Distribution regression methods

Distribution regression methods

Philippe Van Kerm

CEPS/INSTEAD, Luxembourg
philippe.vankerm@ceps.lu

Ninth Winter School on Inequality and Social Welfare Theory

“Public policy and inter/intra-generational distribution”
January 13—16 2014, Alba di Canazei, Italy



Distribution regression methods

LPreliminaries

Outline

» Non-technical toolbox review: quantile regression, distribution
regression, parametric income distribution models, RIF
regression, Machado-Mata simulations



Distribution regression methods

LPreliminaries

Outline

» Non-technical toolbox review: quantile regression, distribution
regression, parametric income distribution models, RIF
regression, Machado-Mata simulations

» Relate some distributional statistics v(F) to some ‘explanatory’
variableS X
» Fis a (univariate) income distribution function
» v(F) generic ‘welfare functional’: some quantile, Gini coefficient,
poverty index, welfare index, polarization measure,. . .
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Objectives

Methods address two related but distinct questions:

1. How does v(F) vary with X?
That is, calculate and summarize v(Fy) (remember dim(X) > 1),
‘partial effects’)
» EOp, Intergenerational mob, Educ choices, Income risk and
vulnerability, wage gap and glass ceilings. etc.

2. How much does X contributes to v(F)?
» How much can a change in some element in X affect v(F)?
(‘policy effects’)
» How much do differences in X account for differences in v(F)
between A and B (across time, countries, gender, race, ...)?
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NB:
1. If v(F) is the mean: easy!

» (1.) is just the regression and
» (2.) is Oaxaca-Blinder type of analysis.

Complication is of course non-linearities and non-additivity in
v(F) that makes exercise more challenging
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Objectives

NB:
1. If v(F) is the mean: easy!
» (1.) is just the regression and
» (2.) is Oaxaca-Blinder type of analysis.
Complication is of course non-linearities and non-additivity in
v(F) that makes exercise more challenging

2. ‘Descriptive’ rather than ‘causal’ inference:
sidestep in this lecture issues of ‘exogeneity’ of X (and
feedback/general equilibrium issues).
Is X determined by F? Is a difference in X independent of
outcome distribution? etc.
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1. Recentered influence function regression (Firpo et al., 2009):
Linearization approach: v(F) = Ex E[RIF(y; v, F)|X]

Back to simple regression framework!

very easy to implement

specific to particular v(F)

interpretation and local approximation issues?
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1. Recentered influence function regression (Firpo et al., 2009):
Linearization approach: v(F) = Ex E[RIF(y; v, F)|X]

Back to simple regression framework!

very easy to implement

specific to particular v(F)

interpretation and local approximation issues?
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2. Indirect distribution function modelling (e.g., Machado and Mata,
2005, Chernozhukov et al., 2013):

» plug a model for F in v(F) (one model for any set of distributional
statistics)

» model F(y) = [ Fx(y)h(x)dx: essentially involves modelling the
conditional dlstrlbutlon F (y) (or the quantile function)

» counterfactual effects

» straightforward Monte Carlo integration principles cers
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Part I
Recentered influence function regression

Part lI:
Conditional distribution models

Part lil:
Simulating counterfactual distributions

Part IV:
Envoi
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Definition of (recentered) influence function

The influence function of an index v(F) on distribution F at income y

° (1 = O)F + eBry) — o(F))

€

. ()
IF(y; v, F) = lim
(e.g., for the variance, IF(y; 02, F) = (y — u(F))? — o?)

In a sample, one can evaluate the empirical IF: if, = IF (y;; v, F) (cf.
jackknife equivalence!)

u(if;) = 0 by construction, so adding back v(F) (recentering) gives
rif; = if; + v(F)

so u(rif}) = v(F)
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RIF regression

Now, by the law of iterated expectations:

E(rify) = v(F) = Ex(E(rif;| X;))

Problem boils down to estimation a conditional expectation. Easy!

