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The problem

I Empirically relevant case where:
1. the response variable of interest is observed;
2. the values of some covariates are missing for some

observations;
3. imputations are available to fill-in the missing covariate values.

I This situation is becoming quite common, as:
1. public-use data increasingly include imputations of key

variables affected by missing data problems;
2. specialized software for carrying out imputations directly is

becoming increasingly available.

I We will not focus much on how to impute missing data
but on what to do with available imputations.
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Standard approaches

I Complete-case (CC) approach drops all cases with missing
covariate values, ignoring imputations.

I Using a dummy variable for the missing values of each
covariate.

I Fill-in (FI) approach replaces missing values with
imputations and then uses all the data without
distinguishing between observed and imputed values.

I NOTE: sometimes you use the FI approach unknowingly!
(data agency often impute missing variables...)

Valentino Dardanoni, University of Palermo, based on joint work with Giuseppe De Luca, Salvatore Modica and Franco PeracchiRegression with Missing Covariates



Introduction
Standard approaches

The Generalized Missing Indicator approache
Empirical application

Conclusions

How relevant is the problem? Abrevaya and Donald, 2013
Table 1: Data missingness in economics journals, 2006-2008

Journal Empirical Papers with Method of handling missing dataa

papers missing data (% of missing-data papers in parentheses)
(% of empirical Drop Use indicator Use an

papers) observations variables for imputation
missingness methodb

American Economic Reviewc 191 55 40 9 14
(28.8%) (72.7%) (16.4%) (25.5%)

Journal of Human Resources 94 40 26 10 6
(42.6%) (65.0%) (25.0%) (15.0%)

Journal of Labor Economics 52 26 18 4 5
(50.0%) (69.2%) (15.4%) (19.2%)

Quarterly Journal of Economics 79 41 29 8 10
(51.9%) (70.7%) (19.5%) (24.4%)

Total 416 162 113 31 35
(38.9%) (69.8%) (19.1%) (21.6%)

aA given paper may use more than one method, so the percentages add up to more than 100%.
bThis column includes any type of imputation methods (regression-based, using past/future values, etc.).
cIncludes Papers & Proceedings issues.

method” and the “imputation method” are quite common approaches to handling missing data,

with each being used in roughly 20% of the missing-data papers. Except in the case of simple

regression, the dummy-variable method is known to generally lead to biased and inconsistent

estimation (Jones (1996)), yet Table 1 clearly indicates the method’s prominence despite the

inconsistency associated with it.

In this paper, we argue that the types of orthogonality restrictions used in linear impu-

tation methods are more plausible than those used in the dummy variable method and, based

on these restrictions, we develop a Generalized Method of Moments (GMM) procedure. Using

standard results for GMM estimation, we show that there are situations where the GMM es-

timator yields variance reductions relative to the complete-data OLS estimator for some, and

sometimes all, of the coe�cients of interest. Also, as a byproduct of the GMM procedure, a

fully robust specification test arises from a standard test of overidentifying restrictions. We also

compare the GMM approach to the linear imputation methods proposed in Dagenais (1973)

and Gourieroux and Monfort (1981) and show that the GMM estimator is generally at least

as e�cient as these earlier alternatives. In certain more restrictive situations, which essentially

[2]
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Problems with standard approaches

I CC is popular because (under some conditions on the
missing covariates process) gives consistent estimates.
It may loose a lot of information!

I Using a dummy variable for the missing values of each
covariate gives inconsitent estimates (Jones, 1996).

I FI approach replaces missing values with imputations.

I Uses all the data without distinguishing between observed
and imputed values.

I Results depend on the validity of imputations.
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Imputations

I In general, distinguish between
1. Non model based imputations;
2. Model based imputations.

I Non model based imputations are, for example,
1. Mean imputations: typically downward bias in the variance of

estimated coefficients.
2. Simple hot deck: uses observed values to draw missing values;

distorts covariances.

I Model based imputations makes draws from the estimated
distribution based on postulated observed data and
missing models.

I Multiple imputations handle missing data uncertainty by
multiple draws. For each draw you estimate parameters,
and then combine them appropriately.
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Missing Data Assumptions

I The seminal Rubin (1976) paper defines two key missing
data mechanisms:

1. Missing Completely at Random (MCAR)
2. Missing at Random (MAR)

I Data are MCAR if the probability of an observation being
missing does not depend on observed or unobserved data,
and occur entirely at random.

I An example of MCAR would be that a laboratory sample
is dropped, so the resulting observation is missing.

