00 1.00 1.00 1.00 1.00 1.00

i = 3 2.00 1.90 1.40 0.60 0.10 0+

i = 4 4.00 3.61 1.96 0.36 0.01 0+

i = 5 8.00 6.86 2.74 0.22 0.00 0+

i = 6 16.00 13.03 3.84 0.13 0.00 0+

i →∞ ∞ 0 0 0 0 0

Panel (b): Lorenz social welfare function (downward)

i = 3 2.00 1.90 1.40 0.60 0.10 0+

i = 4 1.33 1.33 1.21 0.68 0.13 0+

i = 5 1.14 1.14 1.11 0.75 0.16 0+

i = 6 1.07 1.07 1.06 0.81 0.20 0+

i →∞ 1 1 1 1 1 0+



Asymptotics

1) Since Fn is a consistent estimator of F

• Λi
Fn

(u) and Λ̃i
Fn

(u) are consistent estimators of Λi
F (u) and

Λ̃i
F (u)

2) The asymptotic properties of Λi
Fn

(u) and Λ̃i
Fn

(u) can be

obtained by

• considering the limiting distribution of the empirical processes

Y i
n (u) =

√
n
[
Λi
Fn

(u)− Λi
F (u)

]
Ỹ i
n (u) =

√
n
[
Λ̃i
Fn

(u)− Λ̃i
F (u)

]
We can then show that Ỹ i

n (u) and Y i
n (u)

• converge to a Gaussian process and thus are asymptotically

normally distributed



Upward dominance

Theorem
Let W0 (t) denote a Brownian bridge on [0, 1]. Suppose that F has

a continuous nonzero derivative f on [a, b]. Then Y i
n (u)

converges in distribution to the processes

Y i (u) =
1

(i − 2)!

ˆ u

0

(u − t)i−2
W0 (t)

f (F−1 (t))
dt

which has the same probability distribution as the Gaussian process∑∞
j=1

hj (u)Zj , where hj (u) is given by

hj (u) =
1

(i − 2)!

[√
2

jπ

ˆ u

0

(u − t)i−2
sin (jπt)

f (F−1 (t))
dt

]

and Z1,Z2, . . . are independent N (0, 1)-variables.



Downward dominance

Theorem
Let W0 (t) denote a Brownian bridge on [0, 1]. Suppose that F has

a continuous nonzero derivative f on [a, b]. Then Ỹ i
n (u)

converges in distribution to the processes

Ỹ
i (u) =

1

(i − 2)!

[
(1− u)i−2

ˆ
1

0

W0 (t)

f (F−1 (t))
dt −

ˆ
1

u

(t − u)i−2 W0 (t)

f (F−1 (t))
dt

]
which has the same probability distribution as the Gaussian process∑∞
j=1

h̃j (u)Zj , where h̃j (u) is given by

h̃j (u) =
1

(i − 2)!

√
2

jπ

[
(1− u)i−2

ˆ
1

0

sin (jπt)

f (F−1 (t))
dt −

ˆ
1

u

(t − u)i−2 sin (jπt)

f (F−1 (t))
dt

]
and Z1,Z2, . . . are independent N (0, 1)-variables.



Application: Jobs First �eld experiment

We apply our framework to the Jobs First program Apr 96�Dec 00,

analyzed in Bitler et al. (2005, AER)

• Random assignment to Jobs First or AFDC

• Two counties in Connecticut: New Haven and Manchester

• Sample of about 4803 welfare recipients

Key features of Job First program:

• Expanded earnings disregard

• Introduced 21 month time limit



Application: Jobs First � Budget constraint

AB = AFDC AF = Jobs First



Application: Jobs First � Estimation

We use QTE-estimates from Bitler et al. (2008).

• Compares the quantiles of the treatment and control

distribution:∆q = F−1
1

(q)− F−1
0

(q)

Outcomes: Total income

Financial costs:

• Job First: Higher cash transfers, admin costs, and operating

costs

• Assess gains and losses with\without balanced budget



QTE: Averaged income q1�q16
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Dom. and soc welfare: Averaged income q1�q16

Upward dominance Downward dominance

No tax Lump sum Prop. Tax No tax Lump sum Prop. Tax

Inverse stochastic dominance

Dom. 4 4 231 3 3 3

Distr. 1 0 0 1 1 1

∆Wp 8.8% -6.2% N/A 10.9% 0.6% 3.9%

W (F0) $341 $341 N/A $742 $742 $742

Social welfare weights relative to median

p(.05) 3.61 3.61 7E+63 1.90 1.90 1.90

p(.30) 1.96 1.96 3E+33 1.40 1.40 1.40

p(.70) 0.36 0.36 2E-51 0.60 0.60 0.60

p(.95) 0.01 0.01 1E-229 0.10 0.10 0.10



Conclusion

We characterize the relationship between dominance criteria and

two nested subfamilies of least restrictive social welfare functions

• higher-order UID = stronger downside inequality aversion

• higher-order DID = stronger upside inequality aversion

• Useful to unambiguously say whether F1 is better than F0

We then derive parametric subfamilies of these social welfare

functions that are easily implementable

• UID ⇒ Gini family, WGi

• DID ⇒ Lorenz family, WDi

• Can inform on how much better F1 is than F0
• Clari�es the dominance criterion in terms of observable soc

welfare weights

We illustrate the usefulness of the framework by applying to an

experimental policy intervention
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