RIF-OLS specifies:
E(rifi| X;) = Xip

so RIF regression is OLS of sample of empirical rif; on the covariates
X
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9l

Interpretation of RIF regression coefficients

» Remember the RIF at y gives the influence on v(F) of an
infinitesimal increase in the density of the data at y:

» Regression coefficients reveal how much the average influence
of observations vary with X (holding other covariates constant)

» It also reveals how much v(F) would respond to a change in the
distribution of X in the population holding distribution of other
covariates constant

» linear approximation valid only for marginal changes in X!
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L RIF regression

Example: Gini coefficient

Influence functions for Gini and GE indices (Cowell and Flachaire,

2007)
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L RIF regression

Example: Gini coefficient

RIF regression coefficients on Gini coefficient of private sector wages
in Luxembourg (Choe and Van Kerm, 2013)

Immigrant
Non-resident
Female
Age
Age squared /100
Secondary education
Tertiary education
Years at current emplover
Manager
1049 employess in firm
50-249 employees in firm
S00-990 employees in firm
10004+ emplovees in firm
Part time contract

-0.003 =004
-0054% 00052«
-0.005
~(.018%
(028
0.055+
(.255%
~(.001

0.002
0.030%
-0.023¢
-0.021%
0.030%
0.012%
0.126%
-0.000
0.028#
-0.003
0.022
0.017
-0.009
0.06T#
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LF{IF regression

Example: Quantiles

RIF regression coefficients on foreign workers on 19 quantiles of
(unconditional) distibution of private sector wages in Luxembourg
(Choe and Van Kerm, 2013)

(a) Conditional on age, education level and gender

4

(CUPE) estimates
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Inference via counterfactual distributions

Analysis via counterfactual distributions is typically three-stage:

» model and estimate conditional distribution functions Fx(y) (or
conditional quantile functions)

> recover prediction for F by averaging over covariate distribution:
= [ Fx(y)h(x)dx:

» simulate counterfactual distributions F by manipulating
» the conditional distribution functions: F(y) = [ Gy(y)h(x)dx
» the covariate distributions: F(y) = [ Fy(y ( )ax:
» (typical analysis swaps either component across, say countries,
gender, etc.)
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Estimating conditional distribution functions

Many estimators available:

» quantile regression (Koenker and Bassett, 1978)
» distribution regression (Foresi and Peracchi, 1995)

» parametric income distribution models (Biewen and Jenkins,
2005)

» (duration models (Donald et al., 2000, ?), ordered probit model
(Fortin and Lemieux, 1998))
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LModelling conditional distributions

Quantile regression
Distribution regression

Parametric models
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LModelling conditional distributions

[ Quantile regression

Quantiles as check function minimizer

Quantile regression (QR) is fully analogous to mean regression

The trick is to express Q;, as similar minimization problem:
Q, = arg min > peyi—€)
i

where
pr(u) = u(r —1(u < 0))
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LModelling conditional distributions

[ Quantile regression

Quantiles as check function minimizer
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LModelling conditional distributions

[ Quantile regression

Linear quantile regression model

Focus on conditional quantile now and assume a particular
relationship (linear) between conditional quantile and x:

Q-(y|x) = x5+

(Or equivalently y; = x;3, + u; where Fl;ﬂxi(f) =0)

B, = arg min > pe(vi = xiB)

Estimate of the conditional quantile (given linear model):

Q- (yIx) = xB-
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LModr—.\lling conditional distributions

[ Quantile regression

Interpretation of linear QR

» Estimation of Q,(y|x) for a continuum of 7 in (0, 1) provides a
model for the entire conditional quantile function of Y given X

» 3, can be interpreted as the marginal change in the = conditional
quantile for a marginal change in x ...

» (... However, this does not imply that it is really the effect of a
change in x for a person at the = quantile of the distribution! This
would require a “rank-preservation” assumption.)

» Beware of quantile crossing within the support of X! (Simple
solution is re-arrangement of quantile predictions (Chernozhukov
et al., 2007))

cCeEPS
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LModr—.\lling conditional distributions

[ Quantile regression

Recovering v(Fy)

After estimation of the quantile process (0, 1), estimation of the
distributional statistic conditional on X is straightfoward:
» The set of predicted conditional quantile values {X/BQ}GG(OJ) is a
pseudo-random draw from Fy (if grid for 6 is equally-spaced)
(Autor et al., 2005)

» So a simple estimator for v from unit-record data can be used to
estimate v(Fy,)

» (no need to use v(Fy) which would often require numerical
integration)
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LModr—.\lling conditional distributions

[ Quantile regression

Flexible estimation

Linearity of the model Q;(y|x) = x/3; may possibly be problematic in
some situations

» Highly non-linear relationship between x and y
» Discovering non-linearities is the objective (e.g., growth curves)
Options:
» Add covariates in non-linear way (but still linearly in parameters).
» series estimator (complexity with order of polynomial in x)
» spline functions (complexity with order of spline and number of
knots)
» interactions
Smoothing techniques attempt to balance flexibility and sampling
variance (variability)

cCeEPS
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LModr—.\lling conditional distributions

[ Quantile regression

Kernel smoothing and locally weighted regression

Idea: To estimate g-(x), first define a neighborhood around x

(x + / — h) and compute quantile using all x; that fall in this
neighborhood.