I When data are MCAR, the analyses performed on the
data are unbiased.

I Data are rarely MCAR.

Valentino Dardanoni, University of Palermo, based on joint work with Giuseppe De Luca, Salvatore Modica and Franco PeracchiRegression with Missing Covariates



Introduction
Standard approaches

The Generalized Missing Indicator approache
Empirical application

Conclusions

MAR

I Data are MAR if the probability of an observation being
missing does not depend on the true value of the
unobserved data.

I An example of MAR would be that two measurements of
the same variable are taken at the same time. If they
differ by more than a given amount a third is taken. This
third measurement is missing for those that do not differ
by the given amount.

I Under MAR, likelihood based inference are generally valid;
non-likelihood methods (e.g. GMM) can be ‘fixed up’.

I It is important to note that:
1. MAR is not testable.
2. Both MCAR and MAR are defined for the whole data (both

dependent variables and covariates).
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MAR with missing covariates

I MAR has not always been consistently defined and used.

I Seaman et al. (2013), give clear and simple definitions.
We adapt it to regression with missing covariates.

I Suppose n units, one y and K covariates x1, . . . , xK .

I z array the data, z = [y′, x′]′.

I Let m be a 0/1 vector of missingness indicators and
O(z;m) be the observed subvector z.

I DEFINITION: Data are MAR if for all m, z, z∗ such
that O(z;m) = O(z∗;m)

P(m | z) = P(m | z∗)
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MAR and regression with missing covariates

I MAR is possibly not the best assumption to make in the
case of regression with missing covariates.

I For example, MAR does not justify using CC analysis:
regression coefficients may not be consistent under MAR.

I Consider the following ‘folks’ assumption:
ASSUMPTION 1 (A1): y and m are conditionally
independent given x.

I This says:
1. y may depend on x and not on m
2. m may depend on x but not on y

I Should not be confused with MAR.
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MAR and Assumption 1: An example

I Suppose there are two units, and suppose want to study
relationship between income x and health y .

I Data are (y1, x1) and (y2, x2); suppose x may be missing
on first unit, say.

I MAR says:
P([1, 0, 1, 1] | [y1, xa1 , y2, x2]) = P([1, 0, 1, 1] | [y1, xb1 , y2, x2])
for all y1, x

a
1 , x

b
1 , y2, x2.

I A1 says:
P([1, 0, 1, 1] | [y a

1 , x1, y
a
2 , x2]) = P([1, 0, 1, 1] | [yb

1 , x1, y
b
2 , x2])

for all y a
1 , y

b
1 , x1, y

a
2 , y

b
2 , x2.

I Note that they are logically unrelated:
1. if m2 = f (x1), A1 is OK but MAR not;
2. if m2 = g(y1), MAR is OK but A1 is not.
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Complete-case analysis

I CC aestimates regression coefficients on the subsample
O(z,m).

I It is the mostly used approach in economics, and is a
useful benchmark because of the following “Folk
Theorem” (Glynn and Laird, unpublished 1980; Jones,
JASA 1996; Wooldridge, 2002; Dardanoni et al, 2011,
2012 and 2013):

I THEOREM: Under Assumption 1 estimation of the
regression coefficients under CC is consistent.

I Theorem provides the main justification for CC.
One cannot ignore the severe loss of information that may
result when the fraction of missing data is not small.

I Note that violations of A1 lead to inconsistent estimates.
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Fill-in approach

I FI estimates regression parameters replacing X by the
filled-in design matrix W, which replaces missing
observations with imputations.

I This approach requires two conditions:
1. The imputation model is correctly specified (assumptions on

the posited missing data mechanism, function forms, choice of
predictors, etc.).

2. The imputation model and the regression model must be
“congenial” in the sense of Meng (1994) (i.e., the imputation
model cannot be more restrictive than the model used to
analyze the filled-in data).

I We say that the FI and the imputations are valid when
these two conditions hold.
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Remarks

I If the FI approach is valid, its estimator of β is generally
more precise than the CC estimator.

I If the imputation model is incorrectly specified or the
congeniality assumption does not hold, then the FI
estimator of β is likely to be inconsistent.

I This looks like a trade-off problem.

Valentino Dardanoni, University of Palermo, based on joint work with Giuseppe De Luca, Salvatore Modica and Franco PeracchiRegression with Missing Covariates



Introduction
Standard approaches

The Generalized Missing Indicator approache
Empirical application

Conclusions

The generalized missing-indicator approach

I Dardanoni et al. (2011, 2012, 2013) propose a GMI
approach for regressions with imputed covariates.