Refinement: run a quantile regression Q,(y|x) = x/3; using data
within neighborhood and with kernel weight

(&,8) = argrgiﬁnZPT(y/'—a—(Xi—X)ﬁ) Kh(xi — x)

QT(X) = &

Issue 1: set the size of bandwidth h (too small —too variable; too large
then too linear)

Issue 2: not tractable when dim(X) is large (curse of dimensionality)
cers
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LModelling conditional distributions

[ Quantile regression

Quantile regression
Distribution regression

Parametric models
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LModelling conditional distributions

L Distribution regression

‘Distribution regression’

Fx(y) = Pr{y; < y|x} is a binary choice model once y is fixed
(dependent variable is 1(y; < y))

Idea is to estimate Fx(y) on a grid of values for y spanning the
domain of definition of Y by running repeated standard binary choice
models, e.g. a logit:

Fx(y) = Pryi<yix}

N(xBy)
exp(xBy)

1+ exp(xsy)

or a probit Fx(y) = ®(x8y) or else ...
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LModr—.\lling conditional distributions

L Distribution regression

‘Distribution regression’

v

Estimation of these models is well-known and straighforward!

v

Repeating estimations at different values of y makes little
assumptions about the overall shape of distribution

v

Beware of crossing of predictions here too!

v

Non-parametric, kernel-based approaches feasible too

Conditional statistic v(Fx) potentially less easy to recover from
the predictions than with quantile regression

v
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LModr—.\lling conditional distributions

L Parametric distributions

Parametric distribution fitting

Assume that the conditional distribution has a particular parametric
form: e.g., (log-)normal (2 parameters — quite restictive), Gamma (2
params), Singh-Maddala (3 param.), Dagum (3 param.), GB2 (4
param.), ... or any other distribution that is likely to fit the data at hand
(think domain of definition, fatness of tails, modality)

Let parameters (say vector #) depend on x in a particular fashion,
typically linearly (up to some transformation), e.g., 61 = exp(x1),
02 = exp(xB2) and 63 = xf3

This gives a fully specified parametric model which can be estimated
using maximum likelihood.

cCeEPS
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LModr—.\lling conditional distributions

L Parametric distributions

Parametric distribution fitting

» With parameters estimates, you can recover conditional
quantiles, CDF, PDF, means, ... often with closed-from expression

» Typically much less computationally expensive than estimating
full processes

» Price to pay is stronger parametric assumptions! (Look at
goodness-of-fit statistics (KS, KL, of predicted dist — contrast with
non-parametric fit also useful)

» compare fit with quantile regression with ...

» log-normal distribution often much worse fit than 3-parameters
alternative (while 4-parameter GB2 difficult to estimate reliably)

cCeEPS
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LModr—.\lling conditional distributions

I—Sample selection models

Endogenous sample selection in QR?

» “Buchinsky” two-step approach (Buchinsky, 2002):

» first step: estimate probability of selection (using non-parametric
model) given x and some exogenous z, p(x, z)

» second step: add a flexible function g(p(x, z)) (polynomial?) in
quantile regression of interest

» ... but the constant in the second step is difficult to identify
separately from the constant in the polynomial g(p(x, z)).

» Structural assumptions about this model are questioned. (Severe
identification problems being discovered in recent research
(Huber and Melly, 2011)

cCeEPS
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LModr—.\lling conditional distributions

I—Sample selection models

Parametric distribution fitting wth endogenous
selection

Parametric model can be extended to model endogenous
participation explicitly: this is a big advantage!

Let s denote binary participation (outcome y only observed if s = 1).
Assume s =1 if s* > 0 and s = 0 otherwise. s* is latent propensity to
be observed.

Assume pair (y, s*) is jointly distributed H and express H using its
copula formulation

H(y,s") = W(F(w), G(s"))

where F is outcome distribution, G is latent participation distribution
(typically Gaussian), and V is a parametric copula function.

Everything is parametric and can be estimated using maximum
likelihood (Van Kerm, 2013) cers
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Unconditional distributions from conditional

distributions
Law of iterated expectations:

F(y) = Ex(Fuly)) = /Q Fe(y) h(x) dx

—> Decompose the unconditional CDF (F(y)) as weighted sum of
conditional CDFs (Fx(y)) with weights being population share with x

(h(x))

In a sample, take the F, predictions averaged over observations
(Monte Carlo integration over covariates):
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Counterfactual distributions
Decompose differences in two CDFs as differences attributed to Fy
(‘structural’ part) and h(x) (‘compositional’ part).