I Dardanoni et al. (2011, 2012) consider linear regression;
Dardanoni et al. (2013) consider GLMs (e.g. logit, probit,
Poisson and negative binomial regression, ordered or
multinomial logit and probit models etc.).

I They propose a “grand model” with two sets of
regressors: observed/imputed covariates (focus), plus a
missing-data indicators with interactions (auxiliary).

I This extends the simple indicator model which gives
inconsistent estimates.

I It handles the trade-off between bias and precision in the
estimation of the regression parameters.
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Missing-data patterns

I Assume that some covariate values are missing for some
observations. and imputations are available to fill-in the
missing covariate values.

I A subsample with incomplete data is a set of observations
with one or more missing covariates.

I If β contains the constant term and has dimension K ,
since the constant is always observed, the number of
possible subsamples with missing covariates is equal to
2K−1 − 1.
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The “grand model”

I The jth subsample contains Nj observations, Kj observed
covariates and K − Kj missing covariates.

I For each subsample j = 1, . . . , J , Wj is the Nj × K
filled-in design matrix containing the values of the
observed covariates and the imputed values of the missing
covariate.

I Define the N × JK matrix of auxiliary regressors

Z =


0 · · · 0

W1 · · · 0

.

.

.
. . .

.

.

.
0 · · · WJ

 .

I Our model is an augmented regression (the grand model)
with linear predictor η = Wβ + Zδ.
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Main result

I (Equivalence theorem) For any choice of the
imputations in W, the ML estimator of β in the grand
model η = Wβ + Zδ is equal to the CC ML estimator of
β.

I EXAMPLE: Linear model with one covariate
(J = K = 2).

I The grand model is yi = β0 + β1wi + δβ0 + δβ1β1wi + εi .
I There are J × K = 4 possible models to estimate the

parameters of interest (β0, β1):
1. δβ0 = δβ1 = 0 (the FI estimator);
2. No constraint on δ’s (the CC estimator);
3. δβ0 = 0;
4. δβ1 = 0;
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GMI and the trade-off between bias and precision

I The GMI approach handles the bias/precision trade-off in
the estimation of β considering all intermediate models
obtained from the grand model.

I The original bias/precision trade-off in the estimation of
β is transformed into a problem of uncertainty about a
subset of covariates of the grand model.

I Any intermediate model in the expanded model space may
play a role in finding the “best” available estimator of β.

I A further advantage is that all missing data patterns are
coefficients’ subsets of the same data set.

I You can compare models which are not comparable
because of different number of observations.
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Estimation under model uncertainty

Model uncertainty can be handled by either model selection or
model averaging.

I Model selection involves first selecting the “best” model
out and then estimating β conditional on the selected
model.

I Pre-testing problem: uncertainty arising from the model
selection step is ignored.

I In model averaging, one estimates β conditional on each
model, then uses a weighted average of these conditional
estimates.

I Model averaging is more coherent because it takes into
account the uncertainty due to both the estimation and
the model selection steps.
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Model averaging

I Let M = {M1, . . . ,MR} denote the set of models being
considered.

I The linear predictor for the r th model Mr is

ηr = Wβ + Zrδr ,

for each subset 0 ≤ r ≤ JK of the auxiliary covariates.
I The model averaging estimates of β and δ are of the form

β̂ =
JK∑
r=1

λr β̂r , δ̂ =
JK∑
r=1

λrSr δ̂r ,

where λr are nonnegative weights that add up to one.
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Bayesian Model Averaging

I In BMA, β̂r and δ̂r are weighted by the posterior
probability of the r th model

λr = p(Mr | y) =
p(y |Mr ) p(Mr )∑R
r=1 p(y |Mr ) p(Mr )

, r = 1, . . . ,R ,

where p(Mr ) is the prior on model Mr and

p(y |Mr ) =

∫
p(y | θr ,Mr ) p(θr |Mr ) dθr

where p(y |θr ,Mr ) is the likelihood and p(θr |Mr ) is the
prior on θr = (β, δr ).

I In this setting, β̂ and δ̂ can be interpreted as the
posterior means of the distribution of β and δ.
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Problems with BMA

I The priors p(Mr ) and p(θr |Mr ) often only chosen for
convenience or following some convention.

I The marginal likelihoods p(y |Mr ) usually do not have a
closed form expression, so some approximation to the
posteriors is needed.

I Even for moderate J and K , 2JK may be very large, so
exploring all model may be computationally expensive or
even unfeasible.

I We use a “block BMA” assuming cofficients are
homogenous withing each missing pattern j , reducing the
number of models to 2J .
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Empirical application

I We use data on the elderly European population to
investigate how cognitive functioning varies with physical
health and socio-economic status.

I Data are from the Survey of Health, Ageing and
Retirement in Europe (SHARE), a multidisciplinary and
cross-national household panel survey.

I The 1st wave, conducted in 2004, covered 15,544
households and 22,431 individuals in 11 European
countries (AT, BE, CH, DE, DK, ES, FR, GR, IT, NL,
SE).
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Outcomes of interest

We consider two dimensions of cognitive functioning:

I The test of verbal fluency consists of counting how many
distinct members of the animal kingdom the respondent
can name in 1 minute. The outcome is an integer ranging
from 0 to 90.

I The test of numeracy consists of four possible questions
involving simple arithmetical calculations based on real life
situations. In this case, the outcome is an integer ranging
from 1 (no correct answer) to 5 (correct answer to the
most difficult question).
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Covariates

Our covariates include:

I Socio-demographic variables: age, gender, educational
attainments, per-capita household income and household
net worth.

I Self-reported measures of physical health: number of
limitations with activities of daily living and number of
chronic diseases.

I Objective measures of physical health: hand grip strength.
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Imputations

I Hand grip strength, per-capita household income and
household net worth have substantial item nonresponse
(6%, 62% and 64%, respectively).

I SHARE data include imputations of key variables, using a
multivariate iterative procedure attempting to preserve the
correlation structure of the imputed data.

I Congeniality of the SHARE imputations for income and
net worth might be questioned since verbal fluency,
number of chronic diseases and hand grip strength are not
used by the SHARE imputation model.

I We produce our own imputations for the missing values
on hand grip strength using a simple hot-deck procedure.
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Model specification and estimation

I We estimate a Poisson regression model for verbal fluency
and an ordered probit model for numeracy.

I Each model is estimated separately by macro-region:
North (DK, NL, SE), Center (AT, BE, CH, DE, FR) and
South (ES, GR, IT).

I The number of missing-data patterns is J = 7 for all
models, so our block-BMA procedure considers
R = 27 = 128 models for each outcome and macro-region.

I We compare estimated coefficients and standard errors for
the CC ML estimator, the FI ML estimator, and BMA
estimators based on AIC, BIC and RIC priors respectively.
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Poisson regression models for verbal fluency (Center)

Block BMA
CCA FIA AIC RIC BIC

adl -.0325 -.0561 -.0400 -.0591 -.0611
(.0097) (.0038) (.0094) (.0071) (.0056)

chronic -.0029 -.0031 -.0024 -.0037 -.0042
(.0036) (.0016) (.0030) (.0025) (.0023)

grip strength .0043 .0043 .0044 .0046 .0046
(.0006) (.0003) (.0005) (.0006) (.0004)

age -.0054 -.0058 -.0056 -.0054 -.0055
(.0006) (.0003) (.0005) (.0006) (.0004)

male -.0718 -.0770 -.0770 -.0848 -.0846
(.0134) (.0058) (.0116) (.0115) (.0092)

education .1388 .1574 .1438 .1527 .1540
(.0095) (.0041) (.0086) (.0064) (.0060)

income .0092 .0073 .0101 .0118 .0114
(.0021) (.0007) (.0018) (.0022) (.0022)

net worth -.0006 .0005 .0005 .0011 .0007
(.0009) (.0002) (.0010) (.0009) (.0004)

N 2,575 13,635 13,635 13,635 13,635
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Main findings

I Little differences in the sign of the estimated coefficients
across cognitive domains, macro-regions and estimation
methods.

I Some differences in the size of some estimated coefficients
and their standard errors across estimation method.

I CC and FI estimates are usually quite different. CC also
implies a substantial loss of precision.

I BMA estimates with BIC or RIC priors are closer to those
from the more parsimonious FI, while BMA estimates with
AIC are closer to those from the less parsimonious CC.
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Conclusions

I The choice between CC and FI generates a bias/precision
trade-off.

I Either CC or FI is unlikely to emerge as the “best” model
since all intermediate models carry information about the
parameters of interest.

I Our approach still assumes that we are interested in the
β’s as measure of the unconditional effect of x on y.

I If there is substantial heterogeneity (δ’s are significantly
different than zero), it means that either Assumption 1 or
imputations are invalid.

I Our GMI mothod can also estimate the conditional effects
of x on y in different missing data pattern

I We are currently working on that.
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