Fy) = /Q FI(y) h(x) o

and

(F'(y) = F"(n)) = (F'(y) = F(») + (F(y) = F™(y))
Sample analog:

Nf Nf
~ 1 ~ 1 ~
Fly) = w7 2 B = e 2 M)
i=1 i=1

(Alternative counterfactual constructions conceivable. See
Chernozhukov et al. (2013) for inferential theory.) — — 7~
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Counterfactual distributional statistics?

Counterfactual estimates of v(F) obtained by plugging-in F and F in
v.

However, many functionals are not necessarily easily derived from F

(require some form of numerical integration)
— Derivation from (countefactual) conditional quantile function!

» but there is no law of ‘iterated quantiles’

Q.(y) + /Q Q-(y1x) h(x) dx

» simple simulations and Monte Carlo integration
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Unconditional and counterfactual quantile functions

Simulation consists in generating a simulated sample from F on the
basis of conditional quantile estimates.
Machado and Mata (2005) algorithm:

» pick a random value 0 € (0, 1) and calculate conditional quantile
regression for the 6-th quantile

» select a random observation x; from the sample and calculate
predicted value Qy = X;J3

» repeat steps above B times to generate a simulated sample from
F based on the conditional quantile model

» v(F) calculated with standard formulae from the simulated
sample

cCeEPS
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Decomposition of quantile differences

Machado-Mata very computationally intensive, especially since large
B required for accurate estimation of v(F).

Simplified version (Autor et al., 2005, Melly, 2005):
» estimate uniform (equally-spaced) sequence of conditional
quantile predictions for each observations—pseudo-random
sample from the conditional distribution Fx

» stack vectors of predictions for all observations into one long
vector V—pseudo-random sample from the unconditional
distribution!

cCeEPS
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Decomposition of quantile differences

Simplified version of Machado-Mata leads to very large simulated
sample with smaller number of quantile regression estimation... but
still computationally intensive (at least 99 quantile regressions
recommended)!

= Replace estimation of 99 conditional quantile regressions by
estimation of 1 parametric model (Van Kerm et al., 2013)

» predict conditional quantiles from parameter
estimates—closed-form expressions often available

(NB: random subsampling from V useful for speeding-up calculations)

cCeEPS
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Decomposition of differences in v(F)

Model-based predictions allow generation of various counterfactual
constructs:

» calculate conditional quantile predictions in group m
» aggregate over observations from group f
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Decomposition of differences in v(F)
Let {X,Bg}ge(oj) be the predictions from women model
Let {x,-Bg”}ge(oJ) be the K x N predictions from men model

And similarly {x;35}7L o 1y and {x;3§"}{L o 1) be the K x N™
predictions on the men sample

of —om = w {Xi35}56(0,1)) —v ({Xiﬁgq}?e(o,ﬂ)
= (6" —0%) + (0" — 0™
= (v ({X/35}56(0,1)) —v ({Xiéén}ge(oﬁ)))
- <U (Viﬁﬂge(o,n) —v ({Xiﬁg]}g’e(OJ)))

(Again, see Chernozhukov et al. (2013) for inferential theory and
bootstrap confidence intervals.) cerPs
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Comparing fit of alternative conditional quantile
estimators

Look at average check function residual by conditional quantile:

Z(yl Qx (0))(0 — 1(y; — Qx(0)) < 0))
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LSimulating counterfactual distributions

Comparing fit of alternative conditional quantile
estimators

< 4
o 4

c

o

=1

o

c

=

X

3

=N

[5]

Q

j=2]

©

[

>

<<
- 4

/ Log-normal — — — Singh-Maddala

ol 777" Dagum Q. reg.

P10 P20 P30 P40 P50 P60 P70 P80 PY0
percentle T T i.T..



Distribution regression methods

LSimulating counterfactual distributions

Comparing fit of alternative conditional quantile
estimators (ctd.)

© 4
o | Observed Q. reg.
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(Van Kerm et al., 2013) cers
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Native-foreign workers quantile wage gap
Wage gap at unconditional quantiles
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Two main approaches: Pros and Cons

1. Recentered influence function regression:

» easy

» regression coefficient interpretation direct but not necessarily
intuitive

» just as easy with F multivariate

2. Distribution function modelling:

» accurate and valid for many potential counterfactual policy
simulations/comparisons

» allow for endogenous sample selection correction

» no unique easy-to-interpret coefficient on each variable

» computationally heavy (in computing time—think parametric
distribution models!)

» multivariate F brings in substantial complication